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Clayton School of Information Technology

Monash University
{Nitin.Mahadeo, Andrew.Paplinski, Sid.Ray}@monash.edu

Abstract

The texture of the iris is commonly represented as an iris
code in iris recognition systems. While several approaches
have been presented for generating iris codes, relatively few
comparison techniques have been proposed. In this paper,
we take advantage of the availability of several frames from
an iris video to create a single optimized iris code. This
is achieved by performing both row-wise and column-wise
optimization of iris codes. Inconsistent bits are accurately
detected and masked in the final iris code. Our experiments
demonstrate that by exploiting variations within the com-
parison scores of different rows and columns of N frames,
we are able to derive the number of consistent bits in the fi-
nal iris code thereby resulting in significant improvement in
recognition performance. We compare our algorithm with
well-known methods, namely, Fragile bit masking, Signal
fusion and, two Score Fusion techniques. Experimental re-
sults on a dataset of 986 iris videos show that the proposed
method is encouraging and comparable to the best algo-
rithms in the current literature. To our knowledge, this is the
first work that makes use of the best rows and columns from
different frames in an iris video to improve performance.

1. Introduction
Several biometric systems have been developed by gov-

ernments and businesses with the aim of identifying indi-

viduals in a more secure and reliable manner. As a result

of the high complexity of the iris texture, it can be used for

identification and verification. The iris code is obtained by

applying a texture filter on the iris region to extract a binary

representation of the iris pattern. Numerous coding tech-

niques have been developed over the years for iris recogni-

tion. However, two-dimensional Gabor filtering proposed

by Daugman in 1993 remains the traditional approach [2].

Fractional Hamming Distance (HD) is used to evaluate

the disparity between two iris codes during the compari-

son or matching stage. This involves two Boolean opera-

tors, the Exclusive-OR operator (XOR) and the AND oper-

ator. The XOR operator, ⊗, identifies differences between

complimentary pairs of bits between two iris codes and an

AND operator, ∩, ascertains that bits being compared ex-

clude noise arising from eyelids, eyelashes and reflections.

This is shown in expression (1)

HD =

∑n
i=1(Ai ⊗Bi) ∩ (Am

i ∩Bm
i )

∑n
i=1 (A

m
i ∩Bm

i )
(1)

where n is the total number of bits in an iris code, Ai and

Bi are the bits for a given pair of iris codes and their corre-

sponding bit masks Am
i and Bm

i .

A suitable decision threshold is applied for the desired

False Accept Rate (FAR) or False Reject Rate (FRR) ac-

cording to the environments and requirements. It is cer-

tainly desirable in biometric systems to keep the error rates

as low as possible. To this end, one of the avenues investi-

gated by researchers concentrates mainly on enhancing the

quality of segmented iris patterns which in turn translates

into improved recognition performance. In [20], adaptive

histogram equalization is applied on isolated iris patterns

to improve its contrast prior to encoding. Vatsa et al. [21]

apply different image enhancement techniques on the seg-

mented iris. A high quality iris image is subsequently ob-

tained by adopting a support vector machine based learning

approach. Multiple frames from an iris video are averaged

into a single frame using signal fusion to improve perfor-

mance in [7][8]. In their experiments, Hollingsworth et
al. use varying number of frames and masking. The op-

timal parameters are determined for optimal performance.

In [17], local histogram equalization is applied on the iris

image followed by phase-based matching. The second av-

enue adopted by researchers focuses primarily on different

feature extraction techniques with the aim of capturing the

most discriminating features in the iris. These include Haar

wavelets, independent component analysis and directional

filter banks [11]. A thorough evaluation and implementa-

tion of different coding techniques used in iris recognition

systems can be found in [9].

Nonetheless, little consideration has been given to iris

code comparison techniques. The existence of “fragile” bits
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Figure 1. Example of a segmented iris region in a frame

was first suggested by Bolle et al. in [1]. This was further

investigated by Hollingsworth et al. in [6]. It involves bits

which are equally likely to flip to zero or one in different

iris codes of the same eye as they lie close to the imaginary

and real axes. Screening of these fragile bits in the com-

parison stage has shown to deliver superior performance. In

[3], an iris matching method based on a weight map learned

by training iris images of the same class is proposed by the

authors. The weight map is updated during the iris recog-

nition process and its robustness is improved by appointing

the correct weights to feature codes. A bit reliability-driven

matching approach is implemented by Rathgeb and Uhl in

[19]. Information on consistent bits are updated, refined and

stored after successful authentications to improve accuracy.

Dozier et al. investigate the number of bits needed for iris

recognition in [4]. Bit inconsistency and genetic search are

used to reduce the number of iris bits without affecting per-

formance. In [13], Ma et al. compute the average Hamming

distances by comparing N iris codes. Krichen et al. adopt

the same approach but instead use the minimum Hamming

distance comparisons of N iris codes [12]. Both the min-

imum and average score fusion methods would require N
iris codes of each individual to be stored in the database for

matching.

The contribution of this study is the proposal of an op-

timized iris code with high number of consistent bits and

low number of fragile (inconsistent) bits. This is achieved

by performing both row-wise and column-wise optimiza-

tion of iris codes from N iris frames. The number of incon-

sistent bits in each iris code is computed and masked. This

work demonstrates that rather than looking at the iris code

only as whole entity, the best rows and columns originating

from different iris codes can be combined together to form

an enhanced version. This paper is organized as follows.

In Section 2, the amount of consistent and inconsistent bits

across different frames from the same iris video is investi-

gated. The procedure for developing the optimized iris code

is presented in Section 3. Section 4 discusses the proposed

algorithm followed by its evaluation in Section 5. Finally,

our discussions and conclusions are presented in Section 6

and Section 7.

2. Consistent vs. Inconsistent bits
Typically, iris codes are compared to each other using

fractional HD and a decision threshold is used to determine

if the subject is genuine or an impostor. In order to highlight

the properties of iris codes, the following experiment is con-

ducted. For a given video, twenty-six frames of successfully

segmented iris are selected, unwrapped and their respective

iris codes are obtained by applying Log-Gabor filter on their

iris patterns. An example of an iris region segmented using

the method proposed in [15] is shown in Figure 1. The HD

scores between each iris code and its remaining twenty-five

counterparts are then computed as shown in expression (2).

For example, the Hamming distances between the iris code

I1 and the remaining iris codes I2 . . . IN are computed. The

same operation is repeated on the remaining iris codes to-

talling N×(N − 1) computations.

I1 → I2, I3, I4, . . . IN
I2 → I1, I3, I4, . . . IN

...

IN → I1, I2, . . . IN−1

(2)

Boxplots of the Hamming distances obtained from the

comparisons of each iris code with the remaining twenty-

five iris codes from the same gallery set are shown in Figure

2. It can be observed that variations from one iris code to

another can be significant even though they come from the

same gallery. For example, boxplot of iris code of frame

1 and frame 26 perform poorly compared to the other box-

Figure 2. Boxplots comparing the Hamming Distance scores of

twenty-six frames from the same gallery.
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Figure 3. The proposed algorithm for selecting the best rows and columns from N iris codes. Iris codes I1 to IN/2 are used to obtain the

row-optimized iris code Iro and iris codes IN/2+1 to IN are used to construct the column-optimized iris code Ico. An AND ∩ operation

between Iro and Ico yields the final iris code, Io.

plots as suggested by their relatively high Hamming Dis-

tances. Boxplot of iris code of frame 18 achieves the low-

est mean HD, 0.18, indicating that it has a higher number

of consistent bits resulting in relatively low HD when com-

pared to other iris codes from the same gallery. On the other

hand, boxplot of iris code of frame 7 achieves the lowest

standard deviation (σ), 0.028, while boxplot of iris code of

frame 23 has the highest σ, 0.058. The above observations

seems to suggest that there is significant variability from

one iris code to another. This also implies that frames con-

tain both consistent and inconsistent bits in varying propor-

tions. Iris codes with higher degree of consistent bits and/or

lower degree of inconsistent bits would perform better while

iris codes with lower degree of consistent bits and/or higher

degree of inconsistent bits would perform poorly.

As confirmed by Hollingsworth et al. in [6], the pres-

ence of fragile (inconsistent) bits in iris codes influence per-

formance. However, this has been typically dealt with by

considering the lower quartile of complex numbers result-

ing in the masking of real bits close to the imaginary axis

and masking of imaginary bits close to the real axis. As

demonstrated in our experiments, the number of fragile bits

varies from one gallery set of images to another. One of

the objectives of this work is to develop an optimal way of

identifying the number of inconsistent bits in an iris code. A

detailed approach for developing an optimized iris code is

presented in the following section followed by experiments

carried out in order to determine the optimal number of iris

codes required.

3. Proposed Iris Code Optimization Method
The proposed technique consists of three main stages.

In the first and second stages, row-wise and column-wise

optimization are examined. In the third stage, we describe

how bits found to be inconsistent are detected and masked

in the final iris code.

3.1. Selecting The Best Rows

Based on our investigation in Section 2, we are aware

that different iris codes contain varying amount of consis-

tent and inconsistent bits. We therefore proceed by finding

the best rows from all available iris codes i.e., rows with the

highest number of consistent bits are chosen.

Consider N iris codes from a given gallery set of images

where N is an even number. As shown in Figure 3, for row-

wise optimization, iris codes, I1 to IN/2 are used. Iris codes

IN/2+1 to IN are used for column-wise optimization. This

approach is adopted in order to ensure that the most consis-

tent bits across a wider range of frames are chosen. The HD

score of each row of each iris code is computed with the

corresponding rows in the remaining ones. In the follow-

ing example, we discuss how the first row, R1, is selected

out of N/2 iris codes. The HD score of the first row, R1

of iris code I1 is computed with the remaining first rows of

iris codes I2 to IN/2. Similarly, the HD score of the first

row, R1 of iris code I2 is computed with the remaining first

rows of iris codes I1 to IN/2, excluding I2 this time. The

same process is repeated for the remaining R1 up to iris

code IN/2. This leaves us with N/2× (N/2− 1) HD score
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comparisons for the first row R1 out of N/2 iris codes. The

mean Hamming distances, μ1 ... μN/2, for each row com-

parison is then computed. Finally, the row of the iris code

with the lowest mean score is selected as shown in expres-

sion (3).

Ri = min(μ1, . . . , μN/2) (3)

This process is repeated for the remaining rows,

R2 . . . RN and the optimal rows are selected in a similar

manner. Figure 3 is an illustration of the above procedure

where the optimal rows are selected from iris codes I1 to

IN/2. In the given example, the first row R1 is selected

from iris code IN/2 while the last row, RN is taken from

iris code I1. The final iris code is referred to as the row-wise

optimized iris code, Iro. One way of looking at the above

algorithm is that it identifies which row performs best and

this is subsequently used to build Iro. The index of the best

row of a given template is stored and the row-optimized iris

code can be built based using the corresponding rows with

the lowest mean Hamming distances. The same rows are

in turn selected for the iris mask, Mro. Figure 4 shows an

example of the reconstructed iris pattern and its respective

mask built from the optimal rows of iris patterns obtained

from the row-wise optimization process.

3.2. Selecting the Best Columns

Here, the same procedure is implemented using a

column-wise approach instead of row-wise. The best

columns out of iris codes IN/2+1 to IN are chosen and the

column optimized iris code, Ico and iris mask Mco are con-

structed. As shown in our example in Figure 3, here column

C3 from iris code IN/2+1 is selected and column C1 from

iris code IN to build the column-wise optimized iris code,

Ico. The same columns are selected for the iris mask, Mco.

It should be noted that a different set of iris codes are chosen

to build Ico. For example, if four iris codes are selected, the

first two individual iris codes, I1 and I2 are used to build

Iro and the remaining two iris codes, I3 and I4 iris codes

are used to construct Ico. Ideally, the difference between

the row-optimized iris code Iro and the col-optimized iris

code Ico should be very small. However, as shown in our

experiments, this is not always the case.

(a)

(b)

Figure 4. An example of the (a) iris pattern and the (b) iris mask

reconstructed using the best rows identified by the row-wise selec-

tion technique.

3.3. The Optimal Iris Code and Iris Mask

In the final part of the proposed approach, our aim is

to build an optimal iris code with the following properties.

Firstly, only bits which are consistent in both iris codes,

Iro and Ico are considered. This would ascertain that the

most consistent bits found in both the row-wise and column-

wise operations are preserved. Secondly, bits which are not

common to both Iro and Ico are considered to be incon-

sistent and should not be used in our computations. Com-

bined together, these two properties ensure that the final iris

code has a maximum number of consistent bits and min-

imal number of inconsistent bits. This is achieved in the

following manner. The optimal iris code, Io, is obtained

by performing an AND, ∩, operation between Iro and Ico
respectively as shown in expression (4). This ensures that

only bits consistent in iris codes Iro and Ico are retained.

Io = Iro ∩ Ico (4)

The second part involves the detection of “inconsistent”

(disagreeing) bits. This is achieved using the XOR oper-

ator, ⊗ which detects disagreeing bits between Iro and Ico.

This is shown in equation (5) and the result of this operation

is stored in D.

D = Iro ⊗ Ico (5)

Finally. the optimal iris mask, M0 is built using the

OR operator, ∪ as defined in expression (6). The result of

this operation ensures that the final mask accommodates for

noise from disagreeing bits, D, the column-wise optimized

mask, Mco and the row-wise optimized mask, Mro.

Mo = Mco ∪Mro ∪D (6)

4. Experiments
The Multiple Biometric Grand Challenge (MBGC) ver-

sion 2 dataset is used in our experiments. It consists of

986 Near Infrared iris video sequences acquired using an

LG 2200 camera. The dataset consists of both right and

left eyes. The number of videos per subject varies between

one and seven and the time lapse between the video cap-

ture for each subject ranges between one and nine weeks

[18]. We first start by considering only optimal frames in

iris videos. This would ensure that an improvement is made

as a result of the proposed algorithm and not as a conse-

quence of frame quality. Several methods have been pro-

posed in the literature on iris image quality assessment. We

refer the reader to the following papers for more informa-

tion on frame quality assessment methods developed for iris

recognition systems [5][14][10]. In this work, iris videos

are processed and high quality frames are obtained using

the method described in [14]. The number of high qual-

ity frames obtained for each video will vary depending on

its quality and length. The first video of each subject is

5151



Figure 5. ROC curves for four, six, eight and ten iris codes.

No. of frames FRR(%) @ FAR=0.001(%) EER(%)

4 0.2795 0.1007

6 0.0358 0.0188
8 0.0691 0.0859

10 0.1128 0.1034

Table 1. The optimal iris codes built using six frames delivers bet-

ter recognition performance than those derived from four, eight

and ten frames.

considered to be the gallery set and the remaining videos

are regarded as the probe set. All the extracted high qual-

ity iris frames are segmented and unwrapped onto a regular

frame based on the rubber sheet model proposed by Daug-

man to compensate for varying sizes of captured iris frames

[2][15]. The isolated iris patterns are encoded using Log-

Gabor wavelets to obtain their respective iris codes [16].

In Section 4.1, the optimal number of frames required

for building the optimized iris code Io is determined and in

Section 4.2 we demonstrate how the number of disagreeing

bits can vary from one video to another. Section 5 compares

the proposed approach with other methods.

4.1. Optimal Number of Frames

The number of iris codes required to form an optimal

one is investigated in this section. Four high quality frames

are initially selected and the optimized iris code is created

as per the proposed approach described in Section 3. This

experiment is then repeated using six, eight and ten frames

respectively. Their ROC curves are shown in Figure 5. It

can be observed that the 4-frame and the 10-frame plots per-

form poorly compared to the 6-frame and 8-frame curves.

Overall, the curve where the optimal iris codes are derived

from six individual iris codes performs significantly better

than the rest.

This is confirmed by the results tabulated in Table 1

where EER is the Equal Error Rate, FAR is the False Ac-

cept Rate and FRR is the False Reject Rate. As the num-

ber of frames is increased from four to six, there is a sig-

nificant drop in the error rate, from 0.1007% to 0.0188%.

It can also be observed that the 6-frame and the 8-frame

curves have the lowest error rates. However, as the number

of frames is increased from eight to ten, the error rate rises

to 0.1034%. It should be mentioned that number of frames

required to create the optimal iris code will vary depend-

ing on the dataset and frame quality. Based on the above

figures, it can be deduced that the optimal number of iris

codes required to build an optimized one for this dataset is

six. This implies that the optimal equilibrium for retention

of consistent bits and elimination of inconsistent bits in the

optimized iris codes has been reached.

4.2. Performance Evaluation

The number of disagreeing (inconsistent) bits, D, be-

tween the row-optimized iris code Iro and the column op-

timized iris code Ico is computed as per expression (5) in

Section 3.3. This operation is carried out using four, six,

eight and ten frames respectively. The boxplots in Figure

6 shows how the percentage of disagreeing bits varies with

the number of frames used to build the optimized iris code,

Io. As per the figures in Table 2, there is an increase in

the average number of disagreeing bits, μ, as the number of

frames used is increased. On the other hand, a drop in the

standard deviation, σ, is recorded as we move from four to

ten iris codes. No clear trend is detected in the interquartile

range. It is noteworthy to mention that the six-frames plot

has the least number of outliers. Based on the above num-

bers, it is interesting to note that the effect of increasing the

number of frames translates into better performance up to a

certain limit as shown in our experiments.

This can be regarded as a dual optimization problem

where the right balance of consistent and inconsistent bits

needs to be reached for optimal performance. In this case,

using four frames only to build the optimal iris code would

mean that there is insufficient masking and detection of in-

consistent bits. Seemingly, the right balance for the de-

Figure 6. Boxplots of the percentage of disagreeing bits for four,

six, eight and ten iris codes respectively.
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D(%) 4 frames 6 frames 8 frames 10 frames

μ 16.88 17.11 17.63 17.84

σ 6.52 6.01 6.02 5.91

IQR 8.52 8.01 8.61 8.10

Table 2. Analysis in the variations of disagreeing bits, D, with

number of frames used to compute the optimized iris codes.

tection of consistent and inconsistent bits occurs when six

frames are used as indicated by its low EER. On the other

hand, as shown in Table 2, the effect of increasing the num-

ber of frames leads to more masking. In the process, the

probability of consistent bits being masked is also higher

leading to a drop in performance when eight and ten iris

codes are used to build the optimal one. Another effect of

using an increasing number of iris codes to derive the opti-

mal one is the introduction of more noise factors. In addi-

tion, different iris frames have different degree of occlusion,

i.e., not all iris codes have the same amount of valid iris

data. This could potentially lead to rows and columns with

significant masking being chosen to build the optimal ones

as they deliver better performance in row-wise and column-

wise comparison. However, more masking means less valid

bit comparisons thereby affecting the overall performance.

5. Comparison with previous methods
The performance of the proposed technique is compared

with other methods in this section. The implementation de-

tails are also discussed.

5.1. 1-to-1 & N-to-1 Comparisons

The Signal Fusion method proposed by Hollingsworth et
al. is implemented [7]. It consists of averaging of N frames

to create a single average image. In the same manner as

the work performed in [6, 8], fragile bit masking is imple-

mented to screen complex coefficients which lie too close

to the axes and might end up as a zero or a one in different

iris codes of the same iris image. In our experiments, this

is referred to as the 1-1 Signal Fusion-Fragile comparison.

Another approach adopted by researchers is the enrolment

of multiple frames. A single probe image is compared to

N gallery images resulting in N Hamming distance scores.

Ma et al. [13] take the average of the N Hamming distances

to obtain a single score. This implementation is referred to

as N-1 Score Fusion-Avg comparison. On the other hand,

Krichen et al. [12] take the minimum of the N Hamming

distance scores to obtain the final Hamming distance score.

We term this as N-1 Score Fusion-Min comparison. In our

proposed method, N frames are selected to build a single

optimal iris code, Io.

In line with previous matching schemes, we test the pro-

posed algorithm in the following manner. N frames are

Figure 7. The proposed method performs better than Signal Fusion

and Score Fusion methods

Method OP(%) d′ EER(%)

N-1 Score Fusion-Min 0.9060 6.093 0.1041

1-1 Signal Fusion-Fragile 0.1727 5.793 0.1032

N-1 Score Fusion-Avg 0.8168 6.049 0.1022

1-1 Proposed 0.0358 6.676 0.0188

Table 3. The performance of the proposed method compared to

other implementations.

taken from the gallery set to create the optimized iris code.

The same operation is performed on the probe sets to obtain

their respective iris codes. For our experiments, N = 6 and

the same dataset is used. The ROC curves of the different

implementations discussed above are shown in Figure 7 and

the results are tabulated in Table 3 where d′ is the decidabil-

ity index, OP is the operating point which gives us the FRR

value at 0.001% FAR. Both the ROC curves of the Score

Fusion-Min and Score Fusion-Average methods closely fol-

low each other. However, they have relatively high operat-

ing points compared to the other methods implemented. On

the other hand, the Signal Fusion-Fragile method achieves

a comparably low operating point but takes a longer time to

reach a high Accept Rate. The proposed method achieves

the lowest operating point and reaches a high Accept Rate

quicker than its counterparts. As indicated by its low EER,

high d′ and low OP, the proposed method performs sig-

nificantly better than both Signal Fusion and Score Fusion

methods.

6. Discussions

In the proposed approach, using four frames to build the

optimal iris code would imply that there is still a high num-

ber of inconsistent bits in the final iris code as indicated by

the comparably high EER. As we move from four to six iris

codes, there is a significant drop in the EER. This is due

to higher number of consistent bits and lower number of in-

consistent bits resulting in more reliable HD scores. Beyond
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Figure 8. Change in EER with No. of frames used to build the

optimal iris code.

this point, as shown in Figure 8, using eight, ten and twelve

iris codes causes the EER to increase and performance is

affected. As demonstrated in our experiments, more frames

leads to more masking. The result is that there is less valid

bit comparisons resulting in a rise in error rates.

In addition to performing comparably better than both

N-1 Average and N-1 Minimum Score Fusion methods, the

proposed algorithm takes only 1/N of the storage space.

Identification of fragile bits for masking using a constant

threshold such as the lower quartile rate does not always

lead to optimal performance [22]. This could potentially

lead to consistent bits being masked in the process or in-

consistent bits being ignored. As shown in our experiments,

the number of inconsistent bits can vary significantly from

one iris code to another. In contrast, in this work, we are

able to accurately determine the number of inconsistent bits

present in each optimized iris code. By masking the appro-

priate number of inconsistent bits in each iris code valuable

information is not lost and performance is improved.

In traditional iris recognition systems, in order to com-

pensate for rotational inconsistencies, iris templates are

shifted to the right and left and the lowest HD is chosen

[2][16]. In our experiments, the same approach is adopted.

When selecting the best rows, they are shifted eight bits to

the left and to the right and the row with the smallest HD

score is chosen. We also adopt the same approach when se-

lecting the best columns. Only four shifts to the right and

to the left are considered in this case since column length is

significantly shorter than row length in a typical iris code.

7. Conclusion

In this work we have presented an accurate method for

improving the performance in iris recognition systems. By

efficiently selecting the best rows and columns in different

iris codes, consistent bits in the final iris code are preserved

while inconsistent bits are eliminated in a reliable manner.

Experimental results have demonstrated encouraging per-

formance in terms of accuracy. In particular, a comparative

study with other published methods is carried out. Both

the performance evaluation and the comparison study vali-

date our examination and understanding of iris codes. The

proposed method could potentially be used in iris systems

where low error rates are essential.
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