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Abstract

In quantitative magnetic resonance imaging (qMRI),
quantitative tissue properties can be estimated by fitting a
signal model to the voxel intensities of a series of images
acquired with different settings. To obtain reliable quanti-
tative measures, it is necessary that the qMRI images are
spatially aligned so that a given voxel corresponds in all
images to the same anatomical location. The objective of
the present study is to describe and evaluate a novel auto-
matic groupwise registration technique using a dissimilar-
ity metric based on an approximated form of total corre-
lation. The proposed registration method is applied to five
qMRI datasets of various anatomical locations, and the ob-
tained registration performances are compared to these of
a conventional pairwise registration based on mutual infor-
mation. The results show that groupwise total correlation
yields better registration performances than pairwise mu-
tual information. This study also establishes that the for-
mulation of approximated total correlation is quite anal-
ogous to two other groupwise metrics based on principal
component analysis (PCA). Registration performances of
total correlation and these two PCA-based techniques are
therefore compared. The results show that total correlation
yields performances that are analogous to these of the PCA-
based techniques. However, compared to these PCA-based
metrics, total correlation has two main advantages. Firstly,
it is directly derived from a multivariate form of mutual in-
formation, while the PCA-based metrics were obtained em-
pirically. Secondly, total correlation has the advantage of
requiring no user-defined parameter.

1. Introduction

Based on a series of images obtained with different ac-

quisition settings, quantitative magnetic resonance imaging

(qMRI) allows the computation of quantitative imaging fea-

tures that characterize tissue properties. One condition is

essential to ensure that the computed features are reliable:

the images from which they are derived should be spatially

aligned. In practice, there are multiple possible causes of

misalignment of the acquired qMRI images, such as the mo-

tion of the subject during the acquisition or geometric dis-

tortions caused by the acquisition. In these cases, automatic

image registration can be used to compensate for misalign-

ments within qMRI datasets.

Pairwise image registration based on mutual information

is a technique that is commonly used for aligning images

characterized by different contrasts [26, 17]. It consists of

aligning a moving image to a fixed reference image. When

more than two images have to be aligned, this pairwise

paradigm has two main drawbacks. Firstly, the choice of

fixed reference image may impact registration accuracy [8].

To overcome this first drawback, a solution based on multi-

ple pairwise registrations has been proposed [21]. The tech-

nique consists of applying pairwise registration between all

the possible pairs of images, and then of combining the ob-

tained transformations to align all the images into a mean

space. Using mutual information as dissimilarity metric,

such a method was used in different studies [21, 9]. Sec-

ondly, pairwise registration does not allow to register all

images within a single optimization procedure, even when

applying the method presented in [21].

The aim of groupwise registration techniques is to ac-

count for all image information within a single optimiza-

tion procedure, and thereby to simultaneously register mul-

tiple images. In this paper, we aim to derive such a group-

wise registration technique based on the concept of mutual

information. Though the formulation of mutual informa-

tion for two images is unique, several multivariate versions

have been proposed for its generalization to two or more

images. In [16], a metric called interaction information was

proposed that expresses the amount of information shared

by all images. Total correlation, a metric expressing the

amount of information shared between any subset of im-
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ages among the images to register, was proposed in [29],

and will be adopted in this work. Two main reasons guided

our choice towards total correlation rather than interaction

information. Firstly, total correlation is theoretically bet-

ter adapted than interaction information for the registration

of multiple images. This is explained by the fact that in-

teraction information has the undesirable property that it

equals zero as soon as one image does not share informa-

tion with all the other images, whereas total correlation be-

comes trivial only when all images share no information

[7, 24]. Secondly, total correlation can easily be approx-

imated, for computational purposes. This is of particular

interest because calculating total correlation requires com-

puting the joint entropy of the images to register. However,

increasing the number of images may complicate the com-

putation of the joint entropy due to a phenomenon called

curse of dimensionality [4]. To solve that issue, a simpli-

fied formula for joint entropy was proposed, based on the

condition that the image intensities are jointly normally dis-

tributed [1]. In this paper, we propose to incorporate this

approximation within the formula of total correlation pro-

posed by [29]. This approximated form of total correlation

was implemented within an existing parametric registration

framework.

Registration performance was evaluated on five real

qMRI datasets. Registration results obtained with the

proposed approximated groupwise total correlation met-

ric were compared with results of other metrics, including

pairwise registration based on mutual information, and on

groupwise registration using the PCA-based metrics of [10].

2. Method

2.1. Mutual information

Let us considerMg , a series ofG images that we want to

register, with g ∈ {1...G}. Each image Mg (N voxels per

image) can be represented as one column of aN×Gmatrix

M containing the intensities of all images. A row ofM can

be considered as a data point in a G-dimensional space. To

quantify how well the G images are aligned, a dissimilarity

metric has to be defined.

WhenG = 2, the negated mutual information (DMI) has

been shown to be a robust dissimilarity metric for image

registration [17]. For two images M1 and M2, the negated

mutual information can be written as:

DMI(M1,M2) = H(M1,M2)−H(M1)−H(M2) (1)

with H(M1) the entropy [22] of image M1, H(M2) the

entropy of image M2, and H(M1,M2) the joint entropy of

M1 and M2.

2.2. Total correlation

For cases with G ≥ 2 images, two main multivariate

generalizations of mutual information have been proposed

[16, 29]. The first is known as interaction information [16],

denoted DIInf , and measures the amount of information

shared by all the images. For G images {M1, ...,MG}, the
negated interaction information is written as follows:

DIInf(M1, ...,MG) = −
∑

T⊆{M1,...,MG}
(−1)G−|T |H(T )

(2)

with T any subset of images among {M1, ...,MG}, |T | the
number of images in the corresponding subset and H(T )
the joint entropy of subset T . Interaction information quan-

tifies the amount of information that all images participate

in. This means that if at least one of the imagesM1, ...,MG

shares no information will all other images, then the inter-

action information will be zero as shown by [7, 3].

The second form, called total correlation [29], measures

the amount of information shared between any subset of the

images {M1, ...,MG}. The negated total correlation is writ-
ten as follows:

DTC(M1, ...,MG) = H(M1, ...,MG)−
[

G∑
g=1

H(Mg)

]

(3)

with H(M1, ...,MG) the joint entropy of images

M1, ...,MG. Total correlation is able to quantify the

amount of shared information between all possible com-

binations of the images, while interaction information

only quantifies the amount of information shared by all

the images [7, 24]. In the context of image registration,

total correlation is therefore more flexible than interaction

information. We therefore did not consider interaction

information in our study.

As Equation (3) shows, computing total correlation im-

plies evaluating the joint entropyH(M1, ...,MG). Doing so
typically requires to build a sparsely filled G-dimensional

joint histogram, which is computationally challenging be-

cause it is subject to the curse of dimensionality [4]. We

therefore propose to approximate the expression of the joint

entropyH(M1, ...,MG) by a simplified form. Under the as-

sumption that the intensities of the images M1, ...,MG are

jointly normally distributed, Ali Ahmed et al. [1] showed

that the expression of the joint entropy becomes:

H(M1, ...,MG) =
G

2
+

G

2
ln(2π) +

1

2
ln(det(C)) (4)

with det( . ) the determinant operator, andC theG×Gma-

trix of covariances between the images Mg . To make the

registration method robust to linear intensity scalings and
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offsets, we choose to incorporate an intensity standardiza-

tion (i.e. z-score) within the definition of the metric. This

implies that the marginal entropiesH(Mg) are constant for
all g = 1..G, and that the covariance matrix C is equal to

the correlation matrixK:

K =
1

N − 1
Σ−1

(
M−M

)T (
M−M

)
Σ−1 (5)

whereΣ is a diagonal matrix containing the standard devia-

tions of the columns of M as its diagonal elements, and M
is a matrix with in each column the column-wise average

of M. By combining Equations (3) and (5), the expression

DTC of total correlation becomes:

DTC(M1, ...,MG) =
1

2
ln(det(K)) =

1

2

G∑
j=1

lnλj (6)

using det(K) =
∏G

j=1 λj , with λj the j
th eigenvalue ofK,

and λj > λj+1.

2.3. Groupwise registration framework

In our groupwise registration framework, the imagesMg

are simultaneously brought to a mid-point space by means

of a transformation T (μ), where μ is a vector contain-

ing the transformations T g(μg) related to each image Mg ,

and μg their corresponding parameters. In the groupwise

scheme, the metric D quantifies the dissimilarity between

all transformed images Mg(T g(μg)). Groupwise registra-
tion can therefore be formulated as the constrained mini-

mization of the dissimilarity metric D with respect to μ:

μ̂ = argmin
μ
D(M1(T 1(μ1)), ...,MG(TG(μG))) (7)

subject to:
G∑

g=1

μg = 0 (8)

where the constraint of Equation (8) serves to define a mid-

point space [2].

2.4. Relation with existing work

Huizinga et al. [10] previously proposed groupwise met-

rics for the groupwise registration of qMRI datasets. They

assumed that the imagesM1, ...,MG of a qMRI dataset fol-

low a low-dimensional modelmg , such that the value of the

image Mg at position x equals:

Mg(x) = mg(θ(x)) + ε(x) (9)

with θ a vector of dimension Γ < G (hence the model is

called low-dimensional), containing the parameters of the

low-dimensional model, and ε the noise at coordinate x. An
example of such low-dimensional models is the monoexpo-

nential model [9] used with diffusion-weighted MR images

(DW-MRI):

mg(θ) = S0 exp(−bg × uT
g Dug) (10)

with θ = (S0, D11, D22, D33), ug the direction vector of

the diffusion gradient,D a 3×3 symmetric diffusion tensor,

and b the so-called b-value. The ADC is given by tr(D)/3.

Huizinga’s metrics are based on principal component

analysis (PCA) and rely on the idea that an aligned set of

qMRI images can be described by a small number of eigen-

values, since the underlying model mg is low-dimensional.

A misaligned set of images would, on the contrary, be char-

acterized by a flatter eigenvalue spectrum. The first metric

proposed in [10], denoted DPCA, measures the difference

between the sum of all eigenvalues and the sum of the first

few eigenvalues:

DPCA(M1, ...,MG) =
G∑

j=1

λj −
L∑

j=1

λj =
G∑

j=L+1

λj (11)

with L a used-defined constant with 1 ≤ L ≤ G, and∑G
j=1 λj = tr(K) = G. This means that DPCA is the sum

of the last (i.e. with lower values) G− L eigenvalues.

Contrary to DPCA, the second metric, denoted DPCA2,

does not require the selection of an arbitrary cut-off L. It

consists of weighting the last eigenvalues more than the first

ones:

DPCA2(M1, ...,MG) =
G∑

j=1

j × λj (12)

The expressions of DTC, DPCA and DPCA2, respec-

tively given in Equations (6), (11) and (12), are quite simi-

lar: all of them consists of a sum of weighted eigenvalues.

The main theoretical disadvantage of Huizinga’s DPCA is

that it requires to choose the cut-off L. InDPCA2, this user-

defined constant is avoided, but the weights j in Equation

(12) are actually still chosen arbitrarily. In principle, one

could propose any metric of the following form:

DPCA3(M1, ...,MG) =

G∑
j=1

f(j)× λj (13)

with f a monotonically increasing function. The main the-

oretical advantage of the total correlation metric DTC that

we propose is that the contribution of each eigenvalue fol-

lows naturally from the derivation of mutual information:

the influence of each eigenvalue is automatically calibrated.
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3. Datasets and experiments

Huizinga et al. [10] evaluated their PCA-based group-

wise registration techniques DPCA and DPCA2 on five

qMRI studies. The aim of the experiments is to use the pro-

posed total correlation metric DTC to register these same

datasets, and subsequently compare the obtained results

with these of [10].

3.1. Description of the five datasets

The first qMRI study, denoted T1MOLLI-HEART [10]

consists of nine T1-weighted image datasets of porcine

hearts with transmural myocardial infection of the lat-

eral wall. For each of the nine datasets, G = 11 two-

dimensional images were acquired. For each registration

case, a voxelwise curve fitting was applied to the registered

images, producing quantitative T1 maps.

The second study, denoted T1VFA-CAROTID [5], in-

volves MR images of the carotid arteries. For each of the

eight patients, G = 5 three-dimensional images were ac-

quired. For each patient, the acquired images were regis-

tered and fitted to obtain quantitative T1 maps.

The third study consists of diffusion-weighted MR im-

ages (DW-MRIs) of the abominal region, and is denoted

ADC-ABDOMEN [9]. Five datasets, each of them includ-

ing G = 19 three-dimensional images, were registered and

fitted to produce ADC maps.

The fourth qMRI study is denoted DTI-BRAIN [15,

6, 28, 25, 19] and consists, for each of the 5 considered

datasets, of registering diffusion tensor images (DTI) of the

brain. The number of images to register varied between

G = 33 and G = 70 for each dataset (see [10]). In this

fourth study, the fitted parameter is the mean diffusivity

(MD).

The fifth qMRI study involves DCE images of the ab-

domen. Five DCE-ABDOMEN [11] datasets were ac-

quired, each of them containingG = 160 three-dimensional

images. The fitted parameter of interest considered in this

study isK trans.

The full descriptions of the fitting models are provided

in [10].

3.2. Registration characteristics

The four dissimilarity metrics (DMI, DPCA, DPCA2

and DTC) were implemented in the elastix toolbox [13].

The adaptive stochastic gradient descent (ASGD) proposed

by [12] was used as optimisation method for image reg-

istration. For all registrations, we used two resolutions,

1000 iterations per resolution, and 2048 random coordi-

nate samples per resolution. For comparison purposes,

we performed all the registrations using the sets of pa-

rameters reported in [10]. In particular, when applying

DPCA, the value of L was 3 for T1MOLLI-HEART, 1 for

T1VFA-CAROTID, 4 for ADC-ABDOMEN, 7 for DTI-

BRAIN, and 4 for DCE-ABDOMEN. For the DTI-BRAIN

dataset, we used an affine transformation model. Similar to

Wachinger and Navab [27], we used an exponential map-

ping of the affine matrix for parametrization. For all the

other datasets, non-rigid transformation models in which

deformations are modelled by cubic B-splines were chosen

[20]. For each dataset, [10] reported results for various B-

spline grid spacings. In this study, we compare results only

for the intermediate values of the spacings, i.e. 64 mm for

T1MOLLI-HEART, 16 mm for T1VFA-CAROTID, 64 mm

for ADC-ABDOMEN and 64 mm for DCE-ABDOMEN.

An affine transformation model was used for the DTI-

BRAIN dataset.

3.3. Evaluation measures

No ground truth alignment was available for any of the

five datasets we considered. Nevertheless, registration per-

formance was evaluated based on four different measures.

These measures are described in [10], which is why they

are only succinctly described in this section.

3.3.1 Landmark correspondence and overlap of vol-
umes of interest

Landmarks were manually defined on images of the

T1VFA-CAROTID and DCE-ABDOMEN datasets. The

correspondence between the corresponding landmarks was

evaluated by computing a mean target registration error

(mTRE).

In the T1MOLLI-HEART case, segmentations of the

myocardium were outlined on between 6 and 9 images per

patient. In the ADC-ABDOMEN case, the spleen was man-

ually delineated on 8 images. For these two cases, the over-

lap between the segmented structures was then evaluated

using a Dice coefficient.

For the DTI-BRAIN study, neither landmarks nor struc-

tures could be reliably identified on the diffusion weighted

images, which is why no overlap or point correspondence

was calculated.

3.3.2 Smoothness of the transformation

Extreme and non-smooth deformations are unexpected for

the experiments we conducted. The smoothness of the

deformation field can therefore be used to identify such

undesirable transformations. A quantification of smooth-

ness can be obtained by computing the standard deviation

of the determinant of ∂T g/∂x over all x for all images:

STDdet(∂T g/∂x). This smoothness quantifier was computed

for all datasets expect DTI-BRAIN (an affine transforma-

tion was used in that last case, which is why smoothness

was not computed).
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T1MOLLI-HEART T1VFA-CAROTID ADC-ABDOMEN DTI-BRAIN DCE-ABDOMEN

Dice [%] mTRE [mm] Dice [%] - mTRE [mm]

Initial 48± 8 1.47± 0.54 70± 4 - 8.49± 4.54
DMI 37± 11 1.22± 0.43 64± 16 - 6.46± 2.32
DPCA 53± 7 1.11± 0.42 71± 5 - 6.11± 2.33
DPCA2 52± 11 1.08± 0.39 75± 5 - 5.99± 2.18
DTC 53± 11 1.09± 0.40 74± 5 - 6.18± 2.40

Table 1. Dice coefficients or mTRE values (mean value ± standard deviation)

T1MOLLI-HEART T1VFA-CAROTID ADC-ABDOMEN DTI-BRAIN DCE-ABDOMEN

Initial 0± 0 0± 0 0± 0 - 0± 0
DMI 7± 2 2± 0 8± 3 - 4± 2
DPCA 2± 1 2± 1 3± 2 - 4± 2
DPCA2 1± 1 1± 0 3± 1 - 2± 1
DTC 2± 1 1± 0 5± 2 - 4± 2

Table 2. Transformation smoothness: STDdet(∂T g/∂x) [%] (mean value ± standard deviation)

T1MOLLI-HEART T1VFA-CAROTID ADC-ABDOMEN DTI-BRAIN DCE-ABDOMEN

T1 [ms] T1 [ms] ADC [μm2/ms] MD [μm2/ms] K trans [min−1]

Initial 92± 19 > 1000 1.37± 0.83 0.096± 0.029 2.84± 2.30
DMI 97± 16 501± 83 0.25± 0.05 0.084± 0.028 3.64± 4.13
DPCA 87± 16 498± 93 0.23± 0.06 0.085± 0.029 1.52± 1.18
DPCA2 83± 12 510± 110 0.27± 0.05 0.084± 0.028 1.27± 0.92
DTC 77± 13 500± 96 0.32± 0.05 0.085± 0.029 1.87± 1.79

Table 3. Uncertainty estimation: 90th
√
CRLB of the fitted parameters (mean value ± standard deviation)

3.3.3 Uncertainty estimation of the qMRI fit

For all datasets, curve fittings were performed to respec-

tively generate T1, T1, ADC, MD and K trans quantitative

maps. The qMRI models were fitted using a maximum

likelihood (ML) estimator that takes into account the Rician

characteristic of the noise in MR data. We used the fitting

same method as [10], based on the work of [18]. The uncer-

tainty of these fitted qMRI model parameters can be quanti-

fied by the 90th percentile of the square root of Cramér-Rao

lower bound (CRLB), which provides a lower bound for the

variance of the maximum likelihood parameters. This un-

certainty estimate is denoted 90th
√
CRLB.

3.4. Joint normality experiment

As mentioned in the Method section, the presented to-

tal correlation metric assumes that the image intensities are

jointly normally distributed. However, this condition is not

necessarily fulfilled. The aim of this experiment is to check

whether the condition of joint normality is, in practice, re-

quired for obtaining good alignment results.

The joint normality of two images can be easily assessed

by computing and visualizing their joint histogram. In the

present case, however, joint normality has to be studied on

more images (see section 3.1), which requires more sophis-

ticated methods. A possible graphical approach to analyze

multivariate joint normality is based on quantile-quantile

(Q-Q) plots [23]. In such plots, the quantiles of the Ma-

halanobis distances to the mean obtained for each voxel

location are plotted against the quantiles of a χ2 distribu-

tion with degree of freedom G. If the data is jointly nor-

mally distributed, the plotted points should follow the line

y = x. The implementation we used is based on the R

package MVN [14].

4. Results

4.1. Registration performance

Registration performances in terms of landmark corre-

spondence (mTRE) or overlap of volumes of interest (Dice

coefficient) are given in Table 1. For all dataset, better

alignments (i.e. lower mTRE) or overlaps (i.e. higher

Dice coefficients) were obtained with groupwise total cor-

relation DTC than with pairwise mutual information DMI.

Table 2 provides values of the transformation smoothness

STDdet(∂T g/∂x). In all cases, DTC yields lower (i.e. bet-

ter) values of STDdet(∂T g/∂x) than DMI. Table 3 provides
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(a) (b) (c)

(d) (e)

Figure 1. Q-Q plots: χ2 distribution (degree of freedom = G) versus squared Mahalanobis distance. (a) T1MOLLI-HEART; (b) T1VFA-

CAROTID; (c) ADC-ABDOMEN; (d) DTI-BRAIN; (e) DCE-ABDOMEN

estimations of the goodness of fit (90th
√
CRLB) for each

dataset. The results indicate that the values of 90th
√
CRLB

are lower (i.e. better) with DTC than with DMI for the

T1MOLLI-HEART and DCE-ABDOMEN datasets, while

they are quite similar for T1VFA-CAROTID and DTI-

BRAIN, and higher (i.e. worse) for the ADC-ABDOMEN

dataset.

For all experiments, the registration results obtained with

our groupwise total correlation metricDTC are quite similar

to the results obtained with the groupwise methods DPCA

and DPCA2, previously proposed in [10].

4.2. Results of the joint normality experiment

For each of the five qMRI datasets, the quantiles of a χ2

distribution of degree of freedom G are plotted against the

quantiles of all Mahalanobis distances. The obtained Q-Q

plots are shown in Figure 1. As mentioned in the Method

section, if the points of the obtained Q-Q plot follow a joint

distribution that is normal, then they should follow the line

y = x. This is not the case for any of the five datasets that

are considered in this study. The joint intensity distributions

in the considered datasets can therefore not be considered as

multivariate normal distributions.

5. Discussion and conclusion
Results obtained on five quantitative MRI datasets show

that the proposed method based on approximated total cor-

relation yields better results than pairwise mutual informa-

tion, and comparable results to two PCA-based methods of

proposed by Huizinga et al. [10].

The total correlation method we describe in this study,

DTC, is based on the assumption of joint normality of the

image intensities. The results indicate that even though this

condition of joint normality is not fulfilled in practice, ap-

proximated total correlation yields better registration results

than the conventional pairwise mutual information method.

Furthermore, the results indicate that total correlation

provides registration performances that are similar to the

PCA-based metrics of Huizinga et al. However, com-

pared to DPCA and DPCA2, DTC has two main advantages.

631



Firstly, it is directly derived from a multivariate form of

mutual information, while the PCA-based metrics were ob-

tained empirically. Secondly, total correlation has the ad-

vantage of requiring no user-defined parameter.

6. Future work
The total correlation method we described in this study is

based on the concept of mutual information. Since mutual

information is commonly used for the registration of pairs

of multimodal images, a natural follow-up study will be to

apply groupwise total correlation to multimodal data.
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