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Abstract— We design a new approach that allows robot
learning of new activities from unlabeled human example
videos. Given videos of humans executing the same activity from
a human’s viewpoint (i.e., first-person videos), our objective is to
make the robot learn the temporal structure of the activity as its
future regression network, and learn to transfer such model for
its own motor execution. We present a new deep learning model:
We extend the state-of-the-art convolutional object detection
network for the representation/estimation of human hands in
training videos, and newly introduce the concept of using a fully
convolutional network to regress (i.e., predict) the intermediate
scene representation corresponding to the future frame (e.g.,
1-2 seconds later). Combining these allows direct prediction of
future locations of human hands and objects, which enables the
robot to infer the motor control plan using our manipulation
network. We experimentally confirm that our approach makes
learning of robot activities from unlabeled human interaction
videos possible, and demonstrate that our robot is able to
execute the learned collaborative activities in real-time directly
based on its camera input.

I. INTRODUCTION

One of the important abilities of humans (and animals) is
that they are able to learn new activities and their motor
controls from others’ behaviors. When a person watches
others performing an activity, he/she not only learns to
visually predict future consequences of the motion during
the activity but also learns how to execute the activity
himself/herself.

Recently, approaches taking advantage of “deep learning”
for robot manipulation have been gaining an increasing
amount of attention, directly learning motor control policies
given visual inputs (i.e., images and videos) [1]. The use of
convolutional neural networks (CNNs) have been particularly
successful, since they are able to jointly learn image features
optimized for the task based on their training data. Because
of such ability, new models incorporating convolutional and
recurrent neural networks (i.e., CNNs and RNNs) is likely
to become a major trend in robotics, just like what already
happened in computer vision and machine learning.

However, although these deep learning oriented ap-
proaches showed very promising results on learning video
prediction [2] and actual motor control policy [1], they
have been limited to relatively simple actions such as object
grasping and pushing. This is because a large amount of
‘robot’ data is necessary for the direct training of these CNNs
and RNNs with millions of parameters. A large number of
samples of humans (or the robot itself) motor controlling the
robot is necessary for generating training data [1], and this is
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a limiting aspect particularly when we want to teach a robot
new (i.e., previously unseen) activities.

In this paper, we present a new CNN-based approach
that enables robot learning of its activities from ‘human’
example videos. Human activity videos can be attractive
training resources because it does not require any hardware
or professional software for teaching robots, even though
it might create other difficulties like transferring learned
human-based models to the actual robots. Given videos
of humans executing the same activity from a human’s
viewpoint (i.e., first-person videos), our objective is to make
the robot learn the temporal structure of the activity as its
future regression network, and learn to transfer such model
for its own motor execution. The idea is that a human’s first-
person video and the video a humanoid robot is expected to
obtain during its activity execution should be very similar.
Providing first-person human videos to the robot is as if we
are providing the robot ‘visual memory’ of itself performing
the activities previously. This enables the robot to directly
learn what visual observation it is expected to see during the
correct execution of the activity and how it will change from
its viewpoint.

There have been previous works on robot activity learning
from human videos [3], [4], extending the previous concept
of ‘robot learning from demonstration’ [5] which was mostly
done with direct motor control data. However, these works
focused on learning grammar representations of human ac-
tivities, modeling human activities as a sequence of atomic
actions (e.g., grasping). These approaches were limited in
the aspect that activities were always represented in terms
of pre-defined set of atomic actions, and the users had to
teach the robot how to recognize those atomic actions from
human activity videos by providing labeled training data (i.e.,
supervised learning). This prevented the robot learning of
activities from scratch, and was also limited in that human
had to define new atomic actions when a new activity is
added. Furthermore, since it was not trainable in an end-to-
end fashion, the robot has to somehow figure out how to
execute those atomic actions, which was usually done by
hand-coding the motion.

We introduce a new robot activity learning model using
a fully convolutional network for future representation re-
gression. We extend the state-of-the-art convolutional object
detection network (SSD [6]) for the representation of hu-
man hand-object information in a video frame, and newly
introduce the concept of using a fully convolutional network
to regress (i.e., predict) how such intermediate scene repre-
sentation will change in the future frame (e.g., 1-2 seconds
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Fig. 1. Overview of our perception component: Our perception component consists of two fully convolutional neural networks: The first network is
an extended version of the state-of-the-art convolutional object detection network (SSD [6]) for the representation of human hands and estimation of the
bounding boxes (top). The second network is a future regression network to regress (i.e., predict) the intermediate scene representation corresponding to
the future frame. This network does not require activity labels or hand/object labels in videos for its training.

later). Combining these allows direct and explicit prediction
of future hand locations (Figure 1), which then allows the
robot to infer the motor control plan. That is, not only
feature-level prediction of future representations (similar to
[7]) but also semantic-level prediction of explicit future hand
locations of humans and robots during the learned activity
is being jointly performed in our new network. Such future
hand prediction results are used by our manipulation network
that learns mapping of the 2-D hand locations in the image
coordinate to the actual motor control.

Our activity learning is an unsupervised approach in the
aspect that it does not require activity labels or hand/object
labels in the activity videos. It does require hand-annotated
training data for the learning of its hand representation
network, but there already exists public datasets for this
purpose and it does not require any labels for its future
regression network. The future regression network is learned
without supervision by capturing changes in our hand-based
representations in the training videos. In addition, impor-
tantly, all our networks were designed to function in real-time
for the actual robot operation, and we show such capability
with our experiments in this paper.

II. RELATED WORK

a) Robot learning from humans: There have been a
considerable amount of previous efforts on robot learning

from demonstration (LfD) [5], [8], [9]. Since it enables
robots automatically learn a new task from demonstration
by non-robotics expert, LfD is very important in robotics.
However, there are limitations since most of these approaches
focused on making robots learn motor control polices from
human data, which usually was in the form of direct control
sequences obtained with actual robots or simulation soft-
wares [10]. Moreover, it often requires a knowledge about
all primitive actions for teaching high-level tasks [11].

There also have been previous works on robot activity
learning from visual data [3], [4], [12], extending the previ-
ous concept of LfD. These works focused on learning gram-
mar representations of human activities from conventional
third-person videos (i.e., videos usually taken with static
cameras watching the actors), modeling human activities
as a sequence of atomic actions (e.g., grasping). Having a
grammar representation composed of atomic actions allows
transfer of human activity structure to robots, and the robot
replication of human activities was possible usually with
hand-coded motion transfer from human atomic actions
to robot atomic actions. However, activity learning was
generally done in a fully supervised fashion with human
annotations in these approaches, and they assumed very
reliable estimation of semantic features from videos such
human hands and human body skeletons. [13] studied an
approach to directly learn object manipulation trajectories



from human videos, but it was limited to one-robot-one-
object scenarios unlike our approach focusing on very
general human-robot collaboration scenarios (e.g., human-
object-robot interactions).

b) Video prediction: Our approach in this paper is to
generate proper robot behaviors (particularly for human-
robot collaboration) by predicting ‘future’ visual represen-
tation. The idea is that such representation leads to the
estimation of future positions of objects and hands of humans
and robots. Visual prediction is one of the core components
of our perception system.

There have been previous works on the prediction of future
frames from the computer vision community [7], [14], [15].
However, there has been very limited attempt on applying
such future predictions for robotics systems, since these ap-
proaches in general requires more components for interpret-
ing predicted representation to generate robot actions. In the
above works, no robot manipulation was actually attempted.
There exists a recent robotics work that attempted applying
visual prediction for generating robot control actions [16].
This study shows the potential in applying visual predic-
tion for a robotic manipulation task; it enables transferring
the visual perception to robot manipulation component for
generating motor control commands without any additional
components to interpret the recognition results. However, this
requires a huge amount of training data using actual physical
robots to make the robot learn activities, and thus is limited
when the robot needs to learn many new activities.

c) First-person videos: First-person videos, also called
egocentric videos, are the videos taken from the actor’s own
viewpoint. Recognition of human/robot activities from such
first-person videos has been actively studied particularly in
the past 5 years, including recognition of human actions from
wearable cameras [17]–[20] and human-robot interactions
from robot cameras [21], [22]. However, these focused on
building discriminative video classifiers, and the attempt to
learn ‘executable’ representations of human activities or their
transfer to robots have been very limited.

The main contribution of this paper is in enabling robot
activity learning from human interaction videos using our
newly proposed convolutional future regression. We believe
this is the first work to present a deep learning-based
(i.e., entirely CNN-based) method for learning human-robot
interactions from human-human videos. We also believe this
is the first paper to take advantage of human ‘first-person
videos’ for the robot activity learning.

III. APPROACH

A. System Overview

Given a sequence of current frames, our goal is to (i) pre-
dict future hand locations and all interactive objects in front
of the robot, then to (ii) generate robot control commands
for moving robot’s hands to the predicted hand locations.
We employ two components for achieving the goal. The first
component is a perception component that consists of two
fully convolutional neural networks: (1) an extended version
of the Single Shot MultiBox Detector (SSD) [6] to create

a hand-based scene representation and estimate bounding
boxes, and (2) a future regression network to model how such
intermediate scene representation (should) change in future
frames. The second component is a manipulation component
that maps 2-D hand locations in the image coordinate to the
actual motor control using fully connected layers.

The key idea of our approach is that the proposed per-
ception component allows prediction of future (1-2 seconds
later) hand locations given current video input from a camera.
Such future prediction can be learned based on humans’ first-
person activity videos by using them as training data, with
the assumption that the robot camera has a similar viewpoint
with the human first-person videos. This allows the robot
to directly predict its ideal future hand locations during the
activity, inferring how the hand should move if the activity
were to be executed successfully. Next, the manipulation
component generates actual robot control commands to move
the robot’s hands to the predicted future locations.

B. Perception Component

Given a video frame X̂t at time t, the goal of our
perception component is to predict the future hand locations
Ŷt+∆.

a) Hand Representation Network: We first construct
a network for the hand-based representation of the image
scene by extending the SSD object detection framework. We
extended it by inserting a fully convolutional auto-encoder
having five convolutional layers followed by five deconvo-
lutional layers for dimensionality reduction. This allows the
approach to abstract an image (with hands and objects) into
a lower dimensional intermediate representation.

All our convolutional/deconvolutional layers use 5×5 ker-
nels and the number of filters for each convolutional layer
are: 512, 256, 128, 64, 256. The green convolutional layers in
Fig. 1 correspond to them. After such convolutional layers,
there are deconvolutional layers (yellow layers in Fig. 1),
each having the symmetric number of filters: 256, 64, 128,
256, 512. We do not use any pooling layer, and instead use
stride 2 for the last convolutional layer for the dimensionality
reduction. We thus increase the number of filters for the last
convolutional layer to compensate loss of information.

Let f denote the hand representation network given an
image at time t. Then, this network can be considered as a
combination of two sub functions, f = g ◦ h:

Ŷt = f(X̂t) = h(F̂t) = h(g(X̂t)), (1)

where a function g : X̂ → F̂ denotes a feature extractor
(from an input video frame to encoder) to get compressed
intermediate visual representation (i.e., feature map) F̂, and
h : F̂ → Ŷ indicates a box estimator which uses the
compressed representation as an input for locating hand
boxes at time t. With the above formulation, the network
can predict hand locations Ŷt at time t after the training.

b) Future Regression Network: Although the above
hand representation network allows obtaining hand boxes in
the ‘current’ frame, our objective is to get the ‘future’ hand
locations Ŷt+∆ instead of theirs current locations Ŷt.
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Fig. 2. Data flow of our perception component during test phase. It enables
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are used for the prediction in the test phase.

We formulate this problem as a regression problem. The
main idea is that the intermediate representation of the hand
representation network F̂t abstracts the hand-object informa-
tion in the scene, and that we are able to take advantage of it
to infer the future (intermediate) representation F̂t+∆. Once
such regression becomes possible, we can simply plug-in the
predicted future representation F̂t+∆ to the remaining part
of the hand network (i.e., h) to obtain the final future hand
prediction results. Therefore, we newly design a network for
predicting the intermediate scene representation correspond-
ing to the future frame F̂t+∆, as a fully convolutional future
regression network: Fig. 2.

Given a current scene representation F̂t from the hand
network, our future regression network (r) predicts the future
the intermediate scene representation F̂t+∆:

F̂t+∆ = rw(F̂t). (2)

It has seven convolutional layers having 256 5×5 kernels. In
addition, it has a layer with 1024 13×13 kernels followed by
the last layer that has 256 1×1 kernel. We trained the weights
(w) of the regression network with unlabeled first-person
human activity videos using the following loss function:

w∗ = arg min
w

∑
i,t

‖rw(F̂it)− F̂it+∆‖22

= arg min
w

∑
i,t

‖rw(g(X̂i
t))− F̂it+∆‖22 (3)

where X̂i
t indicates a video frame at time t from video i,

and F̂it represents a feature map at time t from video i.
Our future regression network can use any intermediate

scene representation from any intermediate layers of the hand
network, but we use the one from auto-encoder due to its
lower dimensionality. Finally, the future scene representation
F̂t+∆ is fed into the hand network for estimating hand boxes
corresponding to the future frame to get future hand locations
Ŷt+∆.

Ŷt+∆ = h(F̂t+∆) (4)

Fig. 2 summarizes data flow of our perception component
during testing phase. Given a video frame X̂t at time t, (1)
we extract the intermediate scene representation F̂t using
the feature extractor (g), and then (2) feed it into the future
regression network (r) to get future scene representation
F̂t+∆. Next, (3) we feed F̂t+∆ into the box estimator (h),
and finally obtain future position of hands Ŷt+∆ at time t.

Ŷt+∆ = h(F̂t+∆) = h(r(F̂t)) = h(r(g(X̂t))) (5)

Furthermore, instead of using just a single frame (i.e., the
current frame) for the future regression, we extend our
network to take advantage of the previous K frames to obtain
F̂t+∆ as illustrated in Fig. 1:

Ŷt+∆ = h(r([g(X̂t), ..., g(X̂t−(K−1))])). (6)

The advantage of our formulation is that it allows us to
predict future hand locations while considering the implicit
activity and object context, even without explicit detection
of objects in the scene. Our auto-encoder-based intermediate
representation F̂it abstracts the scene configuration by inter-
nally representing what objects/hands are currently in the
scene and where they are, and our fully convolutional future
regressor takes advantage of it for the prediction.

C. Manipulation Component

Although our perception component is able to predict fu-
ture hand locations of humans in first-person human activity
videos, it is insufficient for the robot manipulation. Here, we
construct another regression network (m) for mapping the
predicted 2-D human hand locations in the image coordinate
to the actual motor control commands. The main assumption
is that a video frame from a robot’s camera will have a
similar viewpoint to our training data (first-person human
videos), allowing us to take advantage of the learned model
for the robot future hand prediction by assuming:

ŶRt ' Ŷt (7)

where, ŶRt represents robot hand locations.
Our manipulation component (m) predicts future robot

joint states (Ẑt+∆) given current robot joint states (Ẑt), robot
hand locations (ŶRt), and future hand locations (ŶRt+∆)
telling where the robot’s hands should move to. This network
can be formulated with the below function:

Ẑt+∆ = mθ(Ẑt, ŶRt, ŶRt+∆). (8)

Our manipulation component consists of seven fully con-
nected layers having the following number of hidden units
for each layer: 32, 32, 32, 16, 16, 16, 7. The weights (θ) of
this network can be obtained by the same way that used for
our perception networks:

θ∗ = arg min
θ

∑
j,t

‖mθ(Ẑ
j
t , Ŷ

j
Rt, Ŷ

j
Rt+∆)− Ẑjt+∆‖

2
2 (9)

where Ẑjt indicates robot joint states at time t from training
episode j, and Ŷj

Rt represents robot hand locations at time
t from training episode j. Fig. 3 shows our manipulation
component for generating robot control commands.
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The combination of our perception component and ma-
nipulation component provides a real-time robotics system
that takes raw video frames as its input and generates
motor control commands for its activity execution. Our
manipulation component can be replaced with a standard
Inverse Kinematics, but our neural network-based model
generates more natural arm movements by considering the
desired location of the robot’s end-effectors as well as joint
configuration sequences (i.e., unlabeled robot logs described
in the next section).

IV. EXPERIMENTS

A. Datasets

Our approach consists of three different types of networks
(within the two components), and we use three different types
of datasets for training each model.

EgoHands [23]: This is a public dataset containing 48
first-person videos of people interacting in four types of
activities (playing cards, playing chess, solving a puzzle, and
playing Jenga). It has 4,800 frames with 15,053 ground-truth
hand labels. Here, we added 466 frames with 1,267 ground-
truth annotations to the original dataset to cover more hand
postures. We use this dataset to learn our hand representation
network, which is trained to locate hand boxes in a video
frame.

Unlabeled Human-Human Interaction Videos: We col-
lected a total of 47 first-person videos of human-human
collaboration scenarios, with each video clip ranging from
4 to 10 seconds. This dataset is a main dataset for teaching
a new task to our robot. It contains two types of tasks: (1)
a person wearing the camera cleaning up all objects on a
table as a partner (i.e., the other subject) approaches the table
while holding a heavy box (to make a room for her/him to
put the heavy box on the table), and (2) a person wearing
the camera pushing a trivet on a table toward to a partner
when he/she is approaching the table while holding a hot
cooking pan. These videos are unlabeled videos without any
activity/hand annotation and we trained our convolutional
regression network using this dataset.

Unlabeled Robot Activity Log Files: We prepared this
dataset to train our robot manipulation network. It contains
50 robot log files. Each log has the robot’s hand positions

(u, v) in an image plane and the robot’s corresponding joint
angles at time t. We recorded these log files by making
a human operator move the robot arms (i.e., the human
grabbed the robot arms and moved them). We obtained such
robot joint configuration sequences while moving the robot
to cover possible arm motion during general human-robot
interaction tasks. Here, we assume that the robot is supposed
to operate in a similar environment during the test phase.
Note that this was not recorded under the interaction scenario
(i.e., just the robot itself was moving), and no annotation
regarding the activity or motion was provided. We used
a Baxter research robot for recording these files and the
Baxter has seven degrees-of-freedom arm: the file contains 9
variables for each arm. In order to estimate the robot’s hand
position in the image plane, we projected the 3-D positions of
the Baxter’s grippers into the image plane (based on camera
calibration) and recorded the projected (u, v) positions with
7 joint angles at 30 Hz.

B. Baselines

In order to provide quantitative comparisons, we compared
our perception component with four different baselines:
(i) Hand-crafted representation uses a hand-crafted state
representation based on explicit object and hand detection.
It encodes relative distances between all interactive objects
in our two scenarios, and uses it to predict the future
hand location using neural network-based regression. More
specifically, it detects objects using KAZE features [24]
and hands using CNN based hand detector in [23], then
computes relative distances between all objects and hands for
building the state representation which is a 20 dimensional
vector. Then, we built a new network which has five fully
connected layers trained using the state representations on
the same interaction dataset we use. (ii) Hands only uses
hand locations for the future regression. It predicts future
hand locations solely based on current hand locations with-
out considering any other visual representations. In order
to train this baseline model, we extracted hand locations
from all frames of the interaction videos using our hand
representation network, then made log files to store detected
hand locations in each frame and their frame numbers. After
this, we trained another neural network model for the future



TABLE I
EVALUATION OF FUTURE HAND PREDICTION

Method Evaluation

Precision Recall F-measure
Hand-crafted representation 0.30 ± 0.37 0.15 ± 0.19 0.20 ± 0.25
Hands only 4.78 ± 3.70 5.06 ± 4.06 4.87 ± 3.81
SSD with future annotations1 27.53 ± 23.36 9.09 ± 8.96 13.23 ± 12.62
SSD with future annotations2 29.21 ± 19.16 7.92 ± 6.45 12.10 ± 9.42
Deep Regressor (ours): K=1 27.04 ± 16.50 21.71 ± 14.71 23.45 ± 14.99
Deep Regressor (ours): K=5 29.97 ± 15.37 23.89 ± 16.45 25.40 ± 15.51
Deep Regressor (ours): K=10 36.58 ± 16.91 28.78 ± 17.96 30.90 ± 17.02

hand location prediction using the log files, which has seven
fully connected layers with the same number of hidden units
as our robot manipulation network. (iii) SSD with future
annotations1 is a baseline that uses the original SSD model
[6] trained based on EgoHands dataset. Instead of training
the model to infer the current hand locations given the
input frame, we fine-tuned this model on EgoHands dataset
after changing annotations of the dataset to have “future”
locations of hands instead of making it to use current hand
locations. We also used additionally 466 frames for this fine-
tuning since the original EgoHands dataset was insufficient
(too many repetitive hand movements) for this training. (iv)
SSD with future annotations2 is a baseline also using the
original SSD model, but we trained this model from scratch.
This time we changed all annotations of the EgoHands
dataset, then trained the model. After that we fine-tuned the
model as the same way that used for the “SSD with future
annotations1” baseline.

C. Evaluation of our future hand prediction

We first evaluated the perception component of our ap-
proach in terms of precision, recall, and F-measure, and
compared them against the above baselines. In the first
evaluation, we made our approach to predict bounding boxes
of human hands in the future frame given the current image
frame. We measured the “intersection over union” ratio
between areas of each predicted box and ground truth (future)
hand locations. Only when the ratio was greater than 0.5,
the predicted box was accepted as a true positive. In this
experiment, we randomly split the set of our Human-Human
Interaction Videos into the training and testing sets, so 32
videos were used for training sets and remaining 15 videos
were used for testing sets in a total of 47 videos.

Table I shows quantitative results of our future hand
prediction. Here, the plus-minus sign (±) indicates standard
deviation and K represents number of frames we used as an
input for our regression network. Our ∆ was 30 frames (i.e.,
1 sec). We are able to clearly observe that our approach
significantly outperforms all the baselines, including the
state-of-the-art object detector SSD modified for the hand
prediction. Our proposed network with K = 10 yielded the
best performance in terms of all three metrics, at about 30.9
score in F-measure. The best performance we can get with
SSD was only 13.23.

In our second evaluation, we measured mean pixel dis-
tance between ground truth locations and the predicted posi-

TABLE II
MEAN PIXEL DISTANCE BETWEEN GROUND TRUTH AND PREDICTED

POSITIONS OF ALL HANDS

Method Mean Pixel Distance
Hand-crafted representation 143.85 ± 48.77
Hands only 247.88 ± 121.94
SSD with future annotations1 58.58 ± 36.76
SSD with future annotations2 79.95 ± 102.07
Deep Regressor (ours): K=1 51.31 ± 39.10
Deep Regressor (ours): K=5 51.41 ± 38.46
Deep Regressor (ours): K=10 46.66 ± 36.92

TABLE III
MEAN PIXEL DISTANCE BETWEEN GROUND TRUTH AND PREDICTED

POSITION OF RIGHT HAND

Method Mean Pixel Distance
Hand-crafted representation 121.48 ± 87.36
Hands only 264.52 ± 148.15
SSD with future annotations1 48.63 ± 39.04
SSD with future annotations2 71.36 ± 104.18
Deep Regressor (ours): K=1 40.08 ± 32.72
Deep Regressor (ours): K=5 40.46 ± 39.52
Deep Regressor (ours): K=10 36.78 ± 36.70

tions of hands. The size of the image plane was 1280*720.
We measured this mean pixel distance only when both the
ground truths and the predictions are present in the same
frame. Table II shows the mean pixel distance errors for
all four types of hands (my left, my right, your left, and
your right). Once more, we can confirm that our approaches
greatly outperform the performance of all the baselines. The
overall average distance was a bit high due to changes
in human hand shapes and their variations, but they were
sufficient in terms of generating robot motion.

We also compared accuracies of these methods while only
considering my right hand predictions, since position of my
right hand is more important for a robot manipulation than
locations of other types of hands. This is because, in our test
scenarios, the robot’s activities are very focused on its right
hand motion. Table III shows mean pixel distance between
ground truth and predicted position of ‘my right hand’. We
can see that performances of our approaches are superior to
all the baselines. Examples of our visual predictions results
are illustrated in Fig. 4.

D. Real-time robot experiments

Finally, we conducted a user study to evaluate the success
level of robot activities performed based on our proposed
approach, with human subjects. A total of 12 participants
(5 undergraduate and 7 graduate students) were recruited
from the campus, and were asked to perform one of the
two activities (clearing the table for a partner and preparing
a trivet for a cooking pan) together with our robot. After
such interactions, the participants were asked to complete a
questionnaire about the robot behaviors for each task. The
questionnaire had two statements (one statement for each
activity) with scales from 1 (totally do not agree) to 5 (totally
agree) to express their impression on the robot behaviors: “I
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Fig. 4. Two examples of our visual prediction. The first example is the activity of clearing the table, and the second example is the activity of pushing
the trivet toward the person holding a cooking pan. The first row shows the input frames and the second row shows our future hand prediction results.
In the third row, we overlaid our predictions on “future” frames. Red boxes correspond to the predicted ‘my left hand’ locations, blue boxes correspond
to ‘my right hand’, green boxes correspond to the opponent’s left hand, and the cyan boxes correspond to the opponent’s right hand. The frames were
captured every one second.

think the robot cleared the table to make a space for me.”
for the task 1 and “I think the robot passed a trivet closer to
me so that I can put the cooking pan on it.” for the task 2.

In addition to our approach (i.e., our perception component
+ manipulation component), we designed and implemented
the following three baselines and compared their quantitative
results: (i) Base SSD + Base control uses the baseline
SSD with future annotations1 as a perception component
and the base manipulation network trained using the same
robot activity log files. This base control network direct
maps current hand locations in the image plane to current
seven joint angles for each robot arm, without the Ẑt term
in Eq. 8. (ii) Base SSD + Our control uses SSD with
future annotations1 as a perception component and our ma-
nipulation component (from Section III-C) to generate motor
commands. (iii) Our perception + Base control used our
perception component to predict future hand locations and
the base control network for manipulation. In all these cases,
the final control of our robot arm is performed by taking
advantage of the Baxter API by providing the estimated
future joint angle configuration.

As a result, each participant interacted with the robot total
of 8 times in a random order. Table IV shows the results. The
results indicate that our participants evaluated the robot with
our approach performed better on both tasks. We received a
higher average score of 3.29 compared to all the baselines
(1.72, 1.92, and 2.29) from the participants. Examples of

TABLE IV
THE SUCCESS LEVEL OF OUR HUMAN-ROBOT COLLABORATION

Method Task 1 Task 2 Average
Base SSD + Base control 1.25 ± 0.43 2.21 ± 1.41 1.72 ± 0.92
Base SSD + Our control 1.5 ± 0.96 2.33 ± 1.60 1.92 ± 1.28
Our perception + Base control 2.33 ± 1.18 2.25 ± 1.36 2.29 ± 1.27
Ours 3.17 ± 1.40 3.42 ± 1.61 3.29 ± 1.50

our real-time robot experiments with human subjects are
illustrated in Fig. 5.

Our method operates in slow real-time with our unopti-
mized C++ code. It takes ∼100 ms per frame using one
Nvidia Pascal Titan X GPU, and we were able to conduct
real-time human-robot collaboration experiments using it.

V. CONCLUSION

In this paper, we proposed a new robot activity learning
model using a fully convolutional network for future repre-
sentation regression. The main idea was to make the robot
learn the temporal structure of a human activity as its future
regression network, and learn to transfer such model for its
own motor execution using our manipulation network. We
show that our approach enables the robot to infer the motor
control commands based on the prediction of future human
hand locations in real-time. The experimental results confirm
that our approach not only predicts the future locations of
human/robot hands more reliably, but also is able to make
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Fig. 5. Qualitative results of our real-time robot experiments. Similar to Fig. 4, there are two examples: clearing the table, and pushing the trivet toward
the person. In each example, the first row shows the exact frames used as inputs to our robot (taken from a robot camera), and the second row shows the
robot and the human from a 3rd person viewpoint. The frames were captured every one second.

robots execute the activities based on predictions. The paper
focuses on robot learning of location-based hand movements
(i.e., translations and natural rotations), and handling more
dynamic hand posture changes remains as one of our future
challenges.
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