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Abstract

In this paper, we study the problem of reproducing the
world lighting from a single image of an object covered with
random specular microfacets on the surface. We show that
such reflectors can be interpreted as a randomized mapping
from the lighting to the image. Such specular objects have
very different optical properties from both diffuse surfaces
and smooth specular objects like metals, so we design spe-
cial imaging system to robustly and effectively photograph
them. We present simple yet reliable algorithms to calibrate
the proposed system and do the inference. We conduct ex-
periments to verify the correctness of our model assump-
tions and prove the effectiveness of our pipeline.

1. Introduction
An objects appearance depends on the properties of the

object itself as well as the surrounding light. How much
can we tell about the light from looking at the object? If
the object is smooth and matte, then we can tell rather little
[3, 12, 11, 13]. However, if the object is irregular and/or
non-matte, there are more possibilities.

Figure 1 shows a picture of a surface covered in glitter.
The glitter is sparkly, and the image shows a scattering of
bright specularities. We may think of the glitter as con-
taining mirror facets randomly oriented. Each facet reflects
light at a certain angle. If we knew the optical and geomet-
rical properties of the facets, we could potentially decode
the reflected scene.

Figure 2 shows a variety of optical arrangements in
which light rays travel from a scene to a camera sensor by
way of a reflector. For simplicity we assume the scene is
planar; for example it could be a computer display screen
showing a test image. A subset of rays are seen by the sen-
sor in the camera. Here we show a pinhole camera for sim-
plicity.

Figure 2(a) shows the case of an ordinary flat mirror re-
flector. The pinhole camera forms an image of the display
screen (reflected in the mirror) in the ordinary way. There
is a simple mapping between screen pixels and sensor pix-

(a) Specular microfacets (b) Closer look (c) Reconstructed
lighting

Figure 1. Reproducing the world from a single image of specu-
lar random facets: (a) shows the image of a surface covered with
glitter illuminated by a screen showing the image of Obama. (b)
gives a close up look of (a), highlighting both the bright spots and
dark spots. (c) shows the lighting, i.e., the face of Obama the our
algorithm constructs from (a).

els. Figure 2(b) shows the same arrangement with a curved
mirror. Again there is a simple mapping between screen
pixels and sensor pixels. The field of view is wider due
to the mirror’s curvature. Figure 2(c) shows the case of a
smashed mirror, which forms an irregular array of mirror
facets. The ray directions are scrambled, but the mapping
between screen pixels and sensor pixels is still relatively
simple. This is the situation we consider in the present
work.

Figure 2(d) shows the case of an irregular matte reflector.
Each sensor pixel sees a particular point on the matte reflec-
tor, but that point integrates light from a broad area of the
display screen. Unscrambling the resulting image is almost
impossible, although there are cases where some informa-
tion may be retrieved, as shown by [17] in their discussion
of accidental pinhole cameras. Figure 2(e) shows the case of
an irregular mirror, but without benefit of a pinhole camera
restricting the rays hitting the sensor. This case corresponds
to the random camera proposed by Fergus et al [6], in which
the reflector itself is the only imaging element. Since each
pixel captures light from many directions, unscrambling is
extremely difficult.

The case in Figure 2(c), with a sparkly surface and a pin-
hole camera, deserves study. We call this case “SparkleVi-
sion”. It involves relatively little mixing of light rays, so
unscrambling seems feasible. Moreover it could be of prac-
tical value, since irregular specular surfaces occur in the real
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(a) flat mirror (b) curved mirror (c) smashed mirror, sparkle-
vision

(d) irregular matte reflector (e) irregular mirror without
pinhole camera

Figure 2. Optical arrangements in which light rays travel from a scene to a camera sensor by way of a reflector: “SparkleVision” refers to
the setup in (c).

world (e.g., with metals, certain fabrics, micaceous miner-
als, and the Fresnel reflections from foliage or wet surfaces).

For a surface covered in glitter, it is difficult to build a
proper physical model. Instead of an explicit model, we
can describe the sparkly surface plus camera as providing
a linear transform on the test image. With a planar display
screen, each sparkle provides information about some lim-
ited parts of the screen. Non-planar facets and limited opti-
cal resolution will lead to some mixture of light from mul-
tiple locations. However, the transform is still linear. There
exists a forward scrambling matrix, and in principle we can
find its inverse and unscramble the image.

To learn the forward matrix we can probe the system by
displaying a series of test images. These could be orthogo-
nal bases, such as a set of impulses, or the DCT basis func-
tions. They could also be non-orthogonal sets, and can be
overcomplete. Having determined the forward matrix we
can compute its inverse.

All the optical systems shown in Figure 2 implement lin-
ear transforms, and all can be characterized in the same
manner. However, if a system is ill-conditioned, the inver-
sion will be noisy and unreliable. The performance in prac-
tice is an empirical question. We will show that the case in
Figure 2(c), SparkleVision, allows one to retrieve an image
that is good enough to recognize objects and faces.

1.1. Related Work

A diffuse object like a ping pong ball tells us little about
the lighting. If a Lambertian object is convex, its appear-
ance approximately lies in a nine-dimensional subspace
[3, 12, 11, 13], making it impossible to reconstruct more
than a 3 × 3 environment map. For non-convex objects, an
image of the object under all possible lighting conditions
lies in a much higher dimension space due to shadows and
occlusions[20], enabling the reconstruction of light beyond
3 × 3 [7]. But in general, matte surfaces are tough to work
with.

A smooth specular object like a curved mirror provides
a distorted image of the lighting, which humans can rec-
ognize [4] and algorithms can process [2, 5, 18]. How-
ever, specular random facets are different. Typically they
are highly irregular and discontinuous, making it hard even
for humans to perceive. We utilize a similar model with in-

verse light transport [14, 15] to analyze this new setup, and
propose a novel pipeline to effectively reduce the noise and
increase the stability of the system, both in calibration and
reconstruction.

Researchers have applied micro-lens arrays to capture
lightfields [1, 9]. To some extent, a specular reflector can
also be considered as a coded aperture of a general cam-
era system[8]. Our work differs from the previous work in
the sense that our setup is randomized – to the best of our
knowledge previous work in this domain mainly uses spe-
cially manufactured array with known mapping whereas in
our system the array is randomly distributed.

Many ideas in this paper are inspired by previous work
on Random Camera [6]. However, the key difference be-
tween our paper and the previous work is that in [6] no lens
is used and hence all the lights from all directions in the
lightfield get mixed up which is difficult to invert. In our
setup, we place a lens between the world and the camera
sensor, which makes the problem significantly easier and
more tractable to solve. Also similar ideas appears in the
“single pixel camera” [16] where measurements of the light
are randomized for compressed sensing.

The idea that some everyday objects can accidentally
serve as a camera has been explored before. It is in shown in
[10] that an photograph of a human eye reflects the environ-
ment in front of the eye, and this can be used for relighting.
In addition, a window or a door can act like a pinhole, in
effect imaging the world outside the opening[17].

2. The formulation of SparkleVision

We discuss the optical setup of SparkleVision in dis-
cretized settings. Suppose the lightfield in a particular en-
vironment is denoted by a stacked, discrete vector x in the
space. We place a specular object O with random specular
microfacets into the environment. Further we use a camera
C with a focused lens to capture the intensity of the light re-
flected by O. Let the discrete vector y be the sensor output.
It is well known that any passive optical system is linear.
So we use a matrix A(·) to represent the linear mapping
relating the lightfield x to y. Therefore, y = Ax.

Note that all the above discussion makes no assumption
on any material, albedo, smoothness or continuity proper-



ties of the objects in the scene. Therefore, this linear rep-
resentation holds for any random specular microfacets. In
this notation, the task of SparkleVision can be summarized
as
• Accurately capture the image y of a sparkling object.
• Determine the matrix A, which is a calibration task.
• Infer the light x from the image y, which is an infer-

ence task.
In the later discussion, we will use many pairs of light-

ings and images so we use the subscript (xi, yi) to denote
the i-th pair of them. In addition, let ei be the i-th unit vec-
tor of the identity basis, i.e., a vector whose entries are all
zero except the i-th entry which is one. Similarly, let di rep-
resent the i-th unit vector of the bases of the Discrete Cosine
Transform (DCT). We use bi to represent a random basis
vector where all entries are i.i.d random variables. Also let
A = [a1, a2, . . . , aN ] with ai as its i-th column.

3. Imaging specular random facets through
HDR

In this section we examine the properties of sparkling
objects with microfacets. Their special characteristics en-
able the recovery of lighting from an image while imposing
unique challenges to accurately capture images of them. To
deal with these challenges, we use High Dynamic Rang-
ing (HDR) imaging, using multiple exposures of the same
scene.

3.1. Sparkling Pattern under Impulse Lightings

Specular random microfacets can be considered as a ran-
domized mapping between the world light and the camera.
Each single facet faces a random orientation. It acts as a
mirror reflecting all the incoming lights. However, because
of the existence of a camera with focused lens and the small
size of each facet, only lights from a very narrow range
of directions will be reflected into camera from any given
facet. Therefore, given a single point light source, only a
very small number of the facets will reflect light to the cam-
era and appear bright. The rest of the facets will be unillu-
minated. This effect makes the dynamic range of a photo
of specular facets extremely high, creating a unique chal-
lenge to photographing them. Figure 3(a) and 3(b) plots the
histogram of a photo of such reflector.

Now suppose we slightly change the location of the im-
pulse light, generating a small disturbance to the direction
of the incoming light to the facets. Thanks to the narrow
range of reflecting direction of each facet, this slight dis-
turbance will cause a huge change of light patterns on the
random facets. Provided that the orientations of the facets
are random across all the surfaces, we should expect that the
set of aligned facets will be significantly different. Figure
3(c) gives us an illustration of this phenomenon. Intuitively,

(a) image

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

(b) histogram (c) non-overlap

Figure 3. Optical properties of specular random micro facets: (a)
shows an image of specular facet with scattered bright spots. (b)
demonstrates its histogram, although the bright spots in the image
are shining, most of pixels are actually dark. (c) the surface simul-
taneously illuminated by two adjacent impulse lighting, one in red
and one in green. The reflected green lights and red lights seldom
overlap as few spots in the image are yellow.

if our task is just to decide whether a certain point light
source is on or not, we could just count whether the corre-
sponding set of facets for that light’s position is active or
not. This also suggests that our system is very sensitive to
the alignment of the geometric setup, which we will address
in Section 6.6.

3.2. HDR Imaging

As we have seen, the dynamic range of an image of a
sparkling object is extremely high. Dark regions are noisy
and numerous throughout the image. To accurately capture
them, long exposure is needed. Unfortunately, long expo-
sure makes the bright spots saturated and therefore breaks
the linearity assumption. If we adjust the exposure for the
sparse bright spots, the exposure time would be too short to
capture the noisy dark pixels accurately. Therefore, it is not
practical to capture both high and low intensity illumination
with just a single shot with a commercial DSLR camera.

Our solution is to take multiple shots of the same scene
with K different exposure time tk. Let the resulting images
be I1, I2, . . . , Ik. We can then combine thoseK images into
a single image I0 with much higher dynamic range than any
of the original K images. Note that we use a heavy tripod in
the experiment and therefore we assume all Ii are already
registered. Therefore, we only need to develop a way to
decide I0(x) from Ik(x) for any arbitrary location x.

The Canon Rebel T2i camera that we use in our experi-
ments has roughly linear response with respect to the expo-
sure time for a fairly large range – roughly when the inten-
sity ranges in (0.1, 0.7). When the intensity goes beyond
0.7 the response function becomes curved and gradually
saturated and hence the linearity assumption breaks down.
When the intensity is lower than 0.1 the image is very noisy.
So we need to discard these undesired intensities. Denote
the remaining exposure time and intensity pairs (ti, Ii(x)).
The goal is to determine the value I(x) independently for
each location x. We solve this problem by fitting a least
squares line to (ti, Ii(x)):



I(r) = argmins
∑
i

(s · ti − Ii(x))2 (1)

With simple algebra we can derive a closed form solution:

I(r) =

∑
i tiIi(r)∑
i t

2
i

(2)

Note that the derived solution can be viewed as an average
of intensities under different exposures weighted by the ex-
posure time.

4. Calibration and Inference of SparkleVision
System

In this section, we examine the algorithm to calibrate the
system and reconstruct the environmental map x from y.

4.1. Calibration with overcomplete basis
We probe the system y = Ax by illuminating the object

with impulse lights ei. Ideally, yi = A · ei = ai. So we can
scan through all ei to get A. However, due to the presence
of noise the measured yi will typically differ from the ai of
an ideal system. As we will show later in experimental sec-
tions, this noise on the calibrated matrix A is lethal to the
recovery of the light. Our system relies on a clean, accurate
transformation matrix A to succeed. Therefore, we further
probe the system with multiple different basis. Specifically
we use the DCT basis di and a set of random basis bi. Do-
ing this we make the system over-complete and hence the
estimated A becomes more robust to noise. Let E be the
N × N impulse basis matrix, D be the DCT basis matrix
andBK ∈ RN×K be the matrix ofK random basis vectors.
This implies the following optimization to do the calibra-
tion:

min
A
‖Y1 −AE‖2F + λ‖Y2 −AD‖2F + λ‖Y3 −ABK‖2F (3)

λ here is a weight to balance the error since the illumina-
tion from impulse lights tend to be much dimmer than the
illumination from DCT and random lighting. In our experi-
ments we set λ = 1

N .
To further refine the quality of the calibrated A against

the noise in the dominant dark regions of A, we only re-
tain intensities above a certain intensity during calibration.
Specifically let Ωi be the set of the 1% brightest pixels in
yi illuminated by the impulse ei. Let Ω =

⋃
i Ωi. We then

only keep the pixels inside Ω and discard the rest. Let PΩ(·)
represents such a projection. This turns the calibration into
the following optimization:

min
A
‖PΩ(Y1)−AE‖2F+λ‖PΩ(Y2)−AD‖2F+λ‖PΩ(Y3)−ABK‖2F

(4)

Note that the size of the output A from (4) is different
from (3) due to the projection Ω(·).

4.2. Reconstruction

Given A, reconstructing an environment map from an
image y is a classic inverse problem. A straightforward ap-
proach to this problem is to solve it by least-squares. How-
ever, this unconstrained least square may produce entries
less than 0, which is not physically meaningful. Instead we
solve a constrained least squares problem:

min
x
‖y −Ax‖2F , s.t. x ≥ 0 (5)

Nevertheless, through experiments we find they are ac-
tually too slow for application. When the resolution of the
screen is 20×20, i.e., x ∈ R400, solving the inequality con-
strained least square is approximately 100 times slower. Yet
the improvement is minor. So we just solve the naive least
square without non-negative constraints and then crop the
out-ranged pixels back to [0, 1].

We observe that in practice there is room for improve-
ment to smooth the outcome of the above optimization.
For example, we could impose stronger image priors to
make the result more visually appealing. However, doing
so would disguise some of the intrinsic physical behavior
of SparkleVision, and therefore we decide to stick to the
most naive optimization (5).

4.3. Extensions and implementation details

We use RAW files from the camera to avoid any non-
linearity post-processing in image format like JPEG and
PNG. In addition, we model the background light as e0

and shot y0 = Ae0 by turning all active light sources off.
We subtract y0 from every yi in the experiments by default.
Since y0 is used for all of yi, we repeatedly photograph it
multiple times and take the average as actual image to su-
press the noise on y0.

We can easily extend the pipeline to handle color images
where the transformation matrix A is R3M×3N instead of
RM×N . For calibration, just use enumerate ei three times
in red, blue and green. Reconstruction is basically the same.

5. Simulated Analysis of SparkleVision
In this section we conduct synthetic experiments to sys-

tematically analyze how noise affects the performance of
the proposed pipeline. In addition, we study how the size of
mirror facet and the spatial resolution of the sparkling sur-
face influence the resolution of the lighting that the system
can recover. These experiments improve our understanding
on the limits of the geometric setup, provide guidance to
tune the setup, and help us interpret the results.

5.1. Setup of the Simulated Experiment

The setup of the simulated experiment is shown in Figure
4, where a planar screen is reflected by a sparkling surface



Figure 4. Configuration of the synthetic simulation. The pixel pi
with certain width is reflected by the facet qi to the camera.

to the camera. The resolution of the screen is the resolution
of the lightmap. We model the sparkling plane as a rect-
angle with fixed size. We divide the plane into blocks and
each block is fully covered by a mirror facing certain orien-
tation. The resolution of the sparkling plane is the just the
number of blocks in that rectangular space. For simplicity,
we do not consider interreflection or occlusion between the
mirrors facets.

For each mirror facet, we assume that its orientation fol-
lows a distribution. Let θ ∈ [0, π/2] be the slant of the
orientation and φ ∈ [0, 2π) be the its tilt. We model the tilt
φ as uniformly distributed in [0, 2π). In practice the mir-
ror is centered around 0. Therefore we model it as positive
half of the Gaussian distribution with standard deviation σθ.
Specifically, we have

Pθ(θ0) =
2√

2πσθ
exp

(
− θ2

0

2σ2
θ

)
, θ0 ≥ 0 (6)

Note that the mean of θ is actually not 0 and hence the actual
standard deviation is not σθ.

We assume that the orientation of each facet does not de-
pend on the other so we can independently sample its value
and create a random reflector. We use the classic ray-tracing
algorithm to render the light reflected by the specular sur-
face into the camera. We test the pipeline in this synthetic
setup and in the ideal noise free case the recovery is perfect.

5.2. Sensitivity to Noise

For simplicity, we model the image noise as i.i.d. white
noise. We perform three control experiments to tease apart
the effects of noise during calibration versus during test
time reconstruction. In the first test, we add noise to both
calibration and test images. In the second test, we only add
noise to the training dictionary while in the third we only
add noise to the test images. Suppose we test our pipeline
on N test lightmaps Ii, 1 ≤ i ≤ N and get the recoverÎi.
We measure the error of the recovery by the average sum
of squared difference (SSD) between Ii and Îi. Varying
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Noisy dictionary + noisy test

Clean dictionary + noisy test

Noisy dictionary + clean test

Figure 5. How noise in the calibration and the reconstruction stage
affects the recovery accuracy. Our pipeline is stable to the noise in
the reconstruction stage, but not stable to the noise in the training
stage.

the noise standard deviation from 0.01 to 0.1, we get three
curves for the tests shown in Figure 5.

The result indicates that our system is much more robust
to the noise in the test image than the noise in the images
for calibration. In fact, when the standard deviation of the
noise is 0.1 the recovery is still great with the clean cali-
bration images. In addition, when the noise std is as low
as 0.01, the SSD with pure the training noise is 1.85 while
the SSD with pure testing noise is just 0.14. Therefore this
comparison validates the need to use an over-complete basis
in our proposed pipeline to reduce the noise in the training
stage.

5.3. Impact of Spatial Resolution

The spatial resolution of the random reflector determines
the resolution of the light map that we can recover. Keep in
mind that each micro facet in our model is a mirror and
our system relies on the light from the screen reflected by
the facet to the camera. If some part of the screen is never
reflected to the camera, there is no hope to recover from
what that part of the screen is showing from the photograph
taken by the camera. Since the facets are randomly oriented,
this undesirable situation may well happen.

Figure 6 demonstrates such a phenomenon. Figure 6(a)
shows a high-resolution image shown on the screen serving
as the lightmap. The lightings are reflected by the micro
facets to the camera sensor. However, the number of the
facets is very small. As a consequence, some blocks of the
photo are dark and part of the lightmap is missing, as is
observed in Figure 6(b). Intuitively speaking, if we have
more facets, the chance that part of the light map is reflected



(a) Image shown on the screen (b) Photography of a specular
facet

Figure 6. Photography of a specular reflector with low spatial res-
olution.

to the camera will increase, even if the size of each facet is
smaller.

We develop a mathematical model to approximately
compute the probability that a block of pixels on the screen
will be reflected by at least one micro facet to the camera
sensor. The model involves several approximations such as
a small angle approximation, so the relative values in this
analysis are more important than the raw values. Following
the general setup in Figure 4, we first calculate the probabil-
ity that a certain pixel pi on the screen gets reflected by the
micro facet qi to the camera. Suppose the width of the pixel
is w, then the foreshortened area of the pixel with respect to
the incoming light direction −−→piqi is w2 cos θ, where θ is the
angle between −−→qipi and the screen. Then the solid angle of
this foreshortened area with respect to qi is w2 cos θ

‖−−→piqi‖
.

The normal n that just reflects−−→piqi to the cameraC is the
normalized bisector of −−→qipi and

−−→
qiC. Since the incoming

lights can vary in the solid angle of w2 cos θ
‖−−→piqi‖

, n can vary in
w2 cos θ
4‖−−→piqi‖

and still the mirror can reflect some light from the
pixel on the screen to the camera. Let qi ◦ pi be the event
that the facet at qi will reflect some light emitted from pi to
the cameraC. Then its chance is the same as the probability
for the orientation of the facet to be within that range, which
is approximated by

Pr (qi ◦ pi) =
2√
2πσθ

exp

(
− θ2

0

2σ2
θ

)
w2 cos θ

4‖−−→piqi‖
(7)

Suppose there are M micro facets in total and we com-
pute Pr (qi ◦ pi) for all 1 ≤ i ≤ M . Then we can compute
the probability that the light from pixel pi is reflected by at
least one micro facet to the camera as follows.

Pr (∃j, qj ◦ pi) = 1− Pr (∀j, qj 6 ◦pi) = 1−
∏
j

Pr (qj 6 ◦pi)

= 1−
∏
j

(1− Pr (qj ◦ pi))

We visualize such probability in Figure 7 in four different
configuration of screen and specular surface resolutions.

(a) Object 10×10, Screen 5×
5

(b) Object 10 × 10, Screen
10× 10

(c) Object 20×20, Screen 5×
5

(d) Object 20 × 20, Screen
10× 10

Figure 7. Probability map of light from a block pixels getting re-
flected by the specular surface to the screen.

From the results, we can see that overall higher resolu-
tion of the specular object and lower resolution of the screen
will reduce the chance that some block of pixels on the
screen are not reflected to the sensor. In addition, on the
same screen, the chance to avoid such bad events are differ-
ent for different blocks of pixels, which is due to the differ-
ent distances and relative angles between different parts of
the screen and the reflector. This suggests that for a specular
object there will be a limit on the resolution of the lightmap
we can infer from it.

6. Experiments
6.1. Experiment setup

We place the sparkling object in front of a computer
screen in a dark room and use a camera to photograph the
object. The images displayed on the screen are considered
as light map. Figure 8(a) illustrates the setup. Specifi-
cally in this experiment, we use a 24-inches ACER screen,
a CANON rebel T2i camera and a set of specular objects in-
cluding a hair pin, skull, and painted glitter board. The cam-
era is placed on a heavy tripod to prevent even the slightest
movement. We show that our system can reconstruct the
world lighting at resolution up to 30×30. At this resolution
many objects, such as faces, can be easily recognized.

6.2. Examine the assumption of the system
Overlapping of bright pixels We measure quantatively
how the displacement of impulse light will change the pat-
tern of bright spots. Let ai be the image illuminated by
the impulse light and Si be the set of bright pixels in ai
with intensities larger than 1/10 of the maximum. Then the



(a) Experiment Setup (b) Overlap graph

Figure 8. The left (a) shows the setup of the experiment in the
lab. The right (b) shows the overlap graph between images from
different impulses. It can be seen from the figure that only images
from neighboring impulse have slight overlap.

(a) diffuse paper (b) glitter (c) hairpin (d) skull
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(g) κ = 26.28
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(h) κ = 14.72

Figure 9. Singular value distribution of the transformation matrix
of different objects. Also the condition number is given. Note
that the sparkling reflectors create systems with much lower con-
ditional number compared with a diffuse object.

overlap between ai and aj , i 6= j can be defined as

O(i, j) =
|Si ∩ Sj |

min(|Si|, |Sj |)
, i 6= j (8)

Here |S| denotes set cardinality. At world light resolution
of 10 × 10, there are 100 impulse basis images, and the
overlap between each of them can be plotted in a 100× 100
image where the entry at i-th row and j-th column repre-
senting O(i, j), as is shown in Figure 8(b). As the fig-
ure suggests, most of the overlap happens between im-
ages from neighboring impulses. And the maximal over-
lap maxi6=j O(i, j) < 0.2. This further validates the non-
overlapping property of SparkleVision system.

Condition Number The condition number of the trans-
formation matrix A, κ(A), determines the invertibility of a
transformation matrix A. κ(A) is defined as the ratio be-
tween the largest and the smallest singular values of A. For
all the optical systems shown in Figure 9, we plot all the
singular values of their A in descending order. From the
figure, we can see that the best κ(A) ≈ 4 which is good in
practice.

Figure 10. SparkleVision through glitter board. Qualatitively the
recovery is fairly close to the ground-truth light map and human
can easily recognize the objects in the recovered image.

Figure 11. Colored SparkleVision through glitter board. Although
there is slight color distortion, the overall quality of the recovery
is good.

6.3. Real experiment results

Here we show results of our pipeline using the glitter as
the reflector. For the gray-scale setting, we push the resolu-
tion of the screen to 30×30. For the colored setting, we just
present a few test at a lower resolution 15 × 15 to demon-
strate that our system generalizes. The gray scale results are
shown in Figure 10 and the color ones are shown in Figure
11. They demonstrate the success of the pipeline at such
resolution.
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Figure 12. Adding more random basis vectors to the calibration
helps to reduce the recovery error. But this benefit saturates out.

(a) No noise (b) 0.04 (c) 0.08 (d) 0.12 (e) 0.16

Figure 13. Stability to noise on the test image: title of the subfigure
represents noise level. The noise is large considering the images
are in [0, 1] and only a few spots are bright.

6.4. Impact of number of basis for calibration

Figure 12 illustrates how the increasing number of ran-
dom basis used in the calibration improve the recovery of
the light x. Note that the resolution of the light in this setup
is 20 × 20, hence the number of impulse and DCT bases
are both 400. It is worth noting that the benefit gradually
saturates out so we only need to employ a limited number
of random basis.

6.5. Stability to noise

We perform synthetic experiments by adding noise to
the real test image to understand how robust the real cali-
brated transformation matrix is. We measure the robustness
by Root-mean-squared-error (RMSE) between the noisy re-
covery and the non-noisy recovery. We plot how the recon-
structed lighting change as the noise level increases in Fig-
ure 13. The result validates the robustness of our system.

6.6. Sensitivity to misalignement and potential ap-
plication

The success of SparkleVision relies largely on the sen-
sitivity of light pattern on a specular object to even a slight
movement of the source light. However, this property si-

(a) 1 pixel (b) 0.8 pixel (c) 0.4 pixel (d) 0.2 pixel (e) No shift

Figure 14. Instability to misalignment: even if we shift the test
image by one pixel horizontally, there is significant degrade in the
output. We can compensate this by grid search and image prior.

multaneously make the whole system extremely sensitive
to subtle misalignment. To show this we perform synthetic
experiments by shifting the test image I by ∆x and exam-
ine the RMSE. Some representative results and the RMSE
curve are shown in Figure 14. We could compensate for
this misalignment by performing grid search over ∆x and
pick out the best recovery which has minimum value of total
variation

∑
x ‖∇I(x)‖1.

For the recovery of light, this phenomenon is harmful.
But such sensitivity to even subpixel misalignment can en-
able the detection and magnification of motion of the object
that is invisible to the eyes, like [19]. We leave this for fu-
ture work.

7. Discussions and Conclusion

In this paper we show that it is possible to infer an im-
age of the world around an object that is covered in ran-
dom specular facets. This class of objects actually provide
rich information about the environmental map and is signif-
icantly different from the smooth objects with either Lam-
bertian or specular surfaces, which researchers in the field
of shape-from-X have worked on.

The main contributions of the paper are twofold. First,
we have presented the phenomenon that specular random
microfacets can encode a large amount of information about
the surrounding light. This property may seem mysterious
at the first sight but indeed is intuitive and simple once we
understand it. We also analyze the factors that affect the
optical limits of these reflectors. Second, we proposed and
analyzed a physical system that can efficiently perform the
calibration and inference of the surrounding light map based
on these sparkling surfaces.

Currently our approach only reconstructs a single image
of the scene facing the sparkling object. Such an image cor-
responds to a slice of the lightfield around the object. Using
an identical setup, it should be possible to reconstruct other
slices of the lightfield. Thus, our system could be naturally
extended to work as a lightfield camera. In addition, this
new reflector has the ability of reveal subtle motions of the
optical setup. We leave all these exciting directions for fu-
ture exploration.
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