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Abstract

Much research has been conducted on both face iden-
tification and face verification, with greater focus on the
latter. Research on face identification has mostly focused
on using closed-set protocols, which assume that all probe
images used in evaluation contain identities of subjects that
are enrolled in the gallery. Real systems, however, where
only a fraction of probe sample identities are enrolled in the
gallery, cannot make this closed-set assumption. Instead,
they must assume an open set of probe samples and be able
to reject/ignore those that correspond to unknown identities.
In this paper, we address the widespread misconception that
thresholding verification-like scores is a good way to solve
the open-set face identification problem, by formulating an
open-set face identification protocol and evaluating differ-
ent strategies for assessing similarity. Our open-set identi-
fication protocol is based on the canonical labeled faces in
the wild (LFW) dataset. Additionally to the known identi-
ties, we introduce the concepts of known unknowns (known,
but uninteresting persons) and unknown unknowns (people
never seen before) to the biometric community. We compare
three algorithms for assessing similarity in a deep feature
space under an open-set protocol: thresholded verification-
like scores, linear discriminant analysis (LDA) scores, and
an extreme value machine (EVM) probabilities. Our find-
ings suggest that thresholding EVM probabilities, which are
open-set by design, outperforms thresholding verification-
like scores.

1. Introduction

Face recognition algorithms have been widely re-
searched over the past decades, resulting in tremendous
performance improvements, particularly over the past few
years. Even traditional face recognition algorithms, i.e.,
before the widespread use of deep networks, performed
quite well on frontal images under good illumination [12],
making them commercially viable for certain applications.
For instance, verification scenarios such as automated bor-
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Figure 1: OPEN-SET RECOGNITION. Closed-set identi-
fication performs comparisons between the Gallery and known
probe (S)ubjects. The open-set identification protocol presented
in this paper requires additional more subtle comparisons, due to
the presence of known unknowns (uninteresting subjects) in the
(T)raining set, (K)nown unknown probes of the same identity at
query time, and (U)nknown unknowns whose identities are only
seen during query time. The open-set identification objective is to
correctly identify probe (S)ubjects that are present in the gallery
while rejecting all other probe queries as unknown.

der control stations [7] allow reasonable control of imaging
conditions and subjects usually cooperate with the system —
those that do not are easily spotted by airport security per-
sonnel. As of 2006, O’Toole et al. [23] demonstrated that
algorithmic solutions were able to outperform humans for
such constrained recognition tasks. Therefore, researchers
have shifted their focus to more difficult conditions.
Giinther et al. [12] have found that these traditional face
recognition algorithms are not designed to and, therefore,
do not perform very well on images with uncontrolled fac-
tors such as facial expression, non-frontal illumination, par-
tial occlusions of the face, or non-frontal face pose, which
occur in modern face recognition datasets [15, 18]. While
different strategies have been proposed to improve the per-
formance of traditional algorithms across pose, e.g., using
face frontalization techniques [ 14] or 3D modeling [16], the
introduction of deep convolutional neural networks (DC-
NNs) for face recognition [36, 24] has overcome the pose
issue to a significant extent. For example, deep neural net-



works have outperformed traditional methods by such a
wide margin on the labeled faces in the wild (LFW) bench-
mark [15] that this once challenging benchmark is now con-
sidered quite easy, at least under the conventional verifica-
tion protocol. With these improved representations, face
recognition based on DCNNs can now, theoretically, be
used in more complicated scenarios, e.g., to identify crimi-
nals in surveillance camera images.

However, the identification problem introduces new and
different challenges compared to the verification scenario.
While verification requires only a single 1: 1 comparison,
identification requires 1: N comparisons — of a probe sam-
ple with templates from many subjects in a gallery, e.g.,
the watch-list of criminals. Depending on the gallery size
N, finding the correct identity can be a much harder task
than simply performing a correct 1: 1 comparison. Further-
more, in many scenarios the gallery can combine multiple
images of each enrolled subject to build a more effective
template. An even more subtle aspect of the identification
problem is that, in many scenarios, most subjects in probe
images are not contained in the gallery at all. Going back to
our previous example, we would hope that the majority of
the population is not present in a criminal database. Thus,
the recognition algorithm should be able to work under an
M : N open-set protocol, with the ability to detect and ig-
nore probe samples with identities that are not present in the
gallery. This is achieved by giving low similarity values to
all known subjects in the gallery, which is a more intricate
task than one would expect. Contrary to some people’s in-
tuition, good open-set recognition is not as simple as thresh-
olding a 1: 1 verification approach on raw similarity scores.
Although this thresholding does reject some unknowns, we
show that there are more effective techniques.

Open-set recognition is clearly desirable for many bio-
metric recognition systems, particularly face. For example,
surveillance cameras in airports capture people and com-
pare their faces with a watch-list of known criminals. The
airport staff, which is not included in the watch-list but reg-
ularly passes through the eye of the camera, should not con-
fuse the algorithm. Hence, this list of known, but uninterest-
ing people can be seen as known unknowns during training.
Finally, many unknown unknowns, i.e., passengers that are
not on the watch-list and sojourn in the airport need to be
ignored by the face recognition algorithm.

In this paper we introduce a small open-set face identi-
fication evaluation protocol based on the widely used LFW
dataset, which previously has mainly been used for eval-
uating face verification systems. Particularly, we intro-
duce known unknowns, i.e., probe images at query time
with identities that were used during training but are not
present in the gallery; and unknown unknowns, i.e., sub-
jects at query time whose identities have never been seen by
the system, neither during training nor during enrollment.

An illustration of these concepts is shown in Fig. 1. While
the LFW dataset is now considered easy under a verifica-
tion protocol, we show that under our open-set identifica-
tion protocol for this dataset is still quite challenging. Note
that this is the first protocol that deals with known and un-
known unknowns; similar protocols can be generated for
other datasets.

We evaluate three different approaches to open-set face
recognition. Each of these algorithms operate on the same
high-quality deep features, which we extract using the pub-
licly available VGG face network [24]. First, we evaluate
a standard 1: 1 verification-like technique that is applied to
deep features [34, 6], i.e., we compute cosine similarities
between deep features in gallery templates and probes; to
reject unknowns we use a threshold on the similarity score.
Second, we perform the standard linear discriminant analy-
sis (LDA) technique [39] on top of the deep features, mak-
ing use of the known unknowns during training. We then
use the learnt projection matrix to project the original deep
feature vectors to the LDA subspace and compare gallery
templates to probes via cosine similarity. Finally, to model
probabilities of inclusion with respect to the support of
gallery samples, we train an extreme value machine (EVM)
[26] on cosine distances between deep features, again us-
ing known unknowns during training. We show that the raw
cosine similarity performs well in a closed set scenario but
not in an open-set setting, LDA can detect known unknowns
very well but not the unknown unknowns, while EVM can
handle both open-set cases with similar precision.

2. Related Work

The need for open-set face recognition has been widely
acknowledged for well over adecade [| |, 25]. Nonetheless,
only a few works, e.g., [35, 9, 33, 20, 4, 21] have addressed
the problem by predominantly focusing on obtaining an ad
hoc rejection threshold on similarity score under an open-
set evaluation protocol [25]. For example, Best-Rowden et
al. [4] showed that a simple thresholding of a commercial
of the shelf (COTS) algorithm works perfectly for verifi-
cation, but does not provide decent open-set identification
performance. The development of classifiers that explic-
itly model probability of inclusion [26] of probe samples
with respect to a region of known support of the gallery has
received far less attention in the face recognition commu-
nity. For security-oriented applications where the enroll-
ment process must be quick, the cost of false alarms is high,
and the cost of missed alarms is even higher, the notion of
using an ad hoc rejection threshold on similarity is problem-
atic because the concept of unknown may change as more
samples are enrolled and data bandwidth is variable, so a
one size fits all threshold may not work well. A classifier
that can efficiently be retrained with each enrolled gallery
template to autonomously assess the probability that probe



data comes from regions of known support on behalf of the
gallery while considering variable data bandwidths is a far
more appealing alternative.

Thus, the motivation for applying classifiers that are
open-set-by-design to face recognition problems is mani-
fested. Several such classifiers have been developed in the
computer vision community [26, 31, 32, 3], but their ap-
plication has been limited to toy problems on modifications
of canonical computer vision datasets like MNIST [19], or
to generic object recognition problems like the ImageNet
challenge [27]. However, object recognition problems in-
herently differ from biometric applications insofar as they
are far more coarse-grained, the notion of enrollment does
not exist, and deep learning solutions can be obtained by
training an end-to-end network on the training set and using
that end-to-end network as a classifier.

Face identification systems that use deep features [24,

, 36, 6], by contrast, use truncated forward passes over
pre-trained networks to extract features at enrollment or
query time. The networks are trained in an end-to-end
manner on labeled face identities, which generally differ
from the identities enrolled into gallery templates. Tem-
plates are constructed during enrollment, e.g., by collect-
ing extracted feature vectors from several images of each
given subject. At query time, probe templates consisting
of one or more extracted feature vectors of one subject, are
matched against gallery templates. The identification pro-
cedure commonly takes the form of finding the gallery tem-
plate with the sample of maximum similarity to the corre-
sponding probe. Cosine is a common measure of similar-
ity between feature vectors extracted from a face network
[34, 6]. Particularly, when templates vary in number of im-
ages, feature vectors are sometimes aggregated for a given
identity prior to matching, e.g., by taking the mean feature
vector [24, 6].

To further enhance the performance of a similarity mea-
sure between two feature vectors, a common technique is to
learn a transformation matrix across the training set that in-
creases the similarity of vectors from the same class, while
decreasing the similarity of vectors from different classes.
Linear discriminant analysis (LDA) [5], which learns a sub-
space projection that minimizes the ratio of intra-class to
inter-class variance over the training set, is one of the funda-
mental techniques that has been applied to face recognition
[39] in the past. More advanced techniques include joint
Bayesian [34] and triplet-loss [24, 28] embeddings, but they
require more training data.

While ad hoc thresholding of raw similarity measures
between features and projections thereof can lead to im-
proved open-set face recognition performance, in this paper
we compare the results of using such techniques to using a
lightweight classifier — the extreme value machine (EVM)
introduced by Rudd et al. [26] — that is open-set by design.

EVM uses statistical extreme value theory (EVT) based cal-
ibrations over margin distributions to obtain a probability
of sample inclusion of each probe sample with respect to
a gallery template. In doing so, it implicitly accounts for
varying data bandwidths, yielding superior bounds on open
space to those of a raw thresholded similarity function.
EVM has some similarities to cohort normalization tech-
niques [37], parts of it can be viewed as an improved way of
zero normalization (Z-norm) [2]. However, while Z-norm
assumes Gaussian distribution of the data and takes into
account all cohort data points — even if they are far away
from the gallery template — EVM only considers the points
with the highest similarities, and fits a Weibull distribution
on half the distance in order to model margin distributions.
While Scheirer et al. [30] showed that EVT can be success-
fully applied for score normalization in score fusion of bio-
metric algorithms, in this paper we investigate its applica-
tion to build gallery templates for open-set recognition.

3. Approach

As many readers might not be familiar with open-set
evaluation, let us first introduce our exemplary implemen-
tation of an open-set protocol and explain the evaluation in
more detail, before we discuss the tested algorithms.

3.1. Open-Set Face Recognition Protocol

Open-set face recognition has not been studied, in part
due to the dearth of open-set evaluation protocols for face
databases. Although the IJB-A dataset [18] provides an
open-set protocol, IJB-A has a lot of different issues such as
missing annotations, many profile and low quality images,
and huge template sizes for both enrollment and querying.
Hence, all these issues have to be solved before researchers
can tackle the open-set problem using this dataset.

Also, neither IJB-A nor any other publicly available face
recognition dataset provides an evaluation protocol to test
open-set identification with both known unknowns and un-
known unknowns. For example, [9, 33] only tests known
unknowns, while other protocols [21, 20, 4] have disjoint
training and enrollment set, which only allows to test un-
known unknowns. Thus, we implemented our own evalua-
tion protocol, which is non-random, simple and can easily
be implemented. We chose to generate an open-set proto-
col for the labeled faces in the wild (LFW) dataset [15],
for several reasons. First, LFW is publicly available, well-
investigated, and contains relatively unconstrained imaging
conditions. Second, LFW is large enough to provide mean-
ingful results, yet it is small enough that experiments can
be run using a normal desktop computer. Finally, LFW
contains several identities, for which only a single image
is present — which fits perfectly into our open-set concept.

We have split the identities in the LFW dataset into three
groups. Those 602 identities with more than three images



are considered to be the known population. The 1070 iden-
tities with two or three images are the known unknowns,
while the 4096 identities with only one image are consid-
ered to be unknown unknowns. The training set T con-
tains the first three images (i.e., the images ending with
0001.7jpg, 0002.jpg and 0003 . jpg) for each of the
known identities, and one image (the image ending with
0001 . jpg) for the known unknowns. The enrollment set
G is composed of the same three images for each of the
known identities, which makes the protocol biased. Note
that there are no unknowns (neither known nor unknown
unknowns) inside the enrollment set.

Finally, we created four different probe sets, C, Oy, O,
and O3. The closed-set C contains the remaining images S
of the known subjects, where the number of probe images
per identity can vary between 1 and 527 (i.e., for George W.
Bush). This set is used to evaluate closed-set identification
and verification. Probe set 0; = S U K contains the same
images as in the closed probe set C, and additionally the
images K from the known unknowns, which were not part
of the training set, one or two images per identity. Oy =
S U U contains the closed-set images of C and the unknown
unknowns U, one per identity, which have not been seen
during training and enrollment. Finally, the probe set O3
contains all probe images, including known subjects, known
unknowns, and unknown unknowns, i.e., 03 = SUK U U.

3.2. Evaluation

The closed-set evaluation uses standard cumulative
match characteristics (CMC) curves and receiver operating
characteristic (ROC) curves. Open-set recognition uses the
detection and identification rate (DIR) curves as proposed
in the Handbook of Face Recognition [25].

Cumulative match characteristics curves plot the identi-
fication rate, a.k.a. the recognition rate, with respect to a
given rank. For each known probe P € S of identity p,
the rank r is computed as the number of subjects g in the
gallery that are more similar than the correct subject, i.e.:

rank(P) = ’{Gg | (G, P) > s(GP, P);GY € G}‘ )

for a given similarity function s(-, -). This means that rank
r = 1 is assigned when the correct subject is the most simi-
lar one. The CMC curve plots illustrate the relative number
of probes that have reached at least rank r.

Detection and identification rate curves plot the identi-
fication rates with respect to the false alarm rates, which
should not be confused with false acceptance rates in ROC
curves. For a given similarity threshold 6, a false alarm is is-
sued when the similarity of an unknown probe P €¢ KU U
to any of the gallery subjects is higher than 6. The false
alarm rate computes the average probability of these [25]:

‘{P | maxs(G?, P) > 0; P € KUU}‘
g

FAR(6) = , @

KU U|

while the detection and identification rate for a given rank r
is calculated on the known probe set, and given by [25]:
‘{P | rank(P) > 7 A s(GP, P) > 0; P € s}‘

.3

DIR(0) = 5]

)

When plotting the DIR curve, different values for the
threshold # can be computed based on a given false alarm
rate ). After sorting the scores from (2) descendantly:

scores = sort({max s(G, P) >0 | P KUuU}) &)
g

the threshold can be computed by taking the smallest score
0 > 0’, where:

o :scores“ﬁ- \KUUU] Q)

Note that the threshold € does not exist when ¢’ is already
the maximum score.

3.3. Compared Methods
3.3.1 Cosine Similarity

Most face recognition algorithms that work on deep fea-
tures simply apply a cosine similarity between pairs of deep
feature vectors. Thus, we obtain a baseline measurement
by computing the cosine similarity between the deep fea-
ture vectors of gallery template G of subject g and probe
P. Since each gallery template is composed of three deep
feature vectors: G9 = (G{, GY, G3), we apply two strate-
gies: First, we compute three similarities and take the max-
imum value, which has been shown to provide the best per-
formance in handling several scores [12]:

Smax(G?, P) = iergg}agg} cos(GY, P) , (6)

and second, we average the three deep features vectors [6]:
- 1
- g
G'=3 d G (7
1€{0,1,2}

and compute the similarity between this average and the
probe feature vector:

Savg(GY, P) = cos(Gg, P) . (8)

Without further processing, this similarity is used inside the
evaluation.

3.3.2 Linear Discriminant Analysis

To introduce a learning algorithm that can make use of the
known unknowns during training, we select linear discrim-
inant analysis (LDA) to learn a projection matrix W. First,
we compute a principal component analysis (PCA) projec-
tion matrix. After projecting all training features 7' € T



into the PCA subspace, we train the LDA with the 603
classes of the training set T, i.e., one class for each of
the 602 known gallery subject, and one class containing
the known unknowns. For more details on how to train a
PCA+LDA projection matrix, please refer to [39, 38]. Fi-
nally, we project all enrollment and probe features into the
combined PCA+LDA subspace using projection matrix W:

yar =WTGY, ya, =WTG?, yp=WTP. (9)

Scores are computed using the functions introduced in (6)
and (8) on the projected features:

Smax(yvayP) Savg(yéyvyP) . (10)

3.4. Extreme Value Machine

For a third approach, we choose the extreme value ma-
chine (EVM) introduced by Rudd et al. [26]. While EVM
was formulated to handle generic classification tasks, we
utilize the algorithm to perform biometric identification.
The EVM classifier uses statistical extreme value theory
(EVT) [10] to perform nonlinear, kernel-free classification,
optionally in an incremental learning setting. The classifier
fits an EVT distribution per point over several of the nearest
fractional radial distances to points from other classes, and
uses a statistical rejection model on the resultant cumulative
distribution function (CDF) to model probability of sample
inclusion (PSI or ¥). Taking a fixed number of the data
point and distribution pairs per class that optimally summa-
rize each class of interest yields a compact probabilistic rep-
resentation of each class in terms of extreme vectors (EVs).

We tailor EVM to a face identification similarity function
by letting each feature vector be associated with an identity.
Deviating slightly from the original formulation, in which
the fractional distance over which to fit EVT distributions
was assumed to be @ = 0.5 times the distance (cf. (12))
to formalize the classifier in terms of fitting margin distri-
butions, we formalize the distance multiplier in terms of
hyperparameter . With o # 0.5, EVM no longer mod-
els maximum margin distributions, but rather a biased mar-
gin distribution. However, the margin distribution theorem
from Rudd et al. [26], which governs the functional form
of the EVT distribution for modeling probability of sample
inclusion W, still holds — dictating that the low tail of mul-
tiplied distances will follow a Weibull distribution. Apply-
ing a statistical rejection model to the resultant CDF, each
feature vector within the gallery will have its own ¥ distri-
bution. Denote the ith feature vector for gallery subject g
as GY. The resultant probability that probe P is associated
with GY is given by:

7<d(c§,19)>"?
V(G Piaf,A) =exp AN

where d(GY, P) = 1 — cos(GY, P) is the cosine distance
of a probe P from a subject’s feature GY, and 7, \Y are

Weibull shape and scale parameters, respectively. These pa-
rameters are obtained for each gallery feature GY by com-
puting all distances:

dist = {a-d(GY,T) |t # ¢;T € T} (12)

for all training set features 7' € T with identity ¢, which do
not correspond to the gallery identity g. A Weibull distribu-
tion is fit to the low tail of dist:

dist, = {d |dedistAd < 07} with (13)
97’

max [{d|dedistnd <o} =7,  (14)

where the tail size 7 represents a second hyperparameter
of EVM. For details on how to fit Weibull distributions on
dist, please refer to [26] or the MetaRecognition library.1

Another modification that we make to the original EVM
algorithm is that we retain all EVs rather than select only
the most informative ones. The main purpose of model re-
duction in [26] is to maintain compact representations in in-
cremental learning settings. To be comparable to the other
two algorithms, instead we perform scoring in two differ-
ent ways, one where we compute the maximum probability
over each feature GY inside the gallery template GY:

Smax(GY, P) = iEI{I(l)E,il},E} U(GY, P kI, NY). (15)

For the other technique, we use the average G from (7) for
each gallery template, compute distances between G9 and
training set features 7" as in (12), and compute a Weibull fit
on the tail of them in order to obtain &9 and \9. The final
probability of inclusion is given as:

Save(G?, P) = (G, P,K7, \9) . (16)
4. Experiments

We conduct experiments on our novel open-set LFW
protocol. For feature extraction, we use the VGG face net-
work.” We employ the Bob signal processing library [1]
to align the eye locations® of input images to fixed locations
(82,112) and (142, 112) pixels, to approximately mimic the
alignment required for the VGG face network [24]. We use
Caffe [17] to extract the 4096-dimensional fc7 layer fea-
tures from the VGG network, after removing all following
layers from the network prototxt, including the ReLU
layer. We perform EVT calibration using libMR [29]. Fi-
nally, to compute and plot the closed- and open-set evalua-

tion results, bob.measure* is employed.

The C and Python implementation of libMR is provided in:
http://pypi.python.org/pypi/libmr
2The Caffe model of the VGG network was downloaded from:

http://www.robots.ox.ac.uk/~-vgg/software/vgg_~face
3 Annotations are provided under:
http://lear.inrialpes.fr/people/guillaumin/data.php

4Bob and the bob.measure package can be found under:
http://www.idiap.ch/software/bob
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Figure 2: EVM HYPERPARAMETER SELECTION. Two different parameters of EVM are optimized: the distance multiplier o and
the tail size T. Both are evaluated using the CMC curve on probe set C and the DIR curve on probe set Os.

4.1. Hyperparameter Selection

In the first set of experiments, we evaluate the effects of
different hyperparameters for LDA and EVM. We only test
different hyperparameters using the averaging approach, as
experiments run faster with it, and we evaluate closed-set
identification using probe set C, and open-set recognition
using the combined probe set O3. For LDA, only a single
hyperparameter is optimized, which is the number of PCA
components retained. After experimenting with several val-
ues, we find that retaining 99 % of the PCA variance gave
the best results, leading to a final PCA+LDA subspace size
of 256 dimensions.

EVM has two hyperparameters: the distance multiplier
« and the tail size 7. We start optimizing « by setting the
tail size to a hand-picked value of 7 = 250. Closed-set and
open-set evaluation of different values of « are shown in
Fig. 2(a) and 2(b), respectively. For closed-set, differences
can only be seen in the very low ranks, after rank 5 all CMC
curves seem to overlap completely. The best « value is be-
tween 0.6 and 0.8 and performance degrades slightly for
smaller and larger values of «. Nevertheless, rank 1 iden-
tification rates are very high and do not vary substantially
with any choice of « in the tested range. When examining
the open-set performance in Fig. 2(b), we can see slightly
larger differences for different values of a. For large a val-
ues, many unknown probes have the probability of 1 to be-
long to one of the gallery subjects and, hence, thresholds for

low false alarm rates cannot be computed. When the weight
multiplier o gets lower, fewer of these cases occur. Based
on both plots, we decide to use o = 0.7 as a good trade-off
between closed-set and open-set performance.

To evaluate different values for the tail size 7, we keep
o = 0.7 fixed. Examining the closed-set CMC curve in
Fig. 2(c), we can again see very little difference. Generally,
larger tail sizes seem to lead to better rank 1 identification
rates, but already for rank 3, there is no apparent difference
between any of the tested values. The open-set DIR curve
given in Fig. 2(d) reveals that the open-set performance de-
teriorates for high and low tail sizes, while 7 = 500 seems
to provide the best overall performance.

4.2. Comparison between Methods

After obtaining the optimal hyperparameters for LDA
and EVM, we compare the performances of all three meth-
ods, and also with both scoring approaches, i.e., Spax and
Savg. The closed-set performance of Cos, LDA and EVM
on probe set C is given in Fig. 3(a) and 3(b). As expected
and reported [4], both closed-set identification and verifica-
tion reach very high accuracies, e.g., a rank 1 identification
rate of up to 96 %. One apparent observation is that the
averaging strategy works better for all of the algorithms,
which conforms with prior work [6] using deep features for
face recognition. Interestingly, all algorithms perform al-
most similar in the closed-set identification task shown in
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Figure 3: COMPARISON BETWEEN METHODS. The (a) CMC curves and the (b) ROC curves for the closed-set evaluation on probe
set C, as well as the open-set DIR curves for (c) probe set O1 and (d) probe set O are given for all six evaluated methods.

Fig. 3(a), while EVM has a slight advantage over Cos, and
LDA performs worst. However, when evaluating verifica-
tion performance in Fig. 3(b), the simple cosine distance
seems not to be as good as either LDA or EVM, indicating
that distances are distributed differently for different iden-
tities (consisting with [8]), but both EVM and LDA effec-
tively normalize them out.

More interestingly, looking at the open-set performance
in Fig. 3(c), where we evaluate the known unknowns of
probe set Oy, it is obvious that Cos has lost much of its
performance, especially in lower FAR areas. On the other
hand, LDA and EVM have similarly good detection and
identification rates. Here, both algorithms can make use
of information about the identities during training. For
example, LDA computes its projection matrix so that all
known unknowns are clustered together, and are far from
any known subject. In opposition, EVM does not cluster
the known unknowns, but only uses distances to them dur-
ing training.

And precisely because EVM does not model the known
unknowns, it is able to maintain its high performance when
confronted with unknown unknowns from probe set O5. On
the other hand, LDA’s performance dropped dramatically in
Fig. 3(d) for low FAR values. We assume that the unknown
unknowns do not cluster well in the LDA subspace and are,
hence, more similar to gallery subjects. For larger FAR val-
ues, however, LDA still outperformed EVM. We attribute

this to the fact that LDA works well for a biased protocol
[22], i.e., where identities in the training and test sets are
shared. We assume that EVM, in opposition, is not favored
by a biased protocol — as EVM does not use identity in-
formation of other subjects, but treats all distances to other
subjects’ features identically.

Another interesting point is that the discrepancy between
the two modeling approaches, i.e., computing the maximum
probability over three points and averaging the model fea-
tures has an influence on the performance of EVM. While
both in the closed-set evaluations and in the open-set eval-
uation with known unknowns, the average approach works
better, it is the opposite in the open-set evaluations with un-
known unknowns. It seems that with identities not seen
during training, having more complex models results in a
higher robustness with respect to rejecting unknown un-
knowns.

5. Discussion

Due to the fact that the number of unknown probe files
is relatively low: |K| = 1334 and |U| = 4069, comput-
ing low false alarm rates, i.e, FAR < 0.001 was often not
possible, and results in that range might not be statistically
meaningful. Hence, the advantage of EVM over LDA in
Fig. 3(d) might not be as significant as it looks. However,
the advantage of EVM over raw cosine distances is obvious,
both in the closed set ROC curve in Fig. 3(b), as well as in



the open-set evaluation in Fig. 3(d) since EVM performs
better for almost any FAR value.

It is well-known [22] that LDA-based face recognition
algorithms are highly favored by biased protocols like the
one that we have introduced. This is due to the fact that
LDA can make use of class information by clustering these
classes together during training. For unbiased protocols
Giinther et al. [13] have found that LDA does not im-
prove over simple distance computations in PCA subspace.
Hence, LDA results on more realistic, i.e., unbiased datasets
will most probably be lower.

In opposition, EVM does not make use of the classes
during training. For each feature vector in a gallery tem-
plate, only distances to all other subjects’ feature vectors are
computed to model the probability of inclusion. Theoreti-
cally, there is little difference whether these features belong
to known or unknown subjects. Hence, we assume that it
does not matter whether to query with subjects seen during
training, or with unknown subjects, but we leave the verifi-
cation of this assumption to future work. Based on this as-
sumption, we can claim that EVM can handle unknown im-
ages better than LDA, and clearly better than using a simple
thresholded cosine distance. Hence, we conclude that open-
set recognition is better handled by modeling probability of
inclusion with respect to gallery support and then thresh-
olding on the posterior probability estimate, as opposed to
thresholding raw similarities. Note that EVMs are also not
limited to using simple distance functions between raw fea-
tures. For example, a combination of LDA and EVM — first
projecting the features into the LDA subspace and then ap-
plying an EVM in projected feature space — could be a vi-
able approach.

Due to the relatively small size of the dataset, we did not
split it up further into validation and test sets with mutu-
ally exclusive subjects. This is why we illustrated the per-
formance of several hyperparameter choices on the test set,
rather than use a subset of non-test data to select one set of
hyperparameters. However, performance differed surpris-
ingly little across hyperparameter choices (cf. Fig. 2), and
choosing other parameters would not change our results.

6. Conclusion

In this paper we have shown that open-set face recog-
nition is a difficult problem, and that simply thresholding
similarity scores is a weak solution. We have experimented
with two approaches that are often applied for face recog-
nition: computing cosine distances on deep features, and
applying linear discriminant analysis (LDA). Due to the
biased nature of our evaluation protocol, LDA worked fa-
vorably over cosine in the open-set evaluations, but still
performed poorly when tested with unknown unknowns.
Hence, while LDA might be a proper choice for application
when mainly known unknowns occur, in public areas (e.g.

in airports) with a high amount of passenger traffic, LDA
will not be sufficient. Interestingly, LDA performed worst
in the closed-set identification task, yet performed best in
the verification task.

In order to model probabilities of inclusion with respect
to gallery templates, we invoked the extreme value machine
(EVM). Without making use of identity information during
training, EVM was able to perform well in all of our tests,
i.e., closed-set identification, verification and open-set iden-
tification. In all cases, EVM was able to beat the simple co-
sine distance, which demonstrates that modeling inclusion
probabilities improves both closed and open-set identifica-
tion as well as verification. Further, we assume that in an
unbiased dataset, where training and test sets contain differ-
ent identities, LDA will perform poorly while EVM will ap-
proximately maintain its performance. How well EVM per-
forms with respect to other score normalization techniques
such as Z-norm is left for future work.

Anyways, at a false alarm rate of 0.01 (meaning that
1 out of 100 unknown subjects are assigned to one sub-
ject in the gallery) only around 60 % of the gallery subjects
were correctly identified by EVM. Revisiting our example
in Sec. 1, a surveillance system in an airport that captures
100 persons per minute and queries each against a criminal
database will have one false alarm per minute — which usu-
ally requires human interaction to resolve — while failing
to identify 40 % of the criminals. Though this is a simpli-
fied example, it illustrates that open-set face identification
is far from being solved, and additional research is required
for real-time surveillance applications. While the open-set
face identification protocol that we have introduced in this
paper is a good start, research in the open-set identification
space would benefit from larger databases that can be split
into training, validation and testing sets, yet contain suf-
ficiently many unknown unknowns to be able to calculate
meaningful detection and identification rates at reasonable
false alarm rates.
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