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Abstract

Traffic light detection (TLD) is a vital part of both intel-

ligent vehicles and driving assistance systems (DAS). Gen-

eral for most TLDs is that they are evaluated on small and

private datasets making it hard to determine the exact per-

formance of a given method. In this paper we apply the

state-of-the-art, real-time object detection system You Only

Look Once, (YOLO) on the public LISA Traffic Light dataset

available through the VIVA-challenge, which contain a high

number of annotated traffic lights, captured in varying light

and weather conditions.

The YOLO object detector achieves an AUC of impres-

sively 90.49 % for daysequence1, which is an improvement

of 50.32 % compared to the latest ACF entry in the VIVA-

challenge. Using the exact same training configuration as

the ACF detector, the YOLO detector reaches an AUC of

58.3 %, which is in an increase of 18.13 %.

1. Introduction

In recent years the term big data and machine learning

have gained tremendous momentum, especially the use of

big data have been a heavily discussed topic. As a result,

data is collected in almost every digital action we do, and is

collected like never before. In fact, we create 2.5 quintillion

bytes (2,500,000,000 gigabytes) of data each day resulting

in 90 % of the current available data have been created for

the past 2 years [1]. The data are collected from a large

variety of locations, spanning from your social media ac-

tivities and browsing to various sensors collecting climate

data or traffic surveillance data. Collecting traffic data both

with the purpose of surveillance and especially autonomous

vehicles have gained a lot of media attention as a result of

major companies spending large amount money on research

in this area. However, making a vehicle drive autonomously

have a lot of challenges linked to it, which still requires

years of research.

Both industry and academic institutions are looking into

research and applications that can be relevant and helpfull

in the meantime. This can prove beneficial for the ultimate

dream of self-driving cars, but also for the popular driv-

ing assistance systems (DAS). DAS applications are already

widely implemented in newer vehicles, such as emergency

breaking, automatic lane changing, keeping the advertised

speed limit, and adaptive cruise control. DAS applications

can usually be split into looking-in [28], such as hands ac-

tivity recognition [19] and looking-out applications, such as

detection of other vehicles, pedestrians [5], traffic signs [18]

or traffic lights [9]. In 2012, 683 people died and 133,000

people were injured in crashes related to red light running

in the USA [26], making traffic light detection a vital part

of both self-driving cars and DAS.

In this paper we apply the state-of-the-art, real-time ob-

ject detection system You Only Look Once, (YOLO) [23],

which have proven a good competitor to Fast R-CNNs and

SSDs both in terms of detections and speed. In this pa-

per, we will apply YOLO on the daytime data from the

freely available LISA Traffic Light Dataset used in the

VIVA-challenge [11, 16], which have seen a limited use of

deep learning methods. The contributions of this paper is

twofold:

• Training and applying the state-of-the-art, real-time

object detection system You Only Look Once, (YOLO)

for traffic light detection.

• Deep learning entry in the public VIVA Traffic Light

challenge.

The paper is organized as follows: Relevant research is

summarized in section 2. In section 3 we present the method

used, followed by evaluation of the TL detector in section

4. Finally, the concluding remarks are presented in section

5.

2. Related Work

In this section a brief introduction to the most notable

research in relation to TLD is given, for a more compre-
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hensive overview, we refer to the traffic light survey [11].

In [11] TLD is split into two categories: model-based and

learning-based.

The model-based methods have been quite dominant and

popular in the past decade and are usually created by the use

of a heuristically defined model which relies on color and/or

shape information. The color information is quite intuitive

and a straight-forward approach as traffic lights presents

the driver with multiple color cues which corresponds to

a driver action e.g. stop or go. The detector is based

on a heuristical defined threshold in a selected color space

[4, 14]. The color can however vary from scene to scene and

thus challenge models relying solely on static thresholds.

So rather than looking at color, one could make use of the

distinctive shape of traffic lights by applying circular Hough

transform on an edge map [20] or by using radial symmetry

[25]. Both approaches are challenged in different scenarios,

but not entirely the same scenarios, thus shape information

is fused with structural information [27, 3], and additionally

color information in [29, 15]. Rather than defining static set

of rules, [8] propose a Bayesian inference framework rely-

ing on color, shape and height to detect traffic lights.

Cascading classifier based on Haar-like features was one

of the first learning-based detectors to be introduced in

[7, 17], but did however not outperform their Gaussian color

classifier. As for most other computer vision research areas,

the popular combination of using Histogram of Oriented

Gradients features together with a SVM classifier was intro-

duced in [2]. The learning-based Aggregated Channel Fea-

tures (ACF) detector have seen a large use in TLD, and have

shown superior performance over the heuristic models both

during day and night time [10, 9]. TLD using Convolutional

Neural Network (CNN) is introduced in [13, 12], where a

CNN is used detects and recognize the traffic lights using

region-of-interest information provided by an onboard GPS

sensor.

3. Method

In this section the method used in this paper will be

briefly introduced.The method section is split into two sec-

tions: firstly the YOLO object detector is introduced. Sec-

ondly, training parameters and data specifications used in

the evaluation are introduced.

3.1. YOLO

YOLO have been introduced in two versions [22, 23],

where the latest version is the one used in this paper which

include new features as well as modifications to the existing

network. YOLO is an end-to-end single convolutional neu-

ral network that detects objects based on bounding boxes

prediction and class probabilities. The network divides the

input image into a SxS grid, if the center of an object is

located within this grid, it is this specific grid’s task to de-

tect the object. Each grid predicts bounding boxes and a

corresponding confidence, where the confidence is an in-

dicator of how confident the model is that a box contains

an object as well as how accurate the box is. The con-

fidence is therefore calculated using the intersection over

union (IOU), where a perfect match between a predicted

box and a ground truth will provide a confidence of 1, and

oppositely if a predicted box is not present in the grid, hence

no ground truth overlapping, the confidence will be 0. Fi-

nally, the grid cell also predicts the probability of an object

belonging to a class.

Unlike many sliding window methods, such as the ACF

detector, YOLO examines the entire image during train-

ing helping it to learn contextual information about a given

class and its surroundings. The original YOLOv2 classifica-

tion model, called Darknet-19, has 19 convolutional layers

and 5 maxpooling layers, and have some resembles to well-

known VGG-16 network. It is however a lot less complex

as the VGG-16 requires 30.69 billion floating point opera-

tions to process a single 224x224 pixel frame, whereas the

Darknet-19 only needs 5.58 billion operations whilst im-

proving the top-5 accuracy on ImageNet with 1.2 % com-

pared to VGG-19’s 90 %. An additional training where the

size is increased from 224 to 448, improves the top-5 ac-

curacy to 93.3 % at the compromise of processing the im-

ages 4.24 times slower. This 448x448 model constitutes the

Darknet19 448x448 model which have been used as pre-

weights for training in this paper.

For using the model for detection, the network is mod-

ified by removing the last convolutional network and in-

stead adding three 3x3 convolutional layers with 1024 fil-

ters, which is finally followed by a 1x1 convolutional layer

with the number of outputs needed for the specific detec-

tion. For enabling fine grain features, a passthrough layer is

inserted second to the last convolutional layer.

3.2. Training parameters

The random parameter enables multi-scale training, re-

sulting in a robustness for detecting objects in different im-

age resolutions. The input size is per default set to a reso-

lution of (416x416), but by enabling the random parameter

the network will randomly change the input image size ev-

ery 10 batch. The YOLOv2 network downsamples by a fac-

tor of 32, resulting in a downsampling range between {320,

352, ..., 608}. The smallest input size is thus (320x320),

and the largest input size is (608x608). The random param-

eter is per default enabled in YOLOv2, in this paper we will

try to identify the effect. Furthermore, we will investigate

varying the input size whilst doing detection.

4. Evaluation

Several models have been trained using different training

data and modified in accordance to the parameters described

10



in section 3.2.

The data configuration for each model can be seen in

Table 1. The training data used for all the models are from

the LISA Traffic Light Dataset [11] and the LARA Traffic

Light Dataset [24].

Table 1: Overview of the trained YOLOv2 Traffic Light De-

tectors. All models have been trained with an input image

size of (416,416), with half the models enabled the random

parameter varying the input image size between {320, 352,

..., 608}.

Training Data

Model name Random L
IS

A
-d

a
yT

ra
in

L
A

R
A

[2
4

]

L
IS

A
-d

a
yS

eq
2

YOLO V1 0 X

YOLO V1 1 X X

YOLO V2 0 X X

YOLO V2 1 X X X

YOLO V3 0 X X

YOLO V3 1 X X X

The LISA Traffic Light Dataset consists of 13 day train-

ing clips, hereafter referred to as LISA-dayTrain, as well as

2 longer test sequences, hereafter referred as LISA-daySeq1

or 2. For evaluating, the LISA-daySeq1 has been used, as

it was the main evaluation sequence in the VIVA-challenge.

The LARA Traffic Light Dataset is also included to cre-

ate some more variance as it is captured in Paris, France,

whereas the LISA TL dataset is captured in San Diego,

USA. Furthermore the LARA Traffic Light Dataset is in-

troduced to see how it impacts the model when testing it on

a test sequence that is captured in same environment as a

large part of the training data. In Table 2, an overview of

the used training and test data is seen. In Figure 1 some

samples from the data are seen.

Table 2: Overview of the evaluation data.

Dataset Frames True positives Resolution Classes

LARA 11,179 9,168 640 x 480 4 (green, orange, red, & am-

biguous)

LISA-dayTrain 14,025 40,764 1280 x 960 6 (Go, go left, warning, warn-

ing left, stop, stop left)

LISA-daySeq2 6,894 11,144 1280 x 960 6 (Go, go forward, go left,

warning, stop, stop left)

LISA-daySeq1 4,060 10,308 1280 x 960 5 (Go, warning, warning left,

stop, stop left)

A total of 6 YOLO TLD models are trained and ap-

plied on the LISA-daySeq1. In order to make the re-

sults of above models comparable with previous publica-

tions, the results must be evaluated in accordance to the

VIVA-challenge [16], where the Area-Under-Curve(AUC)

(a) (b)

(c) (d)

(e) (f)

Figure 1: Training samples from the (a-d) LISA and (e-f)

LARA Traffic Light database.

of a Precision-Recall curve(PR-curve) is the final evalua-

tion metric [11]. Furthermore, the true positive criteria in

the VIVA-challenge defines a detection as one that is over-

lapping with an annotation with more than 50 %, as defined

in Equation (1).

a0 =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
(1)

Where a0 denotes the overlap ratio between the detected

bounding box Bd and the ground truth bounding box Bgt.

a0 must be equal or greater that 0.5 to meet true positive

criteria. [6]

Prior to calculating the AUC of the model, we examine

the recall of each of the trained models. Models are trained

for 80,000 iterations and for every 1000th iteration during

training, weights are saved for backup purposes. These

weights are used to determine how the performance relates

to the number of iterations. This relation is seen Figure 2

and in 3 where the detectors’ image size have been changed

from (416,416) to (672,672).

In Figure 2 the detectors with an input image of

(416,416) are shown. To determine the impact of the ran-

dom parameter, we compare the versions of the YOLO TL

detectors. By enabling the random parameter with only the
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Figure 2: Recall plot for iterations made during training of the models with input image size (416,416).

Figure 3: Recall plot for iterations made during training of the models with input image size (672,672).
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Figure 4: Precision-recall curves of the best recall iterations from (416,416) detectors in Figure 2.

Figure 5: Precision-recall curves of the best recall iterations from (672,672) detectors in Figure 3.

LISA-dayTrain as training data, the recall performance de-

crease by 17.32 %. By examining the figure, it is clear that

YOLO V1 1 is struggling to reach a stable recall compared

to the other 5 models, which suggests that we do not use

enough and sufficient varied training data for the varying

input image size to make any impact. In YOLO V2 0 we

add the LARA dataset to the training which nearly reaches

the same recall as YOLO V1 0. YOLO V2 1, with the ran-

dom parameter enabled, increases the recall with 3.85 %

compared to YOLO V2 0 but is still 2.47 % worse than

YOLO V1 0. Finally, by swapping the LARA dataset with

LISA-daySeq2, we reach a recall of 87.38 % and 88.91 %

for YOLO V3 0 and YOLO V3 1, respectively.

As the detectors only use convolutional and pooling lay-

ers we can resize the input image size without retraining. In

Figure 5 the detectors with input image of (672,672) are

shown. The result of increasing the input image size to

(672,672) provides a very similar picture of the detectors

as for the (416,416). However, 5 out of 6 models reaches a

higher maximum recall after increasing the image input size

to (672,672), the exception being YOLO V1 1 which also

struggled in Figure 2. By examining and comparing Figure
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(a) (b)

Figure 6: Results from YOLO V3 1 applied on LISA-daySeq1.

2 and 3, it is clear from a visual analysis, that the (416,416)

looks more smooth compared to (672,672). This is due to

the larger difference in the recall results between the iter-

ations, suggesting that the input image size of (672,672)

might not be completely ideal, at least not for the data con-

figuration of YOLO V1 and V2. Finally, the best perform-

ing model is YOLO V3 1, which was expected as it is the

one with the most training data from the LISA TL dataset,

thus looking most identical with LISA-daySeq1.

For each of the detectors seen in Figure 2 and 3, the it-

eration with the highest recall is used for precision-recall

curves and calculating the corresponding AUC. The low-

est AUC is in both figures the YOLO V1 1, which is not

surprising as it was also generally performing bad in Fig-

ure 2 and 3. In Figure 4, the YOLO V1 0 is reaching an

AUC of 51.51 % and is the best performing of the one not

including LISA-daySeq2 in the training data. In Figure 5,

YOLO V1 0 is still performing good, but both YOLO V2 0

and YOLO V2 1 surpass it after the image input size is in-

creased. Generally increasing the input image size provided

an average AUC increase of 4.29 %, and if we exclude the

YOLO V1 1 we each an average AUC increase of 7.51 %.

The average AUC increase caused by enabling the random

parameter for YOLO V2 and YOLO V3 is 1.72 %, which

could indicate that adjusting the input image size provide a

larger impact.

The 2 detectors based on both LISA-dayTrain and LISA-

daySeq2, YOLO V3 0 and YOLO V3 1, reaches the by

far highest AUC with both image input sizes. The high-

est overall AUC is 90.49 % by YOLO V3 1. In [21], the

highest AUC for daySeq1 is 40.17 %, which means that

the YOLO V3 1 have significantly improved the entry on

the LISA Traffic Light dataset with impressively 50.32 %.

This result do however not form basis for a fair compari-

son between YOLO and the ACF detector used in [21] as

the ACF detector have purely been trained on the lisaTrain

data. So to compare the performance of the two methods

given the same data, we must compare it to YOLO V1 0

which reaches an AUC of 58.3 % with an image input size

of (672,672), resulting in an AUC increase of 18.13 %.

In Figure 6, detection results from the YOLO V3 1 de-

tector are shown. Compared to previous work from the ACF

detector used in [21], the YOLO V3 1 handles the vary-

ing lighting conditions well as seen from 6a. Generally, the

models with the multi-scale training parameter random en-

abled are not surprisingly also able to detect the TLs at a

much longer distance, which is illustrated in 6b.

5. Conclusion

We have taken one of the state-of-the-art object detectors

and applied in on a challenging traffic light dataset with dif-

ferent model and data configurations. The highest overall

AUC on daySequence1 from the LISA Traffic Light dataset

is 90.49 % and is unsurprisingly based on all the training

data and daySequence2 from the same dataset. This im-

proves the entry from [21] on the LISA Traffic Light dataset

with impressively 50.32 %. However, if we use the ex-

act same training data as used with the ACF detector in

[21], we reach an AUC of 58.3 %, which is an AUC im-

provement of 18.13 %. The random parameter that enables

multi-scale training did in most cases improve the AUC

slightly, whereas increasing the input image size of the de-

tector turned out to have a larger impact than the random

parameter.

Further experiments includes using SSD for traffic light

detection, creating an ensemble with R-FCN, and do simi-

14



lar evaluation on the nighttime data from the LISA Traffic

Light dataset.
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