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Abstract the problem of segmenting an image to identify regions
with high object spatial support is a challenge.

A multi-scale greedy-based object proposal generation ~To improve object spatial support and speed up ob-
approach is presented. Based on the multi-scale natureject localization for object recognition, generating high
of objects in images, our approach is built on top of a quality category-independent object proposals as the in-
hierarchical segmentation. We first identify the represen- put for object recognition system has drawn attention
tative and diverse exemplar clusters within each scale byrecently [10], [30], [7], [3]. Motivated by findings from
using a diversity ranking algorithm. Object proposals are cognitive psychology and neurobiology [29]. [33[.] [9],
obtained by selecting a subset from the multi-scale segmenf21] that the human vision system has the amazing ability
pool via maximizing a submodular objective function, to localize objects before recognizing them, a limited
which consists of a weighted coverage term, a single- number of high-quality and category-independent object
scale diversity term and a multi-scale reward term. The proposals can be generated in advance and used as inputs
weighted coverage term forces the selected set of objecfor many computer vision tasks. This approach has played
proposals to be representative and compact; the single-a dominant role in semantic segmentation [2], [4] and leads
scale diversity term encourages choosing segments fronfo competitive performance on detection[13]. There are
different exemplar clusters so that they will cover as many two main categories of object proposal generation methods
object patterns as possible; the multi-scale reward term depending on the shape of proposals: bounding-box-based
encourages the selected proposals to be discriminativeproposals([36],[[7],[[30] and segment-based proposals [3],
and selected from multiple layers generated by the hier- [10], [28].

archical image segmentation. The experimental results on Objects in an image are intrinsically hierarchical and

the Berkeley Segmentation Dataset and PASCAL VOC201% itterent scales. Consider the table in Figfire [L(a) for
segmentation dataset demonstrate the accuracy and efgyample The objects on the table can be regarded as a part
ficiency of our object proposal model. Additionally, we ¢ the taple (Figuré I(h)), and at the same time, they con-
validate our object proposals in simultaneous segmematio it te a group of objects on the table (Figfire [L(c)). More
and detection and outperform the state-of-art performance specifically, these objects include plates, forks, the Sant
Claus, and a bottle (Figufe I{d)). Therefore, multi-scale
segmentation is essential to localize and segment differen
objects. There have been a few attempts [5]! [10], [3] to
l.. Introduction combing multiple scale information in the object proposal
generation process, but very few papers have studied the

Object recognition has long been a core problem in importance of proposal selection given segments from hier-

computer vision. Recent developments in object recogni-amh'c""I |:jnage segrlnefntatloEs. Flgll(g)_slhmw th
tion provide two effective solutions: 1) sliding-window- generated proposals from three state-of-art algorithips [5

based object detection and localization|[32], [8].1[12], 2) [10], [3. However, they do not cover all the objects in the

segmentation-based approaches [B]. [30]. [10], [3]. The image well

sliding window approach incurs high computational costas  We present a greedy approach to efficiently extract high-
it analyses windows over a very large set of locations and quality object proposals from an image via maximizing a
scales. Segmentation-based methods lead to fewer regionsubmodular objective function. We first construct diverse
to consider and to better spatial support for objects of exemplar clusters of segments over a range of scales using
interest with richer shape and contextual information; but diversity ranking; then rank and select high-quality objec
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(b) Coarse layer sample (c) Middle layer samples (d) Fine layer samples

(e) CPMC [5] (f) Categ. Indep.[[10] (g) MCG [3] (h) Our method

Fig. 1. Objects in an image are naturally hierarchical. ¢aan original image from Pascal VOC2012; (b) - (d) show segsnaround
the table from different scales using methpd [5]; (e) shdveskiest seven object proposals generated from CRMC [5]rdfpeposals
from Categ. Indep/[10]; (g) are proposals from MCG [3]; (In¢ @roposals from our method.

proposals from the multi-scale segment pool generated byll.. Related work
hierarchical image segmentation. Our objective function
is composed of three terms: a weighted coverage term, The goal of object proposal algorithms is to generate
a single-scale diversity term and a multi-scale reward 5 small number of high-quality category-independent pro-
term. The first term encourages the selected set t0 beyosals such that each object in an image is well captured
compact and well represent all segments in an image.py at least one proposall [1]. [10]. Existing object proposal
The second term enforces the selected segments (ObJeCépproaches can be roughly divided into bounding-box
proposals) to be diverse and cover as many differentyng segment based approachBs! [36] generated bounding
objects as possible. The third term encourages the selectegyyeg by utilizing edge and contour clues. [In/[30], a data-
proposals to correspond to objects with high confidence yriyen grouping strategy which combines segmentation and
and selected from different scales. The algorithm takesgypaystive search is presented to produce bounding-box-
object scale information into account and avoids selecting |55 proposals.[7] proposed the binarized normed gra-
segments from the same layer repeatedly. Compared tQjients (BING) feature to efficiently produce object boxes.
existing segment-based methods, our method (Flguré 1(h))nstead of generating bounding-box-based proposals, our
can select representative, diverse and discriminativeodbj \york focuses on extracting segment-based proposals which
proposals from different layers (for example, the bottl_e aims to cover all the objects in an image and can pro-
from fine layer and the table from coarse layer). Our main y;iqe more accurate shape and location information. Some
contributions are as follows: algorithms have been reported to generate segment-based
object proposals|_[5] segmented objects by solving a series
e The generation of object proposals is solved by of constrained parametric min-cut (CPMC) problerhs] [17]
maximizing a submodular objective function. An reused inference in graph cuts to solve the parametric
efficient greedy-based optimization algorithm with  min-cut problems much more efficiently. |10] performed
guaranteed performance is presented based on thgyraph cuts and ranked proposals using structured learning.
submodularity property. In [3], a hierarchical segmenter is used to combine multi-
_ ) ) scale information, and a grouping strategy is presented
e We naturally integrate multi-scale and object to extract object candidates. Different from their work,
d|scr|_m|nat|veness information into the objective \ye design an efficient greedy-based ranking method to
function. The generated proposals are representaieverage multi-scale information in the process of seteti
tive, diverse and discriminative. object proposals from a large hierarchical segment pool.

e Our approach achieves state-of-the-art perfor- Object proposals have been used in many computer
mance on two popular datassets, and our generatediision tasks, such as segmentation [2], [5], object detec-
object proposals, when integrated into simultane- tion [13] and large-scale classificatidn [30]. Semantic-seg
ous segmentation and detection, achieves state ofmentation and object detection have been shown to support
the art results. each other mutually in a wide variety of algorithms.|[25]



showed that better quality segmentation can improve object
recognition performance. [13],][6]._[16] used hierarchica
segmentations and combined several top-down cues for ob-
ject detection. The more demanding task of simultaneous
detection and segmentation (SDS) is investigated_ in [16]
which detects and labels the segments at the same time. We
use this same detection and segmentation framework but
with our object proposal generation method to demonstrate
the effectiveness of proposals generated by our approach.

Submodular optimization is a useful optimization tool in
machine learning and computer vision problems [22]} [23],
[19], [18], [24], [35]. [22] demonstrates how submodulgrit
speeds up optimization algorithm in large scale problems.
In [19], a diffusion-based framework is proposed to solve
cosegmentation problems via submodular optimization.
[18] used the facility location problem to model salient
region detection where salient regions are obtained by
maximizing a submodular objective function.

(b) H(A)=8.6

l1I.. Submodular Proposal Extraction Fig. 2. The weighted coverage term for the representatiee pr
posal selection (best viewed in color). The node denotes the
We first obtain a large pool of segments from differ- segment vertex, and the value next to the edge is the sityilari
ent scales using hierarchical image segmentation. Diversebetween vertices. The red nodes are selected vertices.|dtt se
exemplar clusters are then generated via diversity rankingthree nodes among all, by computing the weighted coverage te
within each layer to discover potential objects in an image. We favours selecting a more representative set (threeraenties
We define a submodular objective function to rank and ™ () "k‘]"" lead t‘é h'gheer (A) than the less remesemfwe d(l)ne
select a discriminative and compact subset from a large sef!nce the wo nodes are from one group in (2). Hence thetselec
. A is representative and compact.
of segments of different scales, then the selected segments

are used as the final object proposals.

set of segments from layér ThenV = Ule V!, Lis the
total number of layers, antd's are disjoint. For each layer
_ - I, we obtain a partition of its segmenfs}, P, ..., P}}
Submodularity: Let V' be a finite setA € B C V using a diversity ranking algorithm [19F} is the set of
anda € V'\ B. A set functionF': 2V — R is submodular  gegments assigned to clusterEach segment belongs to

if F(AUa) — F(A) > F(BUa) — F(B). This is the g1y one cluster, and clusters are disjoint. For each lyer
diminishing return property: adding an elementto a smaller \ye havel’! — U7 . P! whereT is the number of clustﬂys
set helps more than adding it to a larger 5et [27]. =1t

A.Preliminaries

B.Hierarchical Segmentation D.Submodular Multi-scale Proposal Generation

We build our object proposal generation framework  We present a proposal generation method by selecting
on top of hierarchical segmentation. Followirig [5],][17], a subsetd which contains high-quality segments (object
we generate segments for an image at different scales byroposals) from the sét.
solving multiple constrained parametric min-cut problems

with different seeds and unary terms. Given an imagel, we construct an undirected graph

G = (V,E) for the segment hypotheses ih Each
vertexv € V is an element from the multi-scale segment
pool. Each edgee € E models the pairwise relation
between vertices. Two segments are connected if they are
overlapping (between layers) or adjoining (within a layer)
The weightw;; associated with the edge; measures

C.Exemplar Cluster Generation

In a coarser layer, an image is segmented into only a
few segments. However, the number of segments increase

dindancy and maintain segment dversity, we inrodce ani® aPpearance similariy between vericesandr,. W
4 9 Y, extract a CNN feature descriptar [15] for each segment:

exemplar cluster generation step to pre-process segments- - = % 5" R ene d oc the Gaussian
within layers. 152y e VL T

Let.V denote the set containing segments from all layers ™ 1gor coarser layer]" is the number of initial segments obtained from
of an image (the multi-scale segment pool), affdbe the hierarchical segmentation.



similarity between two vertices’ feature descriptors.

.. = deap(—ed®(zi,x;)), if ey € B,
770, otherwise

(1)

As suggested in[[34], we set the normalization factor
e = 1/0,0; and the local scale; is selected by the local
statistic of vertex's neighbourhood. We adopt the simple
choice which set®; = d(x;, zps) wherex, corresponds
to the M'th closest neighbour of verteix

1) Weighted Coverage TermThe selected subsef
should be representative of the whole BetThe similarity
of subsetA to the whole setV is maximized with a
constraint on the size ofl. Accordingly, we introduce a
weighted coverage term for selecting representative pro-
posals.

Let N4 denote the number of selected segments. Then
the weighed coverage term is formulated as:

H(A) = Z max wi

(b) D(A)=1.13

Fig. 3. The single-layer diversity term for the diverse pregl
selection. Each node denotes a segment vertex (best viewed i
ey color). Similarity between vertices are labelled next torgedge.
ACV.NA<K The red node labels the selected segments. Each figure shows
=’ = three exemplar clusters as connected groups. We can sdéedhe t

(2)

s.t.

in set A. The weighted coverage of each segmenis
of A to V and favours selecting segments which can cover

the weighted coverage term encourages the selected set
to be representative and compact as shown in Figure 2.

coverage term will pick the third node from the largest aust

] B : : to gain more similarity between the selected set and the avhol
max;e 4 w;;. Equation[(2) measures the representativeness .~ . (a). While by computing the single-layer diversityn,

. ~- "~ we observe that (b) is preferred to (a) as it encourage diyers
(or represent) the other unselected segments. MaX|m|2|ngam0ng the selected nodes.

( Layer1 ([ Layer1
2) Single-Scale Diversity TermThe weighted cover- Vs Vs reward
age term will give rise to a highly representative set Vl@ @ "1@ v. valuer
A; however, segments from each layer (corresponding to : ’ high
each image scale) still possess redundancy. Therefore, we
Layer 2 Layer 2

introduce a diversity term to force segments within a
layer [ to be different. The single-layer diversity term is
formulated as follows:

L
1

D(A):ZDl(A):Z Z W(Z wij)  (3)

=1 t,l JEPINA eVl
where P} is the set of segments which belong to cluster
in layer | (defined in sectiof III-C)|V| is the number
of segments in layef. This single-scale diversity term
encouragesA to include elements from different clusters

is provided in the supplementary material.
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Fig. 4. The multi-scale reward term for selecting propo$am
different scales (best viewed in color). The nodes reptesen
segments. The reward value of segmentv; is reflected by
color. The higher;, the more likely it is an object. The red circle
denotes the selected nodes. Suppaseas already been selected.
We observe thaRR{vi,v2} — R{v1} < R{v1,v6} — R{v1}. In
another word, although, andvs have similar reward valueys
and leads to more diverse segments from each layer. Thérom layer2 will brings higher marginal gain; thus; is favoured
single-layer diversity term is submodular; a detailed proo ©Vervz and (b) is preferred to (a).

In many images, the background composes a large pariccasionally missing small objects. Together with the
of the image. For a single layer, the segments correspondsingle-layer diversity term, diversity among the selected
ing to objects are only a small percentage of all segments.segments are enforced as shown in Figure 3.

The segment distributions corresponding to different ob-

jects and the background are generally unbalanced. The 3) Multi-Scale Reward Term:Considering the multi-
weighted coverage term favours selecting segments thascale nature of objects in an image, we propose the follow-
well represent all segments, resulting in redundancy anding discriminative multi-scale reward term to encourage



selected segments to have high likelihood of high object
coverage. The multi-scale reward term is defined as:

RA) =Y [ Y

=1 \/ jevina

09

085

nar

(4)

0751
07

Vvl is the set of segments from layér The valuer; il

estimates the likelihood of a segment to be an object. It
determines the priority of a segment being chosen in its
layer. We use CNN features to train a SVM model over
object segments and non-object segments in training im-
ages and then assign a confidence score for each segment
during testing. The confidence score is used-ador a
segment;.
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Fig. 5. Object proposal quality on PASCAL VOC2012 validatio

The multi-scale reward term encouragesio select a set, measured with the Jaccard index at instance |&vel

set of discriminative segments from multi-scale segments
generated from a hierarchical segmentation. As soon as an
element is selected from a layer, other elements from the

same layer start to have diminishing gain because of the The algorithm starts from an empty sét= o. It adds

submodular property aR(A). A simple example is shown
in Figure[4. Similar taD(A), R(A) is submodular and the
proof is presented in the supplementary material.

IV.. Optimization

We combine the weighted coverage term, the single-
scale diversity term and the multi-scale reward term to find
high-quality object proposals. The final objective funotio
of object proposal generation is formulated as below:

max F(A) = max H(A) +aD(A) + SR(A) (5)
L
= m}erj%%i(wij—i-ﬂZ Z T
i€V =1\ jevinA
1
IR IDOR OB
n,l JEPINA ieVi

st. ACV,Ny<K,a>0,6>0

The submodularity is preserved by taking non-negative
linear combinations of the three submodular tetfhA),
D(A), and R(A). Direct maximization of equatior[](5)
is an NP-hard problem. We can approximately solve the
problem via a greedy algorithni_[14], [27] based on its
submodularity property. A lower bound ¢ — 1) /e times
the optimal value is guaranteed as proved_id [27] (e is the
base of the natural logarithm).

AUC Recall | BSS
C,T+layout[10] | 77.5 83.4 67.2
all feature [[10] 80.2 79.7 66.2
Ours 81.1 83.6 71.8

TABLE I. Comparison of object proposals’ quality on the BSDS
dataset, measured with AUC, recall and BSS.

the elementa* which provides the largest marginal gain
among the unselected elementsAdteratively. The iter-
ations stop whenA| reaches the desired capacity number
K. The optimization steps can be further accelerated using
a lazy greedy approach frorn [22]. Instead of recomputing
gain for every unselected element after each iteration, an
ordered list of marginal benefits will be maintained in
descending order. Only the top unselected segment is re-
evaluated at each iteration. Other unselected segmerits wil
be re-evaluated only if the top segment does not remain at
the top after re-evaluation. The pseudo code is presented
in Algorithm 1.

Algorithm 1 Submodular object proposal generation
Input: I, G=(V,E), K, a, 8
Output: A
Initialization: A + @, U «+ V
loop
a* = argmea[}(F(A U{a}) — F(4)
if |A| > K then
break
A<+ Au{a*}
U+ U-{a*}

V.. Experiments

We evaluate our approach on two public datasets:
BSDS [26] and PASCAL VOC2012 [11] segmentation
dataset. The results for PASCAL VOC2012 are on the
validation set of the segmentation task. We evaluate the
object proposal quality by assessing the best proposal for
each object using the Jaccard index score (see details in
section[V-A). We also compare our ranking method with
several baselines [10] and analyses the efficiency of our
object proposals on the object recognition task.
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Ours 1100 | 82.348.884.6 76.7 71.4 80.67.7 93.1 69.7 86.078.5 89.7 83.277.3 72.970.4 77.8 85.8 85.0 87.5 76.5
1100 | 80.0 47.8 83.9 76.4 71.1 78.68.9 89.3 68.5 85.9 79.8 85.8 80.4 75748.5 69.3 84.9 82.6 81.7 85.8 76.0
1100 | 75.1 49.1 80.7 68.8 62.8 76.4 63.3 89.4 64.6 830.3 83.7 78.478.0 66.9 66.2 69.5 82.0 84.3 81.8 71.6
2 1100 | 74.4 46.6 80.5 69.4 64.6 73.5 61.2 89.0 65.1 80.5 78.4 85.2 70.6 67.9 68.8 73.5 81.6 75.8 82.0 71.4
[20] 1100 | 73.8 40.6 75.8 66.7 52.7 79.7 50.6 91.2 59.2 80.2 80.7 87.@ 79.7 62.1 54.6 65.0 84.6 82.4 79.5 67.4
1100 | 68.3 39.6 70.6 64.8 58.0 68.2 51.8 77.6 58.2 72.6 70.4 74.0 686.9 59.8 55.4 67.7 71.3 68.6 78.7 63.1
ours 100 | 75.2 40.8 78.4 70.3 55.5 72.8 51.1 83.4 5683 66.784.4 75.265.9 59.354.9 68.1 77.9 76.176.8 64.3
3 100 70.2 38.8 73.6 67.7 55.3 68.5 50.6 82.4 5481 67.7 77.7 69.3 66.3%9.9 51.4 70.2 74.1 72.678.1 63.7
[29] 100 70.6 40.8 74.8 59.9 49.6 65.4 50.4 81.5 54.5 748.1 77.3 69.366.8 56.2 54.3 64.1 72.0 71.6 69.9 61.7
Bl 100 72.7 36.2 73.6 63.3 45.4 67.4 39.5 84.1 47.7 73.2 64.0 81.2 82.3 52.8 42.9 62.2 72.9 74.3 69.5 59.0

TABLE Il. VOC2012 val set. Jaccard index at the instance llewel class level.

Fig. 6. Sample object proposals from the PASCAL VOC2012. [Eftecolumn shows the best four proposals for objects in oadeh
The remaining columns show the highest ranked proposals atiteast 50 percent overlap with an object. The second golsrfrom
our method, the third column is from Categ. Indép.|[10], therth column is from CPMCL]5], and the last column is from MC&}. [

A.Proposal evaluation tion [[M=D3) is trained on the training dataset. Our object
proposals are compared with [20].] [5].] [2],_131],_[10],
To measure the quality of a set of object proposals, [3]. As shown in Table[ I, our method outperform all
we followed [3] and compute the Jaccard index score, or Other methods with the same number of object proposals
the best segmentation overlap score (BSS) for each objectfor Jaccard index at the instance level. Meanwhile, we
The overall quality of a object proposal set is measured atachieve the highest scores on most of the classes (14
the class level and the instance level. The Jaccard indexout of 20). In Figurd b, we show how; changes as the
at instance level, denoted ak, is defined as the mean number of object proposals increases. Since our approach
of BSS over all objects. The Jaccard index at class level,Prefers to select representative, diverse and multi-szie
J. is defined as the mean of BSS over objects from eachi€Ct proposals, our proposal quality outperform MCG [3],
category. Categ. Indep.[[10], CPMC 5], and SCG|[3] with only a
small number of proposals. In Figuré 6, we show some
1) BSDS datasetWe compare our object proposals qualitative results of our object proposals. We observe tha
with [10Q]. For fair comparison, we also compute the area our proposals can capture diverse objects of differenssize
under the ROC curve (AUC) and recall defined with an In addition, we compare our proposal generation time with
overlap threshold at 50 per cent. The results are summaMCG [3] which also uses multi-scale information. Our
rized in Table[l. Our object proposal achieves the best method takes about 7 seconds per image compared to 10
performance. seconds reported inl[3]. The parameters areaset 3.9,

) B = 2.0 in our experiments.
2) PASCAL VOC2012wWe evaluate our object proposal

approach on the PASCAL VOC2012 validation dataset.
The SVM classifier for reward value (details in sec-
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O, P [1€] 56.5 19.0 23.0 12.2 11.0 48.8 26.0 43.3 4.7 156 7.8 24.2 228 235 4.6 32.3 20.7 38.8 32.3 25.2
SDS-A[16] | 61.8 43.4 46.6 27.2 28.9 61.7 46.9 58.4 17.8 38.8 18.6 52.8 B8@.2 48.2 23.8 54.2 26.0 53.2 55.3 42.9
SDS-B[16] | 65.7 49.6 47.2 30.0 31.766.9 50.9 69.2 19.6 42.7 22.8 56.2 51.9 52.6 52.6 25472 32.259.2 58.7 47.0
SDS-C[16] | 67.449.6 49.1 29.9 32.0 65.%1.4 70.6 20.242.7 22.9 58.7 54.4 535 54.4 249 54.1 31.4 62.2 59.3 47.7
Ours 68.2 14.0 64.7 51.3 39.362.1 45.6 65.8 9.949.1 30.8 61.9 54.9 65.9 54.5 314B.4 29.573.9 65.6 48.9

TABLE Ill. Results on AP on the PASCAL VOC2012 val. All numbers afg.

o - o = o o & o o g c
§ 2 2 §EE 2 5 5 f 323 53 25 %&£ & §
Method o mM M O M @M O O O O P O T = o o nun u + F =
O-P [16] 46.8 21.2 22.1 13.0 10.1 41.9 24.0 39.2 6.7 146 99 24.0 288 256 7.0 29.0 18.8 34.6 25.9 23.4
SDS-A [1 48.3 39.8 39.2 25.1 26.0 49.5 39.5 50.7 17.6 32.5 18.5 46.8 81.1 43.2 23.4 43.0 26.2 45.1 47.7 37.0
SDS-B [1 51.1 42.1 40.8 27.5 26.8 53.4 42.6 56.3 18.5 36.0 20.6 48.9 43.2 45.8 24.8 44.2 29.7 48.9 48.8 39.6
SDS-C [1 53.2 42.1 42.1 27.1 27.6 53.3 42.7 57.3 19.3 36.3 21.4 49.6 43.5 47.0 24.4 44.0 29.9 49.9 49.4 40.2
SDS-C+ref[[16] | 52.3 42.6 42.2 28.6 28.658.0 45.458.9 19.7 37.1 22.8 49.5 42.9 45.948.5 25.5 44.5 30.252.6 51.4 41.4
Ours 54.7 19.4 54.3 40.9 34.452.0 41.359.3 13.342.9 25.8 51.9 44.8 51.87.0 31.4 42.6 28.559.2 53.8 42.4

TABLE IV. Results on AP, on the PASCAL VOC2012 val. All numbers afg.

Fig. 8. Top detections on: aeroplane, person, dining tdfitgcle.Our detection results work well on objects of diéfet scales.

B.Ranking performance each term: the weighted coverage term(WC), the single-
layer diversity term (SD), and the multi-scale reward term
) N (MR). Results of different term combinations (WC+SD,
To explore our method's ranking ability, we compare \yc+MR, SD+MR) and the full model (WC+SD+MR) are
our ranking method with four baselines on the PASCAL giso presented.

VOC2012 dataset. 1lRandom1 randomly selects object
proposals from the multi-scale segment poolR2ndom?2 Figure[7 shows the quality of the selected object pro-

randomly selects object proposals from each layer evenly,posals using different ranking methods from the same
and combine them together. BJustering selects the ob-  segment pool. The two random selection methods achieve
ject proposals which are closest to the cluster center basedimilar object proposal qualities. Comparing WC, SD and
on euclidean distance. The cluster centres are obtainedR terms independently, WC achieves lower quality than
via k-means clustering and k is set to be the number ofthe other two. As discussed [n_IlI-D1, it emphasize the
object proposals to be selected. @ateg. Indep. is the representativeness of the selected set regardless ofevheth
method from [[10] to rank segments. In order to show the segment is an object or not. The clustering method
the importance of each term in our model, we evaluate also has the same weakness. The MR term is comparable



RCNN | RCNN-MCG | SDS-A | Ours
mean AP 51.0 51.7 51.9 52.4
mean AP 41.9 42.4 43.2 44.3

vol

TABLE V. Results on AP and AP, on the PASCAL VOC2012
val. All numbers are%.
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£ ool / _— ! achieved state of the art using a seven-layer network, and

8 random? we outperform previous methods in 14 out of 20 classes.

+CUSEI’ . . .

§04J/ —8— Categ. Indep. || In contrast to SDS[[16], we neither fine tune different

T @ s networks for regions and boxes nor refine the regions after

3 o5 oD | classification. But our results still not only outperforneth

s SDMR corresponding SDS-A but also the complicated SDS-B and
s [ e WossD«MRours SDS-C methods which finetuned two networks separately
50 100 150 200 250 300 350 400 450 500 and as a whole. Moreover, on the more meaningful mea-

Number of Object Proposals surement of AP, shown in Table€1V, results based on

Fig. 7. Comparing different ranking methods (random s@&ect our object proposals even outperform that of SDS-Cef,

clustering, Categ. Indep. [10], WC, SD, MR, WC+SD, WC+MR, Wh_ere the seg_ments are refi_ned within _thkﬂrx 10 grid
SD+MR, WC+SD+MR(ours)). using a pretrained model with class priors. It shows the

importance of good quality regions even before carefully
designed feature extraction and region refinement after
to structured learning as it also takes into account multi- classification.
scale information. Adding the MR term to each of the WC Table [V shows the mean APand mean AP, re-

and SD terms increases performance as it introduces disgis for object detection. We achieved better results than
criminative information into the proposal selection prege  {eoNN [15], RCNN-MCG [16] and SDS-A[T16], which
Our full ranking model selects the best object proposals ¢hows that ,better region p-roposals not onIy‘im[‘j)rove seg-
amongst all. mentation but also give better localization of objects.

Figure[8 shows some examples of our detection results.
C.Semantic Segmentation and Object Detection

To analyse the utility of the object proposals gener-
ated by our approach in real object recognition tasks,
we perform semantic segmentation and object detection . .
on the PASCAL VOC2012 validation set. We follow the ~ We presented an efficient approach to extract multi-
settings in[[L6], where 2000 object proposals are generatecha|e object proposals. Built on the top of_hlerarch|cal
for each image using our algorithm. Then we extract Image segmentation, ex_emplar clpsters are .fII’St generated
CNN features for both the regions and their bounding Within each scale to discover different object patterns.
boxes using the deep convolutional neural network modelBY introducing a weighted coverage term, a single-scale
pre-trained on ImageNet and fine-tuned on the PASCAL diversity term and a multi-scale reward term, we define
VOC2012 training set, the same as[in[16]. These features? Submodular objective function to select object proposals
are concatenated, then passed through linear classifier§Om multiple scales. The problem is solved using a highly
trained for region and box classification tasks. After non- €fficient greedy algorithm with guaranteed performance.

maxima suppression, we select the top 20,000 detectiong N experimental results on the BSDS dataset and the
for each category. PASCAL VOC2012 dataset demonstrate that our method

achieves state-of-art performance and is computationally

The results are evaluated with the traditional bounding efficient. We further evaluate our object proposals on a
box AP’ and the extended metric APas in [16] (the  simultaneous detection and segmentation task to demon-
superscriptsh and r correspond to region and bounding strate the effectiveness of our approach and outperform
box). The AP score is the average precision of whether the object proposals generated by other methods.
a hypothesis overlaps with the ground-truth instance by
over50%, and the AP, , is the volume under the precision
recall (PR) curve, which are suitable for the simultaneous References
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