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Abstract

Low-resolution, EPI-based Volumetric Navigators (vNavs) have been used as a prospective 

motion-correction system in a variety of MRI neuroimaging pulse sequences. The use of low-

resolution volumes represents a trade-off between motion tracking accuracy and acquisition time. 

However, this means that registration must be accurate on the order of 0.2 voxels or less to be 

effective for motion correction. While vNavs have shown promising results in clinical and research 

use, the choice of navigator and registration algorithm have not previously been systematically 

evaluated. In this work we experimentally evaluate the accuracy of vNavs, and possible design 

choices for future improvements to the system, using real human data. We acquired navigator 

volumes at three isotropic resolutions (6.4 mm, 8 mm, and 10 mm) with known rotations and 

translations. The vNavs were then rigidly registered using trilinear, tricubic, and cubic B-spline 

interpolation. We demonstrate a novel refactoring of the cubic B-spline algorithm that stores pre-

computed coefficients to reduce the per-interpolation time to be identical to tricubic interpolation. 

Our results show that increasing vNav resolution improves registration accuracy, and that cubic B-

splines provide the highest registration accuracy at all vNav resolutions. Our results also suggest 

that the time required by vNavs may be reduced by imaging at 10 mm resolution, without 

substantial cost in registration accuracy.

1. Introduction

Prospective motion detection and correction during an MRI scan has been shown to allow 

the acquisition of clinically useful images, even with substantial subject movement [7, 15]. 

While many methods have been developed to reduce the artifacts caused by motion during 

MRI scanning, Volumetric Navigators (vNavs) use the MRI scanner to track subject motion, 

requiring no additional equipment or setup be added to the scanner or workflow to enable 

motion correction [4, 12]. vNavs are low-resolution, whole-head volumes, acquired rapidly 

(~ 300 ms), and interspersed over the several minutes of a longer neuroimaging sequence. 

Head motion information is recovered from these volumes via registration, and the resulting 

estimates of head position are used to update the MRI scanner’s imaging coordinates, 
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following the subject’s head to compensate. vNavs are used in both clinical and 

neuroscientific studies to measure and correct motion.

While vNavs can be acquired frequently, they cost both acquisition and processing time 

which must be found in the MRI sequence being corrected (e.g. during pre-existing dead-

times). The effectiveness of the vNavs system relies on the accuracy of the volume 

registrations, which can be affected both by the choice of vNav resolution, and the 

interpolation method used in the registration cost function. The lowest-resolution navigator 

that provides acceptable motion tracking would be preferred in practice due to it having the 

shortest duration. Previous work with vNavs [4, 12] has mostly used 8 mm isotropic 

resolution volumes, and relied on the PACE algorithm [10] for image registration on the 

scanner. However, there has been no systematic evaluation of the choice of resolution or 

registration algorithm.

In this work we address this gap, evaluating the registration accuracy of different 

interpolation methods at various resolutions of vNavs. Three interpolation methods are 

implemented and tested on the volumetric data: trilinear, tricubic [6], and cubic B-spline 

interpolation [14, 11], and a Gauss-Newton search algorithm was implemented to perform 

rigid registration using the 2-norm cost function. We have acquired data in a human 

volunteer at three feasible vNav resolutions: 6.4 mm, 8 mm, and 10 mm. Motions detected 

from these low-resolution vNavs need to be accurate enough for correcting high resolution 

MR imaging with voxels on the order of 1 mm. Comparing this with the resolutions of our 

vNavs, we need registration accuracy on the order of  of a vNav voxel.

2. Methods

2.1. Data Acquisition

Imaging was performed on a 3 T TIM Trio (Siemens Healthcare, Erlangen, Germany) with 

all data acquired using the body coil to reduce spatial variations in signal intensity. One 

human volunteer, having given informed consent, was scanned with a custom pulse sequence 

that acquires a series of vNavs. Data was acquired at three isotropic resolutions: 6.4 mm, 8 

mm, and 10 mm (acquisition parameters are shown in Table 1). To ensure the subject 

remained as still as possible during the scan, the acquisitions were broken into ~ 30 s sets, 

during which the volunteer was instructed to hold his breath to minimize respiratory motion. 

Each set consisted of a volume at iso-center and on-axis, followed by volumes with a range 

of rotations from either 0.5° to 2.5° or 3° to 5° at 0.5° increments, and at each rotation a 

series of 5 translations from 1 mm to 5 mm at 1 mm increments. Rotations were performed 

around x, y, and z axes, with z translations, and additional rotations around the oblique x/y, 

x/z, and y/z axes with x/y translations. Volumes within each set are registered to the first 

volume of the set. A total of 432 volumes per resolution were acquired, from which 420 

pairs (one reference and one moved volume) can be extracted for registration.

Our previous experiments have shown that larger rotations/translations are easy to detect 

with any choice of resolution or interpolation method because there are enough change in 

the volume. We chose to consider small rotations/translations only on the assumption that 
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gross registration can be performed by a variety of methods. We instead are interested in the 

accuracy of registration near the ground truth.

2.2. Masking

When an image is rotated, the higher frequency components in the corners of the Fourier 

domain are aliased into lower-frequency regions. Applying a circular mask to filter out 

higher frequency components can reduce this effect [1]. In our work, masking was 

performed in both the Fourier and spatial domains to remove corners in the cubic volumes 

that cannot be extrapolated during rotation operations. The volumes were preprocessed 

before registration by applying a smoothed spherical mask in the Fourier domain. The mask 

was defined using the window function

(1)

where r′ = r/R, r is the radius from the image center, R is the radius of the volume, and wcos 

is the cosine window function, defined as

(2)

The same mask was applied again in the spatial domain, after the volumes were interpolated. 

Figure 1 shows sample slices prior to and after masking in three different resolutions.

2.3. Registration

2.3.1 Cost function—To perform prospective motion correction, navigator volumes 

acquired throughout the longer MRI scan would be registered to the first volume of the 

sequence, referred to as the reference volume Vref : . Given a new moving volume 

Vmov : , we can describe our registration as minimizing the error function

(3)

where vref is the vector that represents the reference volume sampled at Cartesian grid 

points. Vmov(xi + di(P−1)) is the function describing the moving volume evaluated at an 

unmeasured point xi + di(P−1), and xi = (xi, yi, zi) is the ith grid point of the volume. di(P−1) 

is the estimated displacement of xi from Vmov to Vref given the set of transformation 

parameters P−1.

Our goal is real time registration, with total run-times on the order of tens of milliseconds. 

Given that we expect our volumes to have identical contrast and our noise variation to be 
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negligible (due to the large voxels being used), we have chosen to use the 2-norm for our 

cost function.

We note that (3) requires resampling every incoming volume during the registration step, 

which can be computationally expensive. Registering the reference volume to the incoming 

volumes produces the opposite transformation, but only the reference volume needs to be 

resampled every time [10]. This changes our error function to,

(4)

where P denotes the parameters for the inverse transformation of P−1 and vmov is the vector 

that represents the moving volume sampled at Cartesian grid points. With (4), we can 

register the reference volume to incoming volumes instead and apply the opposite 

transformation for motion correction, to reduce computation.

2.3.2 Interpolators—Voxels located on a Cartesian grid are measured by the scanner, but 

to evaluate (4) we also need to evaluate the reference volume at points that have not been 

measured. We approximate the values that would have been measured off-grid using 

interpolators which have the linear form

(5)

where I(xi + di(P), vref) is an interpolation operator that takes vref as input to estimate values 

of the reference volume at transformed point xi + di(P). The choice of interpolator can 

significantly affect registration accuracy. Unsmooth cost functions, which can result from 

interpolation artifacts, can cause the minimization to be trapped in local minima [1]. We 

have evaluated the accuracy of three interpolators: trilinear, tricubic [6], and cubic B-spline 

[14, 11].

Trilinear interpolation approximates the value of a volume V at an unknown point x = (x, 
y, z) (with coordinates expressed in units of voxels) using the eight grid points around (x, y, 
z) from v, which is sampled on Cartesian grid points. The algorithm first finds the nearest 

“base” grid point x_ = (x_, y_, z_), whose indices are the floor of (x, y, z). From the “base” 

grid point, the relative off-set Δp = (Δpx, Δpy, Δpz) = (x − x_, y − y_, z − z_) between the 

two points is computed. Since voxels are isotropic in our data, the interpolation equation is 

then

(6)

Tricubic interpolation can be written in the form
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(7)

where aijk (x_) are the 64 coefficients of tricubic interpolation at the “base” grid point. The 

choice of aijk is generally defined by imposing continuity constraints on the interpolated 

function at the grid points, and for which we have followed a derivation by Lekien et al. [6]

First, we note that if we define a 64-vector atricubic(x_) that contains all the aijk (x_, y_, z_) 

and similarly a 64-vector k(Δp) that contains all the powers of (Δpx)i(Δpy)j(Δpz)k that appear 

in (7), we can rewrite our interpolation equation as

(8)

Lekien et al. showed that atricubic(x_) can be computed as a linear combination of values 

from the point x_ and the the additional 7 grid points that can be reached by adding 1 to each 

of its indices. The values needed at each point are the image, its three first derivatives, three 

second cross derivatives, and one third cross derivative; we have used central finite 

differences to compute the derivatives. These source values can be put in a 64-vector 

btricubic(x_), which can then by multiplied by a fixed matrix Btricubic giving [6]

(9)

From an efficiency perspective, Lekien et al. observed that, if many sample points with the 

same “base” grid point are going to be interpolated, atricubic(x_) is heavily reused. These 

vectors can then be precomputed and saved for every point of the volume [6]. Using the 

reversed order of registration described in (4), the reference volume needs to be resampled 

many times during the registration process, but doesn’t change as each new moving volume 

arrives. Therefore, the tricubic coefficients can be precomputed and saved for the reference 

volume, reducing registration time at the cost of a 64-fold increase in the memory required 

to store the reference volume.

Cubic B-spline interpolation is an example of a generalized interpolator, as defined by 

Unser et al. [13] These methods are “generalized” in that they first compute a volume of 

coefficients from the input image volume, and then perform a linear operation on the 

coefficients, with the resulting output being an interpolation of the original input volume 

[11]. They have shown that cubic B-spline, among many other families of interpolators, are 

an example of this generalized formulation and demonstrated efficient algorithms for the 

calculation of the coefficient volumes in the cubic B-spline case [14].

Unser et al. introduced an efficient two-step procedure for computing coefficient volumes by 

first computing an intermediate volume, c+, and then from this computing the desired 
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coefficients, c [14]. However, this algorithm assumed mirror boundaries, and we have 

assumed circular boundaries in all our algorithms (in part, because circular wrap-around is 

expected to occur in MRI scans) giving the following algorithm (applied first along the x, 

then y, and finally z axes, with each of these three stages taking as input the previous step’s 

the output). With z0 = , compute gi from fi (the signal, of length n) using the 

recursion

(10)

Then compute c+ from g using

(11)

Now, we can compute hi from the  using the backwards recursion

(12)

(13)

(14)

Finally, from h we can compute c using

(15)

(16)

After computing the coefficient volume, we interpolate a point in 3D using the 64 

surrounding values in the coefficient volume via the equation
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(17)

where β(.) is the 3D cubic B-spline interpolator kernel, which, being separable, can be 

written as the product of three, 1D cubic B-spline interpolator kernels, as defined in [11]

(18)

Equation (17) is structurally very similar to (7), in that, with some rearrangement, it can be 

written as the inner product of a 64-vector of coefficients, aB-spline(x_) and the 64-vector of 

powers of Δpx, Δpy, and Δpz, which we have previously called k(Δp):

(19)

Mirroring the derivation for tricubic interpolation, we can combine the 64 values of c that 

are used in interpolation from “base” point x_ into a vector bB-spline, and, from the structure 

of (17), define a fixed matrix BB-spline such that

(20)

We can thus use the same trade-off of memory for efficiency in repeated interpolations as 

demonstrated in [6]. As in tricubic interpolation, aB-spline(x_) can be precomputed and saved 

for the reference volume. Given the “base” grid point and the relative offset, evaluation of 

IB-spline(x) consists of computing k(Δp), which takes 62 operations, and performing a dot 

product with the appropriate precomputed vector, requiring 127 operations. Thus a total of 

189 floating point operations are required to interpolate at an unknown point. A naive 

implementation of the algorithm proposed by Unser et al. requires at least 10 floating point 

operations at each of the 64 neighboring point to evaluate β(x) and multiply it with the 

coefficients. Hence our implementation is at least three times faster than the naive 

implementation.

2.3.3 Minimization—Given the time constraints of real time motion correction, we have 

opted to use a Gauss-Newton minimization algorithm, which requires only the first 

derivatives of the residual in our cost function. Formally, the Gauss-Newton algorithm 

descends towards the minimum of the cost function (4) with respect to the set of six rigid 

transformation parameters P through an iterative process.
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(21)

where r(Ps) is the residual between the moving volume and the reference volume 

interpolated with parameters Ps and Jr is the Jacobian with respect to the transformation 

parameters. Residual r(P) is defined at all grid points i via,

(22)

We approximate the Jacobian of the residual using a Taylor series approximation of the 

residual evaluated at the (unknown) true value of the parameters P0 as follows

(23)

where we have used the fact that, by definition, Vref(xi + di(P0)) = Vmov(xi) and used ∇xi 

vmov(xi) to denote the discrete approximation to the partial derivatives at voxel i with respect 

to the three coordinate axes (we used central differences in our implementation).

The rigid transformation parameter P is stored as a 6-vector where the first three elements 

express translations along the three coordinate axes and the next three elements forms a 

vector that points along the axis of rotation whose magnitude is the angle of rotation in 

radians [9]. With such parametrization, we can use the fact that small rotations are 

effectively translations to approximate ∇Pdi(P) with the the linear relationship

(24)

where

(25)

Substituting this approximation back into equation (23) gives us,
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(26)

Including all of our approximations, the steps defined in equation (21) can sometimes 

increase the residual error. To address this, we use a scaling factor to shrink our update ΔP; 

the factor starts at 1.0 and whenever a step increases error we undo the update to P and 

multiply the scaling factor by 0.25. The minimization is terminated when either the absolute 

difference between Ps and Ps−1 becomes negligible or a maximum number of iterations is 

reached. In our implementation, the former criterion is specified such that iteration stops 

when the every element of |Ps − Ps−1| is less than 10−5. The maximum number of iteration 

can be set according to the time constraint of real time motion correction. In our 

implementation for experimental results, this stopping criterion is never reached. Since we 

are registering reference volume to source volume, when the iterative process ends, P−1 

gives the desired transformation from the source volume to the reference volume.

2.4. Quantifying Registration Accuracy

Registration accuracy can be measured by comparing the result from Gauss-Newton 

algorithm and the “ground truth” transformation that was applied to the acquisition. 

Multiplying the inverse of the estimated rigid transform by the known true rigid transform 

results in a rigid transformation describing the error. The six parameters of this rigid 

transformation consist of three values describing translations, and three describing rotations, 

hence the error transformation can be measured separately for translations and rotations. Let 

R denote the rotation matrix of the difference in rotation between the approximated 

transformation and “ground truth”, and t be the difference in translation between the two (in 

mm). The natural measure of translation error is simply the 2-norm

(27)

The error in rotation can be summarized by the magnitude of its angle in degrees, which can 

be derived from R via,

(28)

As a single summary metric, we have chosen to use the RMS displacement that the error 

transformation would produce in a sphere that is centered at the middle of the reference 

volume. We are using the assumption, as in Maurer et al., that the head is a sphere of radius 

100 mm [8]. The target registration error for volume defined in [8] is a discrete form of the 

RMS measure derived by Jenkinson [5] as,

(29)
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giving an error displacement in mm, where r is the radius (in mm) of the sphere over which 

we average. In our comparisons, we have set r = 100 mm to represent an approximate radius 

for a human head. Note that this naturally defines a measure of rotation error, by taking just 

the first term in (29), giving the RMS translation inside the sphere due to error in rotation

(30)

In addition to the average error, we are also interested in the worst-case error in a sphere of 

the same size. The maximum translation on the sphere imposed by the rotation error has 

magnitude (in mm)

(31)

Combining this with the displacement from translations gives the maximum displacement 

(in mm) in the sphere,

(32)

where uR is a unit vector that represents the axis of rotation in angle-axis representation, 

which can be obtained by normalizing the last three elements of the six rigid transformation 

parameters.

3. Results

In all of the data we processed, the Gauss-Newton algorithm reached the stopping criterion 

roughly in 10 iterations and all produced plausible estimation of rigid motion.

Rotation error and translation error, from equations (28) and (27) respectively, are plotted in 

Figure (2). Cubic B-splines performed marginally better than tricubic, and significantly 

better than trilinear, for translations. However, as expected, trilinear interpolation suffers 

significantly in estimating rotations.

Figure (3) shows the RMS displacement, defined in (29), from these registrations. The 

quantile values of the RMS displacement are listed in Table 2. At all resolutions, we find 

that cubic B-spline interpolation performs the best, followed by tricubic interpolation, and 

then trilinear interpolation. However, the results across resolutions are more mixed. With 

tricubic interpolation, the median registration accuracy is similar with 8 mm and 10 mm 

resolution, the variability in accuracy is smaller with 10 mm, the lower resolution. For cubic 

B-spline interpolation, the registration accuracy is reversed in that 10 mm resolution had the 

smallest RMS displacement in most quantiles.
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Figure (4) displays the maximum displacement of error transformation. The quantile values 

of the maximum displacement are also listed in Table 2. The trends in accuracy with 

resolution and algorithm are the same with this error metric as in Figure (3).

To better understand these effects, we examined the contribution of rotations and translations 

to the error transformations separately, to see whether one is dominating the other. Figure (2) 

already shows the effect of translations, and Figure (5) shows maximum and RMS 

displacements due to just the rotation component of the error, derived from equations (31) 

and (30) respectively. Comparing Figure (2) and Figure (5), it can be observed that the 

relative scale of the RMS displacements in mm due to rotation and translation error are 

roughly the same, where as the scale of maximum displacements from rotation error is 

slightly larger than the translation error.

We tested improvements across different resolutions and interpolation methods using the 

Wilcoxon signed-rank test on the RMS errors of the registrations. The test was performed on 

each pair of resolutions or interpolation methods, and the test statistic from all 420 

registrations in each condition was converted to a z-score. These z-scores from the test are 

summarized in Tables (3) and (4).

These results support the observation that both tricubic and cubic B-spline interpolation 

outperforms trilinear interpolation, and cubic B-spline interpolation produces more accurate 

registration than tricubic interpolation at all resolutions. The results for comparison across 

resolutions are perhaps counter-intuitive; 10 mm resolution showed higher accuracy with 

both trilinear and cubic B-spline interpolation than 8 mm resolutions. However, there is an 

improvement in registration accuracy from 6.4 mm resolution to both 8 mm and 10 mm 

resolutions.

4. Discussion

Our accuracy goal was 1 mm error, based on the target application of real time MRI motion 

correction. Our results show that registration at all three vNav resolutions achieves this goal 

when using cubic B-spline interpolation or tricubic interpolation. In particular, the 

registration accuracy with cubic B-spline interpolation at 10 mm resolution is acceptable, 

which can be helpful in real time MRI motion correction since it is significantly faster to 

acquire and register this data compared to the 8 mm navigators currently being used in 

practice. We are working to acquire more data in order to explore the counter-intuitive result 

that 10 mm resolution were of higher accuracy than 8 mm resolution. There is also 

measurable improvement in accuracy from using 6.4 mm that may be worth the additional 

cost in acquisition and registration time in certain MRI applications, e.g., single-voxel 

spectroscopy where there is more available dead-time [4].

Our results also indicate that, at all resolutions, cubic B-splines provide more accurate 

results than either trilinear or tricubic interpolation. This is consistent with the literature, 

showing fewer artifacts in cubic B-spline interpolation compared to the other two algorithms 

[11]. We have demonstrated that, by paying a cost in memory, cubic B-spline interpolation 

can be made as computationally efficient as tricubic interpolation in our application.
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Interestingly, we observed that registration accuracy decreased with rotations involving the 

head foot (HF) axis. This may be due to our scanning protocol’s axes (HF/readout/z, AP/

phase/y, LR/partition/x), where rotations around the HF and LR axes cause the phase-

encoded axis to rotate. This will, in turn, cause the susceptibility distortions around the 

sinuses to shift direction, potentially influencing the accuracy of our results, as noted in 

previous work registering higher-resolution EPI volumes [2]. Figure 6 shows an axial slice 

of the difference between a volume with no rotation and known true 5° rotations around each 

imaging axis. Comparing rotation around HF with that around AP, we see the sinus much 

more prominently in the HF rotation. Further work is needed to verify whether this 

hypothesis is correct. If so, it may be possible to mask out these regions, since they are 

localized to the sinuses and other internal air/tissue interfaces.

5. Conclusion

We have evaluated the accuracy of vNavs for tracking the human head using data with 

known ground-truth rigid transformations. This application demands accurate sub-voxel 

registration be performed as efficiently as possible on the vNav data as it arrives. We have 

explored choices of both vNav resolution, and derived and evaluated three efficient 

registration algorithms, to understand the trade-offs between acquisition and registration 

time and accuracy of motion tracking.

We demonstrated registration algorithms that perform accurate sub-voxel volume 

registration on vNavs. Median tracking errors from 6.4 mm, 8 mm and 10 mm vNavs using 

either cubic b-spline or tricubic interpolation achieved our goal of 1 mm. Our results show 

that improving vNav resolution provides measurable improvement in registration accuracy at 

the cost of acquisition time. Our algorithmic comparison shows that cubic B-spline 

interpolation provides the best results at all vNav resolutions, in particular cubic B-spline 

interpolation can achieve high accuracy, even at 10 mm resolution.

We have also presented a refactoring of the cubic B-splines interpolation algorithm that 

reduces the perinterpolation time by storing pre-computed interpolation coefficients. This 

makes the computational cost of cubic B-spline interpolation the same as tricubic 

interpolation in our application.

We identified distortions in our MRI data due to field inhomogeneity as a potential 

limitation to our current method and plan to acquire further data to explore masking 

strategies to mitigate their effects.

All image processing and analysis algorithms were implemented in Python. However, our 

eventual goal is to develop a new registration algorithm for use on-scanner with vNavs. In 

the derivations of the algorithms explored in this work, we have focused on the time-

efficiency of our algorithms, with the goal that the remaining speed-up in the on-scanner 

implementation will come from low-level memory management, etc. in C++ and the 

potential for parallelizing work, not fundamentally different algorithms. Our initial 

prototype, single-threaded C++ implementation, using the Eigen [3] library, has an average 

registration time of 25 ms for an 8 mm vNav volume. Future work will involve 
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parallelization of the algorithm and further optimization, along with integration to the 

scanner environment.

Although PACE is currently implemented on the scanner, the full algorithm is not publicly 

available. Additionally, the on-scanner implementation cannot be used with all of the 

resolutions we are evaluating. For these reasons, we have not compared our results directly 

with PACE. However, a comparison of the current vNav+PACE system with any new 

navigator/registration combination will be important once the new system is implemented on 

the scanner.
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Figure 1. 
Original and masked slices from vNavs, and the masks used at different resolutions
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Figure 2. 
Rotation (left, degrees) and translation (right, mm) errors with cubic B-spline, tricubic and 

trilinear interpolation, with each row representing a separate algorithm/resolution 

combination. Each of the 420 results is plotted as a dot in each row, colored based on the 

ground truth axis of rotation. Quantiles are displayed with vertical lines.
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Figure 3. 
RMS error displacement from cubic B-spline, tricubic and trilinear interpolation, with each 

row representing a separate algorithm/resolution combination. Each of the 420 results is 

plotted as a dot in each row, colored based on the ground truth axis of rotation. Quantiles are 

displayed with vertical lines.
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Figure 4. 
Maximum error displacement from cubic B-spline, tricubic and trilinear interpolation, with 

each row representing a separate algorithm/resolution combination. Each of the 420 results 

is plotted as a dot in each row, colored based on the ground truth axis of rotation. Quantiles 

are displayed with vertical lines.
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Figure 5. 
Maximum (left) and RMS (right) displacement from rotation error for cubic B-spline, 

tricubic, and trilinear interpolation, with each row representing a separate algorithm/

resolution combination. Each of the 420 results is plotted as a dot in each row, colored based 

on the ground truth axis of rotation. Quantiles are displayed with vertical lines.
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Figure 6. 
(a) Sample sagittal slice in the HF direction at 6.4 mm resolution, with mask applied in the 

Fourier domain only. (b)-(d) Difference between a volume with no rotation and volumes 

acquired with 5° rotations around the HF, AP and LR axes respectively, masked in both 

Fourier and image domains.
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Table 1

Sequence parameters for vNavs

6.4 mm 8 mm 10 mm

TR 15 ms 11 ms 10 ms

TE 6.7 ms 5.0 ms 4.1 ms

FA 3° 3° 3°

BW 4310 Hz/Px 4596 Hz/Px 4578 Hz/Px

FOV 256 mm 256 mm 260 mm

Total Scan Time 600 ms 352 ms 260 ms
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Table 2

Quantiles of RMS displacement and maximum displacement (in mm) computed with trilinear, tricubic and 

cubic B-spline interpolations across three different resolutions. These values are depicted with vertical bars in 

Figures (3) and (4).

quantile

resolution
(mm)

trilinear tricubic cubic B-spline

RMS Max RMS Max RMS Max

5%
6.4
8
10

0.11
0.15
0.19

0.16
0.24
0.31

0.10
0.16
0.22

0.17
0.25
0.34

0.07
0.12
0.13

0.13
0.19
0.22

25%
6.4
8
10

0.22
0.26
0.29

0.34
0.42
0.47

0.16
0.23
0.26

0.25
0.38
0.43

0.14
0.18
0.19

0.22
0.31
0.31

median
6.4
8
10

0.35
0.42
0.40

0.61
0.76
0.69

0.25
0.30
0.32

0.40
0.49
0.51

0.25
0.29
0.24

0.41
0.49
0.38

75%
6.4
8
10

0.47
0.55
0.53

0.82
1.00
0.94

0.36
0.41
0.39

0.61
0.71
0.64

0.37
0.43
0.33

0.63
0.76
0.54

95%
6.4
8
10

0.7
0.87
0.91

1.27
1.56
1.67

0.5
0.54
0.47

0.90
0.96
0.83

0.51
0.55
0.45

0.89
0.98
0.81
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Table 3

Wilcoxon signed-rank test for comparing registration accuracy across interpolation methods. A negative score 

indicates that there is an improvement in the pair from the first interpolation method to the second, and a 

positive score indicates the opposite. Bolded values in the table are z-scores that are not significant for a one-

sided difference at p < 0.01.

6.4 mm 8 mm 10 mm

Trilinear to Tricubic −15.52 −12.84 −12.34

Trilinear to Cubic B-spline −15.55 −15.93 −16.93

Tricubic to Cubic B-spline − 2.61 −5.68 −15.63
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Table 4

Wilcoxon signed-rank test for comparing registration accuracy across resolutions. A negative score indicates 

that there is an improvement in the pair from the first resolution to the second, and a positive score indicates 

the opposite. Bolded values in the table are z-scores that are not significant for a one-sided difference at p < 

0.01.

10 to 8 mm 8 to 6.4 mm 10 to 6.4 mm

Trilinear 0.49 −11.62 −7.74

Tricubic −3.09 −12.11 −10.79

Cubic B-spline 5.54 −11.29 − 0.71
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