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1EAVISE, KU Leuven - Campus De Nayer - Belgium

{firstname.lastname}@kuleuven.be
2Melexis Technologies nv - Belgium

wre@melexis.com

Abstract

Using hand gestures to answer a call or to control the
radio while driving a car, is nowadays an established fea-
ture in more expensive cars. High resolution time-of-flight
cameras and powerful embedded processors usually form
the heart of these gesture recognition systems. This how-
ever comes with a price tag. We therefore investigate the
possibility to design an algorithm that predicts hand ges-
tures using a cheap low-resolution thermal camera with
only 32×24 pixels, which is light-weight enough to run on a
low-cost processor. We recorded a new dataset of over 1300
video clips for training and evaluation and propose a light-
weight low-latency prediction algorithm. Our best model
achieves 95.9% classification accuracy and 83% mAP de-
tection accuracy while its processing pipeline has a latency
of only one frame.

1. Introduction

The human-machine interface controlled by hand-
gestures is a well investigated research topic that targets
many different applications like controlling consumer elec-
tronics [20], operating the multimedia system in a car [8],
sign language interpretation [13] and even manipulating a
surgical robot [26]. In the quest for improving the robust-
ness and user-friendliness, different algorithms and sensors
have been proposed to perform the task at hand. Given the
unpredictable light conditions in a car or an operating room,
time-of-flight or structured IR-light based depth sensors are
often preferred over regular color cameras for optical recog-
nition applications. Also, given the nature of a depth image,
the hand performing the gesture close to the camera is easily
separated from background clutter using a simple threshold.
These advantages however come with a price tag. Depth
cameras are expensive, which is especially problematic for
low-cost applications. Nowadays high-end cars have hand-
gesture controllable multimedia systems which usually also
rely on depth sensing technology to capture the gesture in-
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Figure 1: Proposed method for low-latency hand gesture
detection. A 2D CNN summarizes frames into frame em-
beddings, which are processed by a 1D TCN with mixed
causal convolutions. Only a single output close to the right
edge of the temporal window produces the network’s output
prediction.

formation. In this work, we will investigate the possibil-
ity to make a low-cost variant of an in-car human-machine
interface for controlling such a multimedia system using
the low-cost MLX90640 thermal sensor from Melexis. The
MLX90640 is a thermopile imager array with 32×24 pixels
and configurable frame-rate, fitted in a small TO39 pack-
age. Similar to a time-of-flight camera, a thermal camera
doesn’t rely on environmental lighting conditions and can
easily distinguish background temperature from foreground
body temperature, making a thermal sensor an interesting
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alternative for this use case. However, no valid business
case can be made for a recognition system with a cheap sen-
sor that requires an expensive processing platform to host
the recognition software. We therefore require an algorithm
that fits into low-cost hardware like microcontrollers. Us-
ing the successful deep learning technology, we propose a
light-weight hand-gesture detection framework. Besides its
limited size and computational complexity, our proposed
model features excellent low-latency properties which are
required for this kind of applications, especially given the
low frame-rates that thermal sensors have. The main contri-
butions of this paper are the following. First, we recorded
a new dataset (that has been made publicly available) with
multiple sensors at two viewpoints, including our target sen-
sor MLX90640 and the even cheaper sensor MLX90641
(with a resolution of 16×12 pixels). Second, a recogni-
tion algorithm is proposed that uses a 1D Temporal Con-
volution Network (TCN) on top of a 2D spatial feature ex-
tractor CNN depicted in Figure 1. On top of that, we in-
troduce a novelty into the design of our TCN which uses
a combination of causal and regular convolutions to dras-
tically improve the low-latency behaviour. As far as we
know, this hasn’t been described in literature before. Our
algorithm achieves top notch low-latency detection accu-
racy when compared to other state-of-the-art models with
listed computational complexity and model size. Finally,
we present an empirical study on the influence of the sen-
sor quality and viewpoint on the recognition performance,
where we compare our algorithm on three different thermal
sensors. Our source code is publicly available1.

Section 2 discusses our related work while Section 3 pro-
poses our dataset and algorithm. The experiments are de-
tailed in Section 4 and a conclusion follows in Section 5.

2. Related work

Action recognition: Inspired by the big success of deep
learning based image analysis like object classification
and detection [6, 18], many ground braking video analy-
sis network designs have been proposed in fields like ac-
tion/activity recognition [2, 3, 22, 24]. Initial works pro-
posed video recognition algorithms with 2D Convolutions
as their core components. Karpathy et al. [14] compares
early, late and slow temporal fusion ConvNet models that
process the frames in short video clips. Simonian et. al.
[22] decomposes an input video into spatial and temporal
components. Their two-stream network design processes
the spatial (full frame) and temporal (dense optical flow)
components with individual 2D CNNs. Score fusion merges
the output features of both CNNs to get the final result.
Other network designs [2, 5, 29] exploit the two-stream con-

1https://gitlab.com/EAVISE/
hand-gesture-recognition

cept to further improve upon the state-of-the-art. A num-
ber of works tackle video analysis with sequence modeling
[3, 21, 30]. They propose a 2D CNN to capture the spa-
tial context of each frame into an embedding. These em-
beddings are sent to an LSTM [11] which handles global
temporal modeling for activity recognition. For sequence
modeling in general, the Transformer network [27] and the
1D Temporal Convolution Network or TCN [1] both report
improved performance over recurrent neural networks like
the LSTM. Kozlov et al. [16] and Farha et al. [4] success-
fully apply the Transformer and 1D temporal convolution
concepts respectively as an alternative for the LSTM in ac-
tion recognition. Both report superior performance. Since
a video clip can be seen as a 3D spatio-temporal feature
map, many state-of-the-art works have exploited process-
ing video clips with 3D Convolutions [9, 24, 25]. The big
advantage of 3D ConvNets is that they can model complex
spatio-temporal information in all layers of the network,
which often results in superior performance. A compre-
hensive study [2] shows that combining the two-stream ap-
proach with 3D networks leads to an even better result. The
downside of 3D CNNs however is that they have a large
parameter count and high computational complexity.

Hand gesture recognition: Since hand gesture recognition
is a form of action recognition, many gesture recognition
works use similar network architectures. Molchanov et al.
[8] use a recurrent neural network on top of the C3D [24]
feature extractor and test this on color and depth modalities.
They train with CTC loss [7] which enables the network to
learn the start and the end of a gesture using only a sequence
of labels as ground truth without any timing information.
On top of that, their network is able to distinguishing mul-
tiple densely concatenated gestures better. We will also use
CTC loss in this work for the same reason. Kopuklu et al.
[15] use a 3D ConvNet gesture detector and a 3D ConvNet
classifier that only activates if the detector has detected a
gesture. Besides their good results, they require a lot of pro-
cessing power to meet their real-time requirements. Tateno
et al. [23] detect hand gestures on the same thermal sensor
as ours. They use a simple 2D CNN image classifier on top
of a background subtracted image. Their background sub-
traction however assumes that the hand is always warmer
than the clothed body and the background. In practice, peo-
ple can have cold hands which makes this method prone to
errors. Their dataset is also kept private.

Given the computational complexity and the large
amount of parameters needed for 3D CNNs [16], we base
our lightweight network design on a 2D CNN with a TCN
on top as given in Figure 1. This design is much more suit-
able for low-cost hardware and allows low-latency detection
for sensors with low frame-rates like thermal cameras. We
avoid using a two-stream design since this requires dupli-
cating the network resulting in larger models.
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type modality resolution FPS (Hz)
OpenMV Cam H7 Color 320×240 12
MLX75027 (ToF) Depth 640×480 16
FLIR lepton Thermal 160×120 8
MLX90640 Thermal 32×24 16
MLX90641 Thermal 16×12 16

Table 1: Cameras in each sensor cluster

3. Approach
After a description of our dataset (Section 3.1), we dis-

cuss the proposed network architecture and how we train
it.

3.1. Dataset

Since there are no publicly available hand-gesture recog-
nition datasets with the MLX90640 or MLX90641 sensor,
we recorded a new dataset containing over 1300 hand ges-
ture videos in a car. In order to investigate the influence
of the sensor type and viewpoint, we use two sensor clus-
ters with 5 different cameras each listed in Table 1. One
sensor cluster is mounted on the center of the dashboard in
front of the driver, the other is mounted on the ceiling point-
ing straight down. The MLX90640 and MLX90641 sensors
have a configurable frame-rate between 0.5 and 64FPS. We
find 16FPS to be a good trade-off between a decent tempo-
ral resolution and spatial noise, which is worse for higher
frame-rates. Figure 2 gives some sample frames from the
different sensors. Video labeling is done automatically in
a similar fashion as the NvGesture dataset [8]; a digital in-
terface asks the user to execute a predefined hand gesture
while it starts recording for 3 seconds. Our dataset con-
tains 9 different dynamic hand gestures from 24 different
subjects. The different gesture classes are shown in Fig-
ure 3 and are especially selected to work with low and ultra
low-resolution sensors. We also recorded a number of non-
gesture videos which contain actions like steering, switch-
ing gears, operating the radio and operating the wipers.
While most gesture videos only contain a single hand ges-
ture, a number of gesture videos contain two consecutive
gestures of the same class. Our dataset is made publicly
available2. Due to privacy constraints, only the thermal sen-
sor modalities have been released.

3.2. Network architecture

Our proposed network architecture, illustrated in Figure
5, uses a 2D CNN to create an embedding vector vn ∈ RC

for each video frame and models the temporal domain using
a 1D Temporal Convolution Network (TCN) based on the
work of Farha et. al. [4]. We initially use ResNet18 [10] as
our spatial encoder CNN.

2https://iiw.kuleuven.be/onderzoek/eavise/
mlgesture/home

Figure 2: Sample frames from the front sensor cluster (top
row) and ceiling sensor cluster (bottom row). From left to
right: OpenMV color cam, MLX75027 time-of-flight, FLIR
lepton, our target sensor MLX90640 and MLX90641.

Figure 3: The 9 different hand gestures utilized in our
dataset
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Figure 4: TCN basic block

Many works [19, 1, 4, 28] advertise the superior proper-
ties of TCNs compared to recurrent networks such as better
accuracy, smaller model sizes and high modularity. We use
the same TCN basic block as proposed by Farha et. al. [4],
depicted in Figure 4. From now on, we will refer to this
basic block as BB. The first layer of the BB is a 1D dilated
convolution with kernel size k = 3 where the dilation factor
is doubled for each subsequent BB, i.e. 1, 2, 4, 8,... This
allows the receptive field to grow exponentially. A stack
of subsequent BBs is called a stage. To create deeper net-
works, multiple stages can be stacked on top of each other
where the dilation factor is reset to 1 at the start of every
new stage. As in [4], no down-sampling is used, so the
temporal output resolution is identical to the temporal input
resolution.

Figure 6a gives an illustration of the receptive field
(black arrows) of an output activation from a single stage
with three stacked BBs. This example uses regular convo-
lutions as proposed by Faraha et. al. [4]. Regular convo-
lutions have a receptive field that expands equally wide to
the right as it does to the left. For a temporal convolution,
this means that it looks as far into the future (right) as it
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Figure 5: Proposed generic network architecture

(a) Non-causal convolutions

(b) Causal convolutions

(c) Mixed causal convolutions

Figure 6: Comparison of non-causal, causal and mixed-
causal TCNs

looks into the past (left). However, output activations close
to the right edge of the network’s temporal window, e.g.
the one depicted in red in Figure 6a, are mostly produced
by left and down looking kernel elements since most right
looking kernel elements receive data from the zero padding
area. This results in poor recognition performance at the
edges compared to activation outputs at the center, espe-
cially since the receptive field is significantly large due to
the exponentially increasing dilations. We also prove this
in the experiments section. This is bad for low latency ap-
plications, since they cannot afford looking (far) into the
future and thus require predictions close to the right edge of
the temporal window. To boost the performance for predic-
tions close to the right edge, one solution is to use causal
convolutions [1, 19], which only look at present and past
activations (Figure 6b). We however empirically discov-
ered that a TCN with causal convolutions performs below

par compared to a TCN with regular convolutions, when
considering central located activation outputs. Also, since
low-latency doesn’t necessarily mean zero latency, a few fu-
ture samples can still be used. We therefore propose using
a mixture of BBs with a regular (a.k.a. non-causal) dilated
convolution and BBs with a causal dilated convolution to
become an asymmetric receptive field that only looks a few
frames ahead and a multitude of frames back. We coin this
configuration mixed causal. Figure 6c illustrates a mixed
causal configuration where the first BB is non-causal and
allowed to look ahead while the other BBs are causal. We
compare different mixed causal configurations in the exper-
iment section and empirically prove their superior perfor-
mance for low-latency applications.

The input of the stacked TCN stages is constructed from
a sequence of embedding vectors {v0, v1, ..., vN} coming
from the 2D CNN (Figure 5). The sequence is concatenated
into a 2D feature map vvv ∈ RC×N with C the number of
feature channels and N the length of temporal sequence. A
1 × 1 convolution compresses the number of feature chan-
nels C to C ′, the number of feature channels used inside
the BBs. The output feature map yyy ∈ RC′×N of the last
BB is finally converted to frame-wise class probabilities
{p0, p1, ..., pN} with pn ∈ RP where P is the number of
supported classes including the non-gesture class, through
another 1×1 convolution and a softmax layer.

3.3. Loss functions

Our dataset includes per-video labels rather than time
segmented annotations, since this way, annotation can be
done automatically, as explained in Section 3.1. With video
labels, we can easily use cross-entropy loss (CE loss) for
offline video classification purposes. This can be done by
averaging all logits of each temporal output step before
sending the result through the softmax layer and thus be-
coming a single classifier output. However, since we re-
quire low-latency predictions that can distinguish rapid con-
secutive hand gestures, training our network on a tempo-
ral segmentation task would be more desirable. Temporal
segmentation however requires frame-wise annotations. To
avoid manual annotation work for marking the nucleus of
each gesture in the training set, we can solve this prob-
lem by using CTC loss, short for Connectionist Temporal
Classification loss [7]. CTC loss can induce frame-wise
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gradients, given only a target sequence without timing in-
formation. This way, our proposed network can be trained
for segmentation-like tasks without frame-wise annotations.
We can easily deduce target sequences from video class la-
bels using the following scheme: A video with the non-
gesture class label gets an empty target sequence {}, a video
with a hand gesture label l gets a target sequence {l} and a
video with two consecutive hand gestures of the same class
gets target sequence {l, l}. Note that we don’t need to repro-
duce this timeless target sequence during inference, which
allows us to avoid using any form of sequence decoding
like best-path decoding or beam-search decoding in our fi-
nal application. Instead, a simple threshold on the tempo-
ral segmentation-like output probabilities of one of the net-
work’s output time steps is sufficient. Figure 7 gives an ex-
ample of output probabilities produced by a network trained
on a classification task using cross-entropy loss and a net-
work trained with CTC loss. Molchaniv et. al [8] also use
this idea for their hand gesture recognition network. We
elaborate further on this in the experiments section.

3.4. Training details

We use a 2D CNN with a 32×32 input resolution and
initialize it with pre-trained weights from the CIFAR-10
dataset [17]. The pre-trained weights of the first convolu-
tion layer that process RGB channel images are averaged to
support single channel thermal images. The temporal net-
work gets initialized with random parameters. We then train
the model with CE loss and fine-tune it later with CTC loss
on the best performing CE-trained weights.

Before sending the calibrated temperatures from the
thermal sensors to the network, we first normalize them to
ensure that the distribution of the input data matches the
expected distribution of the 2D CNN’s pre-trained CIFAR-
10 weights (µ = 0, σ = 1). We use data augmentation in
addition to avoid over-fitting. Next to random corner crop-
ping, we use random contrast and brightness augmentation
for all thermal sensors to make the models robust against
changes in hand, body and background temperatures. For
the thermal MLX sensors, we also add additional Gaussian
distributed noise with random spread levels. This discour-
ages the model to try to fit on the noise embedded in the im-
ages from the dataset. We empirically found that this gives
better results. We also apply temporal shifting and scaling
of 25% and 20% respectively.

We use a randomly selected train and test dataset split of
70% and 30% respectively. Training is done for 150 epochs
with a batch size of 8 and the Adam optimiser is used with
a learning rate of 1e-4. The learning rate is lowered by a
factor of ×10 when the test accuracy reaches a plateau of
20 epochs. Both CE and CTC loss training schedules use
the same settings.

4. Experiments

We first evaluate our proposed network architecture mul-
tiple times as a video classifier, in search for the best hy-
per parameters of the temporal network. We then compare
our architecture to other possible classification designs. In
these experiments a single prediction per video is requested
from a model. To evaluate the low-latency detection perfor-
mance, we run our model and its competitors in a sliding-
window based fashion over a long video, evaluating the gen-
erated per-frame predictions. These experiments are per-
formed on the MLX90640 sensor data coming from the
sensor cluster on the dashboard. In Section 4.6, a perfor-
mance comparison is presented among networks trained on
the other thermal sensor types and sensor viewpoints avail-
able in our dataset.

4.1. Evaluation metrics

To measure the video classification accuracies, we calcu-
late the top-1 classification scores by running the network
on each video of the test set. We report the performance
for each model when trained with CE loss and CTC loss.
For networks trained with CTC loss, we use the following
scheme to produce a video classification label: First, best-
path decoding [7] is used to get the predicted sequence of
class labels. We then use the label within the decoded se-
quence that has the highest probability score as our final
class label. This works since all videos in our dataset have
either none, one or two gestures of the same class label. All
classification experiments are run three times with different
manual random seeds. We report the average results.

To measure the detection performance in time, we first
stitch 50% of all test set videos together in one long dura-
tion test video. We then manually annotate the hand gesture
nuclei in the resulting test video and run the network in a
sliding-window based fashion over all frames in the video.
A single temporal output step of the network produces the
prediction output as depicted in Figure 1. In Section 4.5, we
will empirically determine which output is most suited with
the help of the following detection metric. We calculate a
Precision-Recall (PR) curve for each class label, except for
the non-gesture label, and average all curves to a multi-class
PR-curve. The mean Average Precision or mAP, which is
defined as the area under the final PR-curve, is used as our
detection metric. If the network fires once during an anno-
tated gesture nucleus, it is considered a True Positive. A
second detection during the nucleus or detections outside
the nucleus are considered False Positives. Missed gestures
are considered False Negatives. We prefer the PR-curve
over the ROC curve [8] since defining the correct amount
of True Negatives, which is required to calculate the ROC
curve, is too difficult given the spiky nature of the CTC pre-
dictions.
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4.2. Hyperparameters proposed TCN

In these experiments, we vary the structure of our pro-
posed TCN network to search for an optimal performing
solution using the MLX90640 low-resolution thermal data,
taken from the sensor cluster located on the dashboard.
First, a grid search is done with only non-causal convolu-
tions where we train networks with 4, 5 and 6 BBs for each
1, 2 and 4 stages. This experiment is done with C ′ = 64
feature channels in each BB and repeated with C ′ = 128
feature channels afterwards. We find that 4 stages with 5
BBs works best on both 64-channel and 128-channel exper-
iments. These results are consistent when training with CE
and CTC loss.

4.3. Comparison with other methods

In this section, we analyse the performance of our pro-
posed architecture against other network designs. Table 2
gives the results of different models trained on input data
from the MLX90640 sensor on the car’s dashboard. We use
ResNet18 as the default spatial encoder and set the tempo-
ral length to 48 frames, which for the MLX90640 approx-
imates to the full length of each test video. We also tried
the larger ResNet34, but found it to perform worse on our
dataset. We present our proposed model with 4 stages and
5 BBs in both 64 feature channels and 128 feature chan-
nels configuration, coined TCN f64 and TCN f128 respec-
tively. TCN f64 SqueezeNet is our TCN f64 model with a
SqueezeNet V1.1 spatial encoder [12] instead of ResNet18,
to put into contrast the additional reduction in FLOPS and
number of parameters that can be achieved by reducing the
model capacity of the spatial encoder. All RNNs are single
layer and retrained a second time with a spatial attention
module [21], resulting in models denoted with an attn post-
fix, in the hope that the spatial context could be captured
better. The Video-Transformer Network or VTN [16] uses
the proposed configuration from its publication. To put the
results in perspective, a model trained without a temporal
network (containing only a spatial encoder) coined baseline
and a 3D-inflated ResNet18 coined 3D CNN [9] are also
presented.

The baseline model has the lowest accuracy for both CE
and CTC trained models, which clearly indicates the impor-
tance of the temporal network component. Both our TCN
f64 and TCN f128 models outperform all other sequence
modeling designs when trained with CTC-loss, which for
detection is the most important metric. Also the differ-
ence between test and train accuracy, listed by the CTC Gap
column, is lowest for our proposed models, indicating less
chance of over-fitting compared to the other models. TCN
f128 even outperforms the 3D CNN model slightly. Since
the 3D CNN only features a single classifier output in time,
it cannot be trained with CTC loss.

In the last four columns, the number of theoretical

FLOPS and parameters are presented for the temporal net-
work only and the whole network respectively. The num-
ber of parameters listed under Params TN for our proposed
TCNs is less and even far less for TCN f64 compared to
the recurrent models, which is beneficial for devices with
smaller high-bandwidth memory sizes. Counting the num-
ber of FLOPS is dependent on the mode of operation. In
our case, the network runs in a sliding-window based fash-
ion over a video feed, generating a new prediction imme-
diately after processing a new frame. Since already cal-
culated embedding vectors from the previous frames can
be stored in memory, the FLOPS column lists the FLOPS
for executing the spatial encoder once plus the FLOPS to
process the 48 most recent embeddings with the temporal
network. FLOPS TN reports the lowest count for our TCN
f64 model. Since ResNet18 requires the biggest portion of
FLOPS and parameters, modifying the spatial encoder ar-
chitecture is the first thing to do when further optimization
is required. Our SqueezeNet variant clearly shows that fu-
ture experiments can drastically reduce the overall network
size if needed.

4.4. Mixed causal configurations

Mixed causal configurations, as presented in Section 3.2,
provide a nice way to boost the detection accuracy of low-
latency network outputs, which is discussed in more detail
in section 4.5. To find good mixture configurations, we
redo the grid search from Section 4.2 but now with differ-
ent mixed causal configurations. To limit the number of
possible combinations, we only try networks with 2 and 4
stages and make sure that each stage in the same model has
an identical causal configuration. We vary the number of
non-causal BBs at the beginning of each stage and train
networks with 1, 2 and 3 non-causal BBs per stage while
all higher BBs in a stage are set to causal. We find that 4
stages and 4 BBs gives the best result for any mixed causal
configuration. Further results for mixed causal models are
therefore reported with this hyper parameter set.

Table 3 lists the CTC-trained network classification re-
sults of different causal mixtures for the TCN f128 model,
together with its already trained non-causal variant and a
pure causal variant.

The classification results of the mixed models in Table 3
are lower compared to their non-causal variant. This makes
sense since a non-causal network looks further into the fu-
ture than a mixed model if it is allowed to, which is the
case since this classification test provides all video frames
at once before a decision needs to be made. However, when
no or only a few future frames are available when a predic-
tion needs to be made, say in a low-latency recognition task,
the recognition performance of a non-causal TCN will drop
drastically. This is where our mixture models prevail. Sec-
tion 4.5 explains this behaviour for low-latency detection.
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Model CE Acc CE Gap CTC Acc CTC Gap FLOPS TN Params TN FLOPS Params

baseline 79.7% -16.7% 42.4% -6.1% - - 556.27M 11.17M
3D CNN [9] 95.4% -2.6% - - - - 9.75G 33.15M
GRU 94.0% -3.2% 89.0% -5.3% 76.04M 1.58M 632.06M 12.75M
BI-GRU 94.7% -2.9% 93.9% -3.3% 152.08M 3.16M 708.10M 14.33M
LSTM 94.7% -1.2% 85.3% -5.5% 101.30M 2.11M 657.33M 13.27M
BI-LSTM 94.8% -2.6% 93.4% -1.6% 202.61M 4.21M 758.63M 15.38M
GRU attn 94.5% -2.1% 85.5% -5.8% 76.04M 1.58M 632.06M 12.75M
LSTM attn [21] 93.6% -3.4% 91.6% -3.2% 101.30M 2.11M 657.33M 13.27M
BI-GRU attn 94.6% -2.7% 92.2% -2.2% 152.08M 3.16M 708.10M 14.33M
BI-LSTM attn 94.3% -1.2% 91.4% -5.0% 202.61M 4.21M 758.63M 15.38M
VTN [16] 91.4% -6.6% 76.9% -11.1% 58.37M 1.84M 614.39M 13.01M

TCN f128 (ours) 95.9% -1.2% 95.2% 0.4% 66.37M 1.38M 622.40M 12.55M
TCN f64 (ours) 94.6% -1.8% 94.1% -0.6% 17.46M 0.36M 573.48M 11.53M
TCN f64 SqueezeNet (ours) 93.0% 1.3% 91.7% 1.4% 17.46M 0.36M 34.01M 1.09M

Table 2: Results of competitive video classifier designs. Next to CE Acc and CTC Acc trained network accuracies, CE Gap
and CTC Gap represent the test accuracy minus the training accuracy. FLOPS TN and Params TN represent the number of
FLOPS and parameters of the Temporal Network only (for processing a sequence of 48 time steps) while FLOPS and Params
represent the number of FLOPS and parameters of the whole network.

Model CTC Acc CTC Gap #non-causal #causal

TCN f128 95.2% -0.4% 5 0
TCN causal f128 90.5% -2.6% 0 5
TCN mix1 f128 92.7% -2.3% 1 3
TCN mix2 f128 93.9% -1.9% 2 2
TCN mix3 f128 93.8% -0.1% 3 1

Table 3: Non-causal, causal and mixed causal configuration
accuracies. Columns #non-causal and #causal list the num-
ber of non-causal and causal BBs per stage respectively.

4.5. Low-latency detection performance

In this section we analyse the detection performance on
the MLX90640 thermal data using the mAP metric. Figure
7 gives an example of the annotated ground truth together
with the output predictions of a CTC and CE trained net-
work. The spiky predictions of a CTC-trained network can
clearly distinguish rapid consecutive gestures while the CE
trained network tends to merge predictions of the same class
together. All detection results discussed in this section are
therefore created with CTC-trained networks.

Given the low-latency requirement, the graphs in Figure
8 present the mAP results versus the network output posi-
tion, where 0 and 23 on the x-axis represent the index of
most right and center network outputs respectively. In gen-
eral, high accuracies at the left side of the graph are impor-
tant for low-latency applications.

Figure 8a and 8b both report poor performance for the
regular non-causal models on the low-latency output re-
gion of the graph compared to the more central located
outputs, clearly indicating the issue discussed in Section
3.2. The vanilla causal models do not suffer from this ef-
fect, but since they don’t learn from any near future inputs,
their performance is below par. The right mixture of low-

level non-causal and high level causal BBs however solves
this problem with outstanding low-latency detection perfor-
mance. The best network output positions of mix2 and mix3
even outperform the best network output positions of the
non-causal models, making our mixture strategy the best
choice. mix2 provides us with a nice peak on the second
low-latency output in both Figure 8a and 8b. Using this
output, we can build a processing pipeline with a latency
of only a single frame. With 16 FPS, this boils down to a
latency of 1/FPS = 1/16 = 62.5ms.

Figure 8c compares the mix2 models with the detection
performance of the best competitive models from Table 2.
Here, the low-latency detection performance of our mix-
ture designs crushes that of the best competition. Note that
even with the SqueezeNet backbone, our TCN performs out-
standingly well. A detection demo video of model TCN
mix2 f128 can be found online3.

4.6. Other sensors and viewpoints

To evaluate the effect of sensor quality and viewpoint,
we present an empirical study on the classification perfor-
mance of our proposed TCN f128 model, trained on the
three thermal sensor types for two different viewpoints. To
avoid optimizing the 2D CNN for even lower resolutions,
we upsample the MLX90641 data to 32×24 pixels. We
also downsample the FLIR Lepton data to 32×24 pixels
to study the effect of image quality rather than resolution,
since the FLIR Lepton provides much cleaner images com-
pared to the MLX sensors, even on the same resolution. Ta-
ble 4 lists the CE and CTC results. From these results we
can conclude that the front models perform slightly better in
general compared to the top models. Also the image qual-

3https://www.youtube.com/watch?v=DAjKO0HWW78
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Figure 7: Network output probabilities from a CTC and CE trained network versus the ground truth.
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Figure 8: Low-latency detection performance in mean Average-Precision versus network output position graphs.

Model CE Acc CE Gap CTC Acc CTC Gap

MLX90641 front 97.0% -0.8% 92.9% -2.3%
MLX90640 front 95.9% -1.2% 95.2% -0.4%
FLIR Lepton front 98.0% -1.0% 96.6% -1.6%

MLX90641 top 94.0% -3.6% 92.9% -2.3%
MLX90640 top 94.2% -3.3% 94.9% -2.7%
FLIR Lepton top 95.9% -3.1% 95.2% -2.0%

Table 4: Classification results of different thermal sensors
and their viewpoint. Front means dashboard location while
top means ceiling location.

ity matters, because the FLIR lepton results outperform the
MLX90640 results. But maybe the most interesting remark
is that although only half the resolution, the performance
of the MLX90641 trained models rather closely follow the
performance of the MLX90640 trained models. This opens
opportunities for an even more affordable recognition sys-
tem since the MLX90641 is cheaper and only requires half
of the pixels to be processed, which can reduce the compu-
tational cost of the spatial encoder even further.

5. Conclusion
In this work, we investigated the possibility to design a

low-cost variant of an in-car hand-gesture enabled human-

machine interface for multiple purposes. For this, we used a
cheap low-resolution thermal camera with only 32×24 pix-
els. We proposed a light-weight recognition framework that
can be easily optimized for low-cost hardware and recorded
a new dataset of over 1300 gesture videos to train our mod-
els. Our dataset features multiple sensors, two viewpoints
and has been made publicly available. Our proposed al-
gorithm uses a temporal convolution network on top of a
2D CNN, which features excellent low-latency properties
thanks to our newly proposed technique of mixing causal
and non-causal convolution layers. We achieved up to
95.9% classification accuracy and 83% mAP detection ac-
curacy with a latency of only one frame. In a final study we
compared the recognition performance of models trained on
three different thermal sensors types and two viewpoints.
These last experiments concluded that sensor quality influ-
ences the prediction result and that a sensor of 16×12 pixels
is an excellent choice for reducing the system’s cost even
further. In future work, possibilities for model compression
and quantization to fit this network into a low-cost micro-
controller will be investigated.

6. Acknowledgements

This work is supported by VLAIO and Melexis via the
Start to Deep Learn TETRA project.

8



References
[1] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical

evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271,
2018. 2, 3, 4

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 2

[3] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2625–2634, 2015. 2

[4] Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage tem-
poral convolutional network for action segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3575–3584, 2019. 2, 3

[5] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1933–1941,
2016. 2

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 2

[7] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 369–376. ACM, 2006. 2,
4, 5

[8] Pavlo Molchanov Xiaodong Yang Shalini Gupta and Kihwan
Kim Stephen Tyree Jan Kautz. Online detection and classifi-
cation of dynamic hand gestures with recurrent 3d convolu-
tional neural networks. In CVPR, 2016. 1, 2, 3, 5

[9] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and im-
agenet? In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 6546–6555, 2018. 2,
6, 7

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 2

[12] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016. 6

[13] Longlong Jing, Elahe Vahdani, Matt Huenerfauth, and Yingli
Tian. Recognizing american sign language manual signs

from rgb-d videos. arXiv preprint arXiv:1906.02851, 2019.
1

[14] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1725–1732, 2014. 2

[15] Okan Köpüklü, Ahmet Gunduz, Neslihan Kose, and Gerhard
Rigoll. Real-time hand gesture detection and classification
using convolutional neural networks. In 2019 14th IEEE In-
ternational Conference on Automatic Face & Gesture Recog-
nition (FG 2019), pages 1–8. IEEE, 2019. 2

[16] Alexander Kozlov, Vadim Andronov, and Yana Gritsenko.
Lightweight network architecture for real-time action recog-
nition. arXiv preprint arXiv:1905.08711, 2019. 2, 6, 7

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 2

[19] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. arXiv preprint arXiv:1609.03499,
2016. 3, 4

[20] Caifeng Shan. Gesture control for consumer electronics.
In Multimedia Interaction and Intelligent User Interfaces,
pages 107–128. Springer, 2010. 1

[21] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov.
Action recognition using visual attention. arXiv preprint
arXiv:1511.04119, 2015. 2, 6, 7

[22] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, pages 568–
576, 2014. 2

[23] Shigeyuki Tateno, Yiwei Zhu, and Fanxing Meng. Hand ges-
ture recognition system for in-car device control based on
infrared array sensor. In 2019 58th Annual Conference of
the Society of Instrument and Control Engineers of Japan
(SICE), pages 701–706. IEEE, 2019. 2

[24] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 2

[25] Du Tran, Jamie Ray, Zheng Shou, Shih-Fu Chang, and
Manohar Paluri. Convnet architecture search for spatiotem-
poral feature learning. arXiv preprint arXiv:1708.05038,
2017. 2

[26] Hermes Fabian Vargas and Oscar Andrés Vivas. Gesture
recognition system for surgical robot’s manipulation. In
2014 XIX Symposium on Image, Signal Processing and Arti-
ficial Vision, pages 1–5. IEEE, 2014. 1

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2

9



[28] Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan
Yang. Multivariate temporal convolutional network: A deep
neural networks approach for multivariate time series fore-
casting. Electronics, 8(8):876, 2019. 3

[29] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-
works: Towards good practices for deep action recognition.
In European conference on computer vision, pages 20–36.
Springer, 2016. 2

[30] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-
jayanarasimhan, Oriol Vinyals, Rajat Monga, and George
Toderici. Beyond short snippets: Deep networks for video
classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4694–4702,
2015. 2

10


