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Abstract

When training end-to-end learned models for lossy com-
pression, one has to balance the rate and distortion losses.
This is typically done by manually setting a tradeoff param-
eter β, an approach called β-VAE. Using this approach it
is difficult to target a specific rate or distortion value, be-
cause the result can be very sensitive to β, and the appro-
priate value for β depends on the model and problem setup.
As a result, model comparison requires extensive per-model
β-tuning, and producing a whole rate-distortion curve (by
varying β) for each model to be compared.

We argue that the constrained optimization method of
Rezende and Viola, 2018 [29] is a lot more appropriate
for training lossy compression models because it allows
us to obtain the best possible rate subject to a distortion
constraint. This enables pointwise model comparisons, by
training two models with the same distortion target and
comparing their rate. We show that the method does man-
age to satisfy the constraint on a realistic image compres-
sion task, outperforms a constrained optimization method
based on a hinge-loss, and is more practical to use for
model selection than a β-VAE.

1. Introduction
Deep latent variable models have started to outperform

conventional baselines on lossy compression of images
[4, 7, 25, 14, 15, 24, 23, 33, 36], video [19, 8, 21, 31, 37, 20,
27, 6, 12], and audio [39, 36]. Nearly all of these methods
use a loss function of the form D + βR, where D mea-
sures distortion, R measures bitrate, and β is a fixed trade-
off parameter. We refer to this approach as β-VAE [13],
because this loss can be motivated from a variational per-
spective [12].

Despite its popularity, β-VAE has several drawbacks.
Firstly, setting β to target a specific point in the R/D plane
can be tricky. One can show that a model trained with a
given β should end up at that point on the R/D curve where
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the slope ∂R
∂D equals β [1]. However, because the shape of

the R/D curve depends on the model and hyperparameters,
and because the R/D curve can be very steep or flat in the
low or high bitrate regime, choosing β can be difficult.

Secondly, in order to compare models it is not sufficient
to train one instance of each model because the converged
models would likely differ in both rate and distortion, which
yields inconclusive results unless one model dominates the
other on both metrics. Instead, to compare models we need
to train both at several β values to generate R/D curves
that can be compared, which is computationally costly and
slows down the research iteration cycle.

A more natural way to target different regions of theR/D
plane is to set a distortion constraint and find our model
parameters through constrained optimization:

min
θ
R(θ) s.t. D(θ) ≤ cD, (1)

where θ refers to the joint parameters of the encoder, de-
coder and prior, and cD is a distortion target.

We can control the rate-distortion tradeoff by setting the
distortion target value cD. Setting this value is more intu-
itive than setting β, as it is independent of the slope of the
R/D curve, and hence independent of model and hyperpa-
rameters.

As a result, we can easily compare two different models
trained with the same distortion constraint; as we have fixed
the D axis we only have to look at the R performance for
each model.

Note that one could also minimize the distortion subject
to a rate constraint. This is less straightforward as putting
too much emphasis on the rate loss at the beginning of train-
ing can lead to posterior collapse [3, 11, 40, 28, 32].

There is a large literature on constrained optimization,
but most of it does not consider stochastic optimization and
is limited to convex loss functions. In this paper we eval-
uate, in addition to β-VAE, two constrained optimization
methods that are compatible with stochastic gradient de-
scent training of deep networks: A simple method based on
the hinge loss (free bits [17, 5, 1] but applied to distortion
rather than rate), and the Lagrangian distortion-constrained
optimization method of [29] (D-CO).
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(a) R/D performance for constrained optimization and hinge loss
baselines. Dashed lines indicate the distortion target value cD .
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(b) R/D performance for constrained optimization and β-VAE.

Figure 1: Training rate / distortion performance for the same model trained using different optimization methods.

We evaluate these methods on a modern image compres-
sion system applied to a realistic compression benchmark.
We report on suitable hyperparameters and practical con-
siderations that are relevant in this domain. We show that
D-CO outperforms the hinge method, and reaches a similar
performance to β-VAE. At the same time, D-CO is easier
to work with and allows for pointwise model selection.

2. Related Work

2.1. Constrained Optimization

Several works have proposed algorithms to train deep
networks under equality or inequality constraints [22, 10,
9, 29]. We deploy the algorithm of [29] as the VAE context
is most similar to our setup.

The focus of [29] is on generative modelling rather than
data compression, and there are a number of reasons why
the models trained in [29] are not directly applicable to data
compression. Firstly, their models contain a stochastic en-
coder which is not suitable for lossy compression, where
bits-back coding is inapplicable. Secondly, [29] do not
report R/D performance but instead report log-likelihood.
Furthermore, their latent space is continuous while most
compression papers use a discrete latent space that allows
for entropy coding of the latents under the prior. Lastly,
they use a fixed Guassian prior whereas in lossy compres-
sion powerful learnable priors are used to decrease the bi-
trate as much as possible. In this paper we focus on the
implementation and evaluation of constrained optimization
for practical lossy image compression.

2.2. Hinge Loss

Another approach that was proposed for constrained op-
timization (in the context of avoiding posterior collapse) is
free-bits, where the rate loss is hingedD+βmax(R−cR, 0)
[17, 5, 1]. Like constrained optimization, this loss allows us
to set a target value, and as such has been used in lossy com-
pression [23]. However, we find that this method is inferior
to constrained optimization in terms of R/D performance
and has difficulty converging to the target value.

2.3. Variable Bitrate Models

A different approach of dealing with the rate-distortion
tradeoff is to train a single model that can compress at dif-
ferent bitrates [34, 30, 7, 38]. However, some of these
works do not meet the performance achieved with special-
ized models [38] or require disjoint training of autoencoder
and prior [34]. Other methods could benefit from con-
strained optimization (e.g. [38] still uses β multipliers that
could be replaced by a distortion target), an exercise that is
left for future research.

3. Method
3.1. Constrained Optimization

The Lagrangian of the primal problem in equation 1 is:

LLagrangian(θ, λD) = R(θ) + λD (D(θ)− cD) (2)

For a convex problem, we would find the minimum of
the dual at maxλD minθ LLagrangian(θ, λD).

For non-convex deep learning models, we deploy the al-
gorithm proposed by [29] and iteratively update θ and λD

using stochastic gradient descent and ascent respectively.
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(b) β-VAE: minθ D(θ) + βR(θ)

Figure 2: Model selection using (a) distortion constrained optimization and (b) β-VAE. The baseline model (dark line) is
altered by halving the number of latent channels (light line). Models that are trained using the same distortion target (a) or
the same value of β (b) are connected using a dotted line.

Note that the β-VAE loss is the Lagrangian of a rate-
constrained optimization. However, the multiplier λR = β
is either fixed or updated according to a heuristic schedule
[3, 11, 40, 28, 32], and thus no constrained optimization is
performed.

Because we found that the optimal D-CO hyperparam-
eters were different depending on the target value, we nor-
malize our constraint function by the target value. Our loss
function thus becomes:

LD−CO(θ, λD) = R(θ) + λD
(
D(θ)

cD
− 1

)
(3)

3.1.1 Weight and Multiplier Updates

For each minibatch, we update θ using the Adam optimizer,
and λD using SGD with momentum, to respectively mini-
mize and maximize the batchwise Lagrangian (Eq. 3).

Like [29], we reparametrize µD = log λD in order to
enforce the positivity of λD (to satisfy the K.K.T. [18, 16]
conditions for inequality constraints). We also follow them
in updating ∆µDt+1 ∝ ∂L

∂λD
t

= Dt

cD
− 1 as this resulted in

smoother updates of our multipliers than using the actual
gradient (Dt

cD
− 1) exp (µDt ).

We use a high momentum (α = 0.99) for our multiplier
updates, to ensure a smooth multiplier trajectory despite the
high variance of the MSE loss. As we use the PyTorch [26]
SGD implementation, we make sure to set dampening to be
equal to momentum. We clip our log-multiplier s.t. λD ≤
103 for stability.

Unlike [29] we choose to set our initial value of λD to

the clip value λD0 = 103. This way, we focus on training
the autoencoder for distortion at the beginning of training,
which we found to be essential for high performance. The
final multiplier trajectories are shown in Figure 3.

4. Experiments
We conduct a series of experiments to show how con-

strained optimization is more suitable for training lossy
compression models than β-VAE or distortion hinge base-
lines.

4.1. General Setup

We use the autoencoder architecture of [23] but without
the mask. Our prior is the gated pixelCNN [35] as used in
[12]. Like [12] we jointly train our code-model and autoen-
coder, without any detaching of the gradients. We use scalar
quantization with a learned codebook and a straight-trough
estimator (hardmax during forward pass and softmax gradi-
ent during backward) [2, 23, 12].

We train our model on random 160x160 crops of Ima-
geNet Train, and evaluate on 160x160 center crops of Im-
ageNet Validation. Like [23] we resize the smallest side of
all images to 256 to reduce compression artifacts.

We train using the rate loss expressed in bits per pixel
(bpp) and using the distortion loss expressed in average
MSE computed on unnormalized images on a 0-255 scale.

We update our parameters using Adam with a learning
rate of 2 · 10−3 for the autoencoder and 1 · 10−4 for the
prior. We decay both learning rates every 3 epochs (120087
iterations) by a factor of 0.1. For the multiplier updates, we
use SGD with a learning rate of 5 · 10−3. We use a batch
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Figure 3: Trajectory of Lagrangian multipliers during training. Each curve represents a model with a different constraint.

size of 32.

4.2. D-CO vs. D-hinge

For this experiment we choose exponentially spaced D-
constraint values (60, 65, 70, 80, 100, 125, 150, 200, 300
MSE) and look at how well the methods converge to the
set target. We compare our D-CO training with the simpler
D-hinge baselines of the form:

LD-hinge(θ) = R(θ) + λD max

(
D(θ)

cD
− 1, 0

)
(4)

Unlike D-CO, λD is fixed during training, but we train
models with different values (0.01, 0.1, 1, 10, 100). In line
with D-CO, we use the normalized constraint function as
we verified that it worked better than the unnormalized one.

Results are shown in Figure 1a. Observe that the D-
CO models converge very closely to the set target (within 1
MSE point for achievable constraints). For the hinge mod-
els, the constraint is not satisfied reliably and overall R/D
performance is worse (some models converged to R/D val-
ues outside of the chosen display range). Furthermore, the
hinge models are sensitive to the value of λD, and the opti-
mal value differs per target.

Figure 3 shows the trajectories of the D-CO multipliers.
For stricter constraints, it takes longer before the multiplier
starts to drop, changing emphasis from D to R. In the limit
of an unachievable constraint (MSE < 62), the multiplier
remains constant at the clip value. All multipliers converge
to a relatively stable final value, which is dependent on the
target (as expected since the ∂R

∂D slope is different).

4.3. D-CO vs. β-VAE

In the next experiment, we compare the R/D perfor-
mance of D-CO to the β-VAE baseline. We first train β-
VAE models for exponentially spaced β values (0.1, 10,
50, 100, 200, 250, 500, 750). For each β-VAE, we use the
distortion loss over the last training epoch as the target for
training a D-CO model.

Results are shown in Figure 1b (PSNR results in Figure
A.1). The R/D performance of the D-CO models is similar

to that of the β-VAEs. For bitrates higher than 0.4 bpp, we
see a slight advantage for the β-VAE. For these target val-
ues, theD-CO multipliers are almost constant (see the strict
constraints in Figure 3) and we thus attribute this difference
to the optimization hyperparameters being fine-tuned for the
scale of the β-VAE loss.

4.4. Model Selection

In the final experiment we highlight how constrained op-
timization can simplify the model selection process. We
adapt our architecture by changing the number of latent
channels from 32 to 16, effectively halving the maximum
channel capacity from 1.29 bpp to 0.64 bpp. We train β-
VAE models for the βs from Section 4.3 and D-CO models
using the targets from Section 4.2.

Results are shown in Figure 2. For both optimization
methods, the lowest achievable distortion has increased
from ∼ 70 MSE to ∼ 130 MSE for the model with de-
creased channel capacity.

For the β-VAE optimization, points with the same β now
end up at very different points on the R/D plane. For the
half-capacity model, we cover a narrow range of 240-128
MSE.

In contrast, D-CO produces two comparable R/D
curves. Distortion targets below 130 MSE are unachiev-
able for the half-capacity model and are all collapsed into a
single point. However, for any achievable distortion target,
both models end up with a similar distortion which allows
us to do a pointwise comparison.

5. Conclusion

We present distortion constrained optimization (D-CO)
as an alternative to β-VAE training for lossy compression.
We report suitable hyperparameters and propose to nor-
malize the constraint function for better performance. We
demonstrate that D-CO gives similar performance to β-
VAE on a realistic image compression task, while at the
same time providing a more intuitive way to balance the
rate and distortion losses. Finally, we show how D-CO can
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facilitate the model selection process by allowing pointwise
model comparisons.

References
[1] Alexander A Alemi, Ben Poole, Ian Fischer, Joshua V Dil-

lon, Rif A Saurous, and Kevin Murphy. Fixing a bro-
ken ELBO, 2018. In International Conference on Machine
Learning, 2018. 1, 2

[2] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville.
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Joint autoregressive and hierarchical priors for learned im-
age compression. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 31, pages
10771–10780. Curran Associates, Inc., 2018. 1

[25] David Minnen and Saurabh Singh. Channel-wise autoregres-
sive entropy models for learned image compression, 2020. 1

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

5



Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 3

[27] Jorge Pessoa, Helena Aidos, Pedro Tomás, and Mário AT
Figueiredo. End-to-end learning of video compression using
spatio-temporal autoencoders, 2018. 1

[28] Tapani Raiko, Harri Valpola, Markus Harva, and Juha
Karhunen. Building blocks for variational bayesian learning
of latent variable models. J. Mach. Learn. Res., 8(Jan):155–
201, 2007. 1, 3

[29] Danilo J Rezende and Fabio Viola. Generalized ELBO with
constrained optimization, GECO. In Workshop on Bayesian
Deep Learning, NeurIPS. pdfs.semanticscholar.org, 2018. 1,
2, 3

[30] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-
age compression. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2922–
2930. JMLR. org, 2017. 2

[31] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G Anderson, and Lubomir Bourdev. Learned
video compression. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3454–3463,
2019. 1

[32] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
SøRen Kaae Sønderby, and Ole Winther. Ladder variational
autoencoders. In D D Lee, M Sugiyama, U V Luxburg, I
Guyon, and R Garnett, editors, Advances in Neural Informa-
tion Processing Systems 29, pages 3738–3746. Curran Asso-
ciates, Inc., 2016. 1, 3

[33] L. Theis, W. Shi, A. Cunningham, and F. Huszr. Lossy im-
age compression with compressive autoencoders. In Inter-
national Conference on Learning Representations, 2017. 1

[34] George Toderici, Sean M O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja, Michele
Covell, and Rahul Sukthankar. Variable Rate Image
Compression with Recurrent Neural Networks. CoRR,
abs/1511.06085, Nov. 2015. 2

[35] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Ko-
ray Kavukcuoglu, Oriol Vinyals, and Alex Graves. Condi-
tional Image Generation with PixelCNN Decoders. In D D
Lee, M Sugiyama, U V Luxburg, I Guyon, and R Garnett,
editors, Advances in Neural Information Processing Systems
29, pages 4790–4798. Curran Associates, Inc., 2016. 3

[36] Aaron van den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. In Advances in Neural Information
Processing Systems, pages 6306–6315, 2017. 1

[37] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 416–431, 2018. 1

[38] Yibo Yang, Robert Bamler, and Stephan Mandt. Variable-
bitrate neural compression via bayesian arithmetic coding.
CoRR, abs/2002.08158, 2020. 2

[39] Yang Yang, Guillaume Sautière, J Jon Ryu, and Taco S Co-
hen. Feedback Recurrent AutoEncoder. 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Nov. 2019. 1

[40] Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Tay-
lor Berg-Kirkpatrick. Improved variational autoencoders for
text modeling using dilated convolutions. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, pages 3881–3890. JMLR. org, 2017. 1, 3

6



A. Supplementary Material
A.1. PSNR Results
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Figure A.1: Rate / PSNR performance for D constrained
optimization and β-VAE.
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Figure A.2: Validation Rate / PSNR performance for D
constrained optimization and β-VAE.
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