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Tuning Modular Networks with Weighted Losses for Hand-Eye Coordination

Fangyi Zhang, Jiirgen Leitner, Michael Milford, Peter I. Corke *f

Abstract

This paper introduces an end-to-end fine-tuning method
to improve hand-eye coordination in modular deep visuo-
motor policies (modular networks) where each module is
trained independently. Benefiting from weighted losses, the
fine-tuning method significantly improves the performance
of the policies for a robotic planar reaching task.

1. Introduction

Recent work has demonstrated robotic tasks based di-
rectly on real image data using deep learning, for example
robotic grasping [2]. However these methods require large-
scale real-world datasets, which are expensive, slow to ac-
quire and limit the general applicability of the approach.

To reduce the cost of real dataset collection, we used
simulation to learn robotic planar reaching skills using the
DeepMind DQN [3]]. The DQN showed impressive results
in simulation, but exhibited brittleness when transferred to
a real robot and camera [4]. By introducing a bottleneck
to separate the DQN into perception and control modules
for independent training, the skills learned in simulation
(Fig. [TA) were easily adapted to real scenarios (Fig. [IB)
by using just 1418 real-world images [J5].

However, there is still a performance drop compared
to the control module network with ideal perception. To
reduce the performance drop, we propose fine-tuning the
combined network to improve hand-eye coordination. Pre-
liminary studies show that a naive fine-tuning using Q-
learning does not give the desired result [5]. To tackle
the problem, we introduce a novel end-to-end fine-tuning
method using weighted losses in this work, which signifi-
cantly improved the performance of the combined network.

2. Methodology

We consider the planar reaching task, which is defined
as controlling a 3 DoF robot arm (Baxter robot’s left arm)
so that in operational space its end-effector position x € R?
moves to the position of the target x* in a vertical plane
(ignoring orientation). The reaching controller adjusts the
robot configuration (joint angles q € R?) to minimize the
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Figure 1. A technique to improve hand-eye coordination for bet-
ter performance when transferring deep visuo-motor policies for a
planar reaching task from simulated (A) to real environments (B).

Perception Loss (L,)

5 B
5 - =
84x84 3 = = : Oz
& & & o
: : : g 'IREIRE
— N M >
T 2 = -
g P o} : HREIRE _
. b1 -2 -2 > ol | = > 2
- || R | E T E .
Or —> —> —> — | —| 2|
(s =
5 J g
: z
64 filters 64 filters 64 filters
%A e Q-values
1 Convl Convz Conv3 BN FC_cl FC_c2 FC_c3
Perception Module Bottlenec Control Module

Figure 2. A modular neural network is used to predict Q-values
given some raw pixel inputs. It is composed of perception and
control modules. The perception module which consists of three
convolutional layers and a FC layer, extracts the physically rele-
vant information (® in the bottleneck) from a single image. The
control module predicts action Q-values given ®. The action with
a maximum Q-value is executed. The architecture is similar to that
in [3]], but has an additional end-to-end fine-tuning process using
weighted perception and task losses. Note that the values in © are
normalized to the interval [0, 1].

error between the robot’s current and target position, i.e.,
lx — x*||. Ateach time step 1 of 9 possible actions a € a
is chosen to change the robot configuration: 3 per joint —
increasing or decreasing by a constant amount (0.04 rad)
or leaving it unchanged. An agent is required to learn to
reach using only raw-pixel visual inputs I from a monocular
camera and their accompanying rewards 7.

The network has the same architecture and training
method to [3]], but with an additional end-to-end fine-tuning
using weighted losses, as shown in Fig.[2] The perception
network is first trained to estimate the scene configuration
® = [x*q] € R® from a raw-pixel image I using the
quadratic loss function
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where y(17) is the prediction of @7 for I7; m is the num-
ber of samples. The control network is trained using K-
GPS [3] where network weights are updated using the Bell-
man equation which is equivalent to the loss function
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L,= TZ @{7at (Tt +7maXQ( t+17ag+1))

at+1

where Q(@t,at) is the sum of future expected rewards
Yoo o 7] 1 When taking action al in state @]. v is a
discount factor applied to future rewards.

After separate training for perception and control in-
dividually, an end-to-end fine-tuning is conducted for the
combined network (perception + control) using weighted
task (L,) and perception (L) losses. The control network
is updated using only L,, while the perception network is
updated using the weighted loss

L= 5Lp + (1 - ﬁ)LqBNa

where L is a pseudo-loss which reflects the loss of L, in
the bottleneck (BN); 5 € [0, 1] is a balancing weight. From
the backpropagation algorithm [1]], we can infer that §;, =
Bor, + (1 — B)drs~, where dp, is the gradients resulted
by L; 1, and 6 ngvq are the gradients resulting respectively

from L, and LqB N (equivalent to that resulting from Ly in
the perception module).

3. Experiments and Results

We evaluated the feasibility of the proposed approach us-
ing the metrics of Euclidean distance error d (between the
end-effector and target) and average accumulated reward
R (a bigger accumulated reward means a faster and closer
reaching to a target) in 400 simulated trials. For compari-
son, we evaluated three networks: Initial, Fine-tuned and
CR. Initial is a combined network without end-to-end fine-
tuning, which is labelled as EE2 in [5] (comprising FT75
and CR). FT75 and CR are the selected perception and con-
trol modules which have the best performance individually.
Fine-tuned is obtained by fine-tuning Initial using the pro-
posed approach. CR works as a baseline indicating perfor-
mance upper-limit.

In fine-tuning, 5 = 0.8, we used a learning rate between
0.01 and 0.001, a mini-batch size of 64 and 256 for task
and perception losses respectively, and an exploration pos-
sibility of 0.1 for K-GPS. These parameters were empiri-
cally selected. To make sure that the perception module
remembers the skills for both simulated and real scenarios,
the 1418 real samples were also used to obtain d,,. Sim-
ilar to FT75, 75% samples in a mini-batch were from real
scenarios, i.e., at each weight updating step, 192 extra real
samples were used in addition to the 64 simulated samples
in the mini-batch for ¢, .
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Figure 3. The box-plots of distance errors of different networks,
with median values displayed. The crosses represent outliers.

Table 1. Planar Reaching Performance

d dos R

Nets | fem] m[e[?ixels] [em] | [pixels] | [\]
Initial | 4.598 | 1.929 |6.150| 2.581 |0.319
Fine-tuned | 3.568 | 1.497 |4.813 | 2.020 |0.626
CR | 3.449| 1447 |4330| 1817 |0.761

Results are summarized in Fig. [3|and Table[T] d .4 and
dgs are the median and third quartile of d. The error dis-
tance in pixels in the 84 x 84 input image is also listed.
We can see that Fine-tuned achieved a much better per-
formance (22.4% smaller d,).q and 96.2% bigger R) than
Initial. The fine-tuned performance is even very close to
that of the control module (CR) which controls the arm us-
ing ground-truth ® as sensing inputs. We also did the same
evaluations in 20 real-world trials on Baxter, and achieved
similar results.

The experimental results show the feasibility of the pro-
posed fine-tuning approach. Improved hand-eye coordina-
tion in modular deep visuo-motor policies is possible due
to fine-tuning with weighted losses. The adaptation to real
scenarios can still be kept by presenting (a mix of simulated
and) real samples to compute the perception loss.
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