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Abstract

Intersection of adversarial learning and satellite image
processing is an emerging field in remote sensing. In this
study, we intend to address synthesis of high resolution
multi-spectral satellite imagery using adversarial learning.
Guided by the discovery of attention mechanism, we regu-
late the process of band synthesis through spatio-spectral
Laplacian attention. Further, we use Wasserstein GAN with
gradient penalty norm to improve training and stability of
adversarial learning. In this regard, we introduce a new
cost function for the discriminator based on spatial atten-
tion and domain adaptation loss. We critically analyze the
qualitative and quantitative results compared with state-
of-the-art methods using widely adopted evaluation met-
rics. Our experiments on datasets of three different sen-
sors, namely LISS-3, LISS-4, and WorldView-2 show that
attention learning performs favorably against state-of-the-
art methods. Using the proposed method we provide an ad-
ditional data product in consistent with existing high reso-
lution bands. Furthermore, we synthesize over 4000 high
resolution scenes covering various terrains to analyze sci-
entific fidelity. At the end, we demonstrate plausible large
scale real world applications of the synthesized band1.

1. Introduction
Attention learning is a human vision inspired algorithm

that automatically attends to relevant attributes of an object.
Despite its remarkable progress [36, 4, 10, 8, 39], neces-
sary attention from remote sensing community has not been
paid towards this particular line of research. In this study,
we intend to take a step in this direction and explore at-
tention in multi-spectral super-resolution. To make the task

1Accepted for publication at Computer Vision and Pattern Recognition
(CVPR) Workshop on Large Scale Computer Vision for Remote Sensing
Imagery.

Figure 1. Paired training data. Source domain consists of (a) high
resolution NIR (R), R (G) and G (B), and (b) a coarser resolu-
tion SWIR band. Target domain contains (c) corresponding high
resolution SWIR band.

relatively more tractable, we formulate the ill-posed super-
resolution problem as multi-spectral band synthesis. As
shown in Figure 1, we aim to synthesize a high resolution
band provided its coarser resolution band and existing high
resolution multi-spectral bands.

Single image super-resolution is a widely explored field
in computer vision. Recent advances in deep neural net-
works show compelling improvement over conventionally
driven approaches on diverse datasets [40, 2, 7, 15]. Among
the early works, Dong et al. [9] proposed SRCNN, which
is the first successful attempt towards employing Convolu-
tional Neural Networks (CNN) in super-resolution. There-
after several innovative methods [19, 35, 20, 44] have
emerged over the years that provided better context and gen-
eralizable representation. Most recently, Anwar et al. [1]
introduced Densely Residual Laplacian Network (DRLN)
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Figure 2. Overall pipeline of the proposed methodology. Both generator and discriminator share similar architecture including number of
RDBs [32]. The Multi-Layer Perceptron (MLP) (here, 3 layers) maps disentangled features to real/fake class.

that achieved state-of-the-art results on benchmark datasets.
Similar to supervised learning, adversarial learning

based super-resolution has obtained impressive results on
multitude of tasks. After the first pioneering work on single
image Super-Resolution using Generative Adversarial Net-
works (SRGAN) [22], many derivatives have emerged [22,
34, 38]. Enhanced Super-Resolution using Generative Ad-
versarial Networks (ESRGAN) [38] employed a relativistic
discriminator [18] along with global residual connections to
allow better gradient flow. Despite inferior Peak Signal to
Noise Ratio (PSNR), the adversarial learning based meth-
ods are shown to achieve higher visual perceptual quality as
reported in copious literature [22, 34, 38, 29].

In remote sensing community, deep learning based sin-
gle image super-resolution is a rapidly evolving field.
Huang et al. [16] used residual learning modules in remote
sensing image super-resolution. Luo et al. [25] designed
CNN based video satellite image super-resolution. Lei et
al. [23] combined global and local features to introduce
high resolution features in a coarser resolution remote sens-
ing image. Beaulieu et al. [6] applied CNN to super-resolve
Sentinel-2 imagery. Recently, Mario et al. [14] proposed
an unsupervised approach to super-resolve remote sensing
images.

Among high resolution band synthesis approaches, La-
naras et al. [21] developed a super-resolution framework
that exploits resolution invariant nature of deep neural net-
works. Further, Rout et al. [33] used global and local
residual learning to fuse spectral and spatial characteris-
tics of concurrent multi-resolution bands in band synthe-
sis. Rangnekar et al. [31] proposed adversarial learning
with L1-penalty to improve the spectral resolution of aerial

imagery. More recently, L. Rout [32] designed an adver-
sarial learning mechanism with expert regularization us-
ing Wasserstein GAN [12] to synthesize a missing band in
multi-spectral images. The authors of [32] demonstrated ef-
ficient gradient flow due to Residual Dense Blocks (RDBs).
While resolution invariant property [21] works well in cer-
tain situations, we argue that it fails to extrapolate the spa-
tial resolution with similar accuracy. In addition, due to sig-
nificant dependency on coarser band, it attributes towards
computational bottleneck as it requires precise cross-sensor
registration during operation. For this reason, we build our
framework on synthesizing SWIR band using existing con-
current high resolution bands. The proposed method does
not directly take coarser resolution band as input. It only
requires a glimpse of the coarse band just to identify rele-
vant parts of the image, which will be discussed in detail
later. Different from [32], we use spatial and Laplacian
spectral channel attention along with two newly introduced
cost functions in adversarial learning. Figure 2 pictorially
depicts our overall framework.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly discuss about the prior methods relevant
to this study. We describe the detailed methodology in Sec-
tion 3, and experimental details with analysis in Section 4.
Finally, we draw concluding remarks in Section 5.

2. Related Work
2.1. Image-to-Image Translation

GANs have been rigorously studied both from theoreti-
cal and application perspective in the last few years. Adver-
sarial learning introduced a concept of continuously evolv-



ing objective function that provides an edge over fixed ob-
jectives. In certain applications [45], where collection of
paired data is very costly, GANs learn a loss that adapts
to the data. In this line of work, Isola et al. [17] used
Conditional GANs, known as (cGAN) in image-to-image
translation. While cGAN learns from paired images, Zhu
et al. [45] designed CycleGAN that learns from unpaired
images. Sangwoo et al. [28] introduced context preserv-
ing loss by using semantic segmentation labels. Though
it preserves background during translation, it has a major
limitation for new applications where semantic labels are
not available. In a loose sense, our work can be charac-
terized as image-to-image translation where source domain
contains composites of existing low resolution bands and
target domain, the paired target band. Our work is more
similar to [17] as we condition the synthesis process on ex-
isting concurrent bands. Since generation of any band is
obviously not acceptable, we follow the common practice
of choosing cGAN. Different from these prior works, we
use global and local residual learning with spatio-spectral
attention in a WGAN framework. In particular, we explore
the efficacy of these methods in multi-spectral satellite im-
ages, which is the primary focus of this study.

2.2. Attention Learning

Attention learning is a mechanism to automatically at-
tend to relevant parts of an image while performing cer-
tain tasks. Inspired by human visual system, attention
mechanism focuses on salient attributes of an object. At-
tention adds an extra layer to the interpretability of deep
neural networks. It improves the performance in various
tasks [4, 10, 8, 39] encouraging further investigation in re-
mote sensing. Zagoruyko et al. [42] demonstrated that the
absolute value of activation of a hidden neuron is propor-
tional to the importance of that neuron in performing a de-
sired task. Mnih et al. [27] proposed a recursive visual at-
tention model that processed sequence of regions at a high
resolution. Wang et al. [37] used residual attention for im-
age classification.

Among generative models, Zhang et al. [43] designed
Self-Attention GAN (SAGAN) that incorporated attention
in the process of image generation. Emami et al. [10]
showed the benefits of using spatial attention from the dis-
criminator. In DRLN [1], the authors added an extra layer
in channel attention by introducing Laplacian pyramid. De-
spite increasing popularity of attention learning, necessary
attention has not been paid explicitly towards this line of re-
search in the remote sensing community. As a step towards
achieving this goal, Bastidas et al. [5] proposed Channel
Attention Network (CAN) that used soft attention in multi-
spectral semantic segmentation. In this study, we take a step
further to explore the plausible usage of spatial and Lapla-
cian spectral (channel) attention in band synthesis. We in-

corporate these attention modules in WGAN with gradient
penalty. In addition, we introduce spatial attention and do-
main adaptation loss for efficient learning.

3. Methodology
Following the notations from [32], let z1 ∼ PG, z2 ∼

PR, z3 ∼ PNIR, and x ∼ PSWIR, where PG, PR,
PNIR, and PSWIR represent the distribution ofG,R,NIR,
and SWIR, respectively. The source domain consists of
samples from the joint distribution PS(z1, z2, z3), where
zi ∈ RM×N , i = 1, 2, 3. The generator, G operates
on conditional input, z ∼ PS and spatial attention map,
As ∈ RM×N from the discriminator,D. Let x̂ ∼ Px̂, where
x̂ = G(z,As) and Px̂ denotes the generator distribution.
The discriminator classifies x ∼ Px and x̂ to real and fake
categories, respectively. Here, Px denotes the target distri-
bution, PSWIR. The expert system has access to samples
from target domain that correspond to the physical land-
scape of identical samples in source domain. Let y ∼ Py

represents the corresponding target sample in SWIR band.
To study the impact of attention mechanisms, we build on
top of the baseline architecture as developed in [32]. The
overall pipeline is shown in Figure 2.

3.1. Adversarial Loss

After the discovery of GANs by Goodfellow et al. [11],
several variants of adversarial networks have been pro-
posed [26, 30, 3, 12]. In this study, we focus on Wasser-
stein GANs with gradient penalty due to its ability to cap-
ture difficult-to-learn latent patterns [12]. Thus, the min-
max objective function of WGAN+GP adapted to current
setting is given by

min
G

max
D

Ex∼Px
[D (x)]− Ex̂∼Px̂

[D (x̂)]

− λ Ex̃∼Px̃

[
(‖∇x̃D (x̃)‖2 − 1)

2
]
,

(1)

where Px̃ denotes the distribution of samples along the line
of samples from Px and Px̂. In [12], the authors argue that
such gradient penalty is sufficient to maintain stability dur-
ing training. Also, it broadens the hypothesis space that can
be approximated by this estimator.

3.2. Spatial Attention from Discriminator

The spatial attention map from the discriminator ensures
that the generator focuses on relevant parts of the input im-
ages during domain-to-domain translation. Since discrimi-
nator classifies images into real or fake categories, evidently
it captures discriminative features in latent space. Thus,
identification of these regions serves as spatial attention that
can assist a generator to focus its attention.

We follow activation-based attention transfer as de-
scribed by Zagoruyko et al. [42]. Similar to transferring



attention of a teacher CNN to a student CNN, we trans-
fer knowledge of the discriminator to the generator through
spatial attention maps. In [10], the authors use normalized
spatial attention maps from the discriminator to transfer do-
main specific features. However, in the context of super-
resolution, or band synthesis such a straight forward imple-
mentation might not be adequate. A main reason could be
the absence of high-resolution bands in the target domain.
For this reason, we introduce a notion of spatial attention
loss and cross-resolution attention transfer during training.

Formally, D consists of two branches: a functional
branch to classify an image as real or fake,Drf : RM×N →
R and a computational branch to estimate its spatial atten-
tion, Ds : RM×N → [0, 1]M×N . For K RDBs and C spec-
tral channels in the output of each RDB, letAi ∈ RM×N×C

denote the activation maps after ith RDB. Since different
layers focus on different features, we extract K attention
maps from various layers in the latent space. Finally, we
estimate the attention coefficients as:

As(x) = N (Ds(x)) ,

Ds(x) =

K∑
i=1

N

 C∑
j=1

|Aij(x)|

 ,
(2)

where N (.) normalizes inputs to [0,1] range. In super-
resolution, we usually do not have high resolution samples
in the target domain unlike image-to-image translation. For
this reason, we use upsampled coarse resolution image to
compute the attention maps. Also, the geometric fidelity
and band-to-band registration are ensured by taking into ac-
count the importance of each neuron at every pixel loca-
tion. This is asserted by global skip connection and nor-
malization of activation maps in the latent space. The atten-
tion map and conditional input from source domain are then
passed to the generator.

3.2.1 Spatial Attention Loss

In addition, we introduce an additional loss to ensure that
discriminator attends to similar regions in both real and fake
images while classifying them into real and fake class, re-
spectively. This penalizes the discriminator for attending
to different locations in real and fake images. Thereby, the
discriminator learns to transfer both low and high level se-
mantics of target band. We define the spatial attention loss
as

Lsa = Ex̂∼Px̂,y∼Py

[
‖As(x̂)−As(y)‖22

]
. (3)

3.2.2 Domain Adaptation Loss

Due to the absence of high resolution band in testing phase,
the discriminator is expected to predict relevant parts based

on existing coarse resolution band. By domain adaptation
loss, we enforce the discriminator to mimic the spatial atten-
tion map of actual high resolution band provided an upsam-
pled low resolution band. Thus, the discriminator captures
domain specific features so as to sharpen the spatial atten-
tion map which was obtained using blurry target band. The
domain adaptation loss is defined by

Lda = Eỹ∼Pỹ,y∼Py

[
‖As(ỹ)−As(y)‖22

]
, (4)

where Pỹ denotes the distribution of upsampled coarse res-
olution band.

3.3. Spectral Attention from Generator

To equip the generator with tools so that it can attend
to relevant spectral channels, we employ Laplacian channel
attention after every RDB. The sparse channel coefficients
learned by generator suggest that spectral attention unit au-
tomatically eliminates the noisy spectral channels in latent
space. For K RDBs and C spectral channels in each RDB,
let Fi ∈ RM×N×C denote the feature maps after ith RDB.
First, we apply global average pooling to reduce spatial di-
mension while preserving spectral dimension, i.e., M = 1
and N = 1. By convolution with kernel size (3,3), padding
(1,1), and dilation rate of 3, 5 and 7, we construct Lapla-
cian pyramid to reduce channel dimension by a factor of
16. We then concatenate the pyramidal features in channel
dimension, and apply convolution with kernel size (3,3) and
padding (1,1) to generate spectral channel attention coeffi-
cients, Ac(Fi) ∈ R1×1×C . Thus, the importance of each
channel in latent space is estimated automatically for effi-
cient band-to-band synthesis. Finally, each feature map is
modulated by Fi � Ac(Fi) before being passed as an input
to the next RDB. Figure 2 shows spectral attention as a part
of the overall framework.

3.3.1 Pixel Loss

To make images more realistic in the target domain, a gen-
erator can synthesize many images satisfying this crite-
ria. However, these images may not represent the physical
landscape pertaining to the input image in source domain.
Therefore, to ensure faithful generation, we regularize the
objective function of generator with a pixel loss. Further,
we pretrain the generator for few epochs (here, 2) using
pixel loss before adversarial training. This offers faster con-
vergence and minimal empirical risk as argued in [32]. The
pixel loss used in this framework is given by

Lp = Ez∼Ps,ỹ∼Pỹ,y∼Py

[
‖G (z,As(ỹ))− y‖22

]
. (5)

It is worth mentioning that the generator learns to focus on
relevant parts of the source image, z by attending to upsam-
pled coarse resolution band, As(ỹ). By domain adaptation



Figure 3. Spatial attention maps from various discriminators. (a)
Paired Images in source and target domain. Attention maps from
(b) S2A-v1 (c) S2A-v2, and (d) S2A-v3. Encoder and final atten-
tion maps are shown in upper and lower row, respectively.

loss, the discriminator makes As(ỹ) close to As(y), which
consequently improves the performance of the generator.

3.4. Total Loss

Here, we consolidate the min-max objectives of genera-
tor and discriminator in adversarial setting. After incorpo-
rating the aforementioned losses, the final objective fuction
of the discriminator becomes

min
D

Ex̂∼Px̂
[D (x̂)]− Ex∼Px

[D (x)]

+ λgpEx̃∼Px̃

[
(‖∇x̃D (x̃)‖2 − 1)

2
]

+ λsaLsa + λdaLda,

(6)

where λgp, λsa, and λda represent the weights assigned to
gradient penalty, spatial attention, and domain adaptation
loss, respectively. Similarly, the objective function of the
generator is given by

min
G
− Ez∼Ps,ỹ∼Pỹ

[D (G (z,As(ỹ)))]

+ λpEz∼Ps,ỹ∼Pỹ,y∼Py

[
‖G (z,As(ỹ))− y‖22

]
,

(7)

where λp represents the weight assigned to pixel loss.

4. Experiments
In this section, we provide detailed description of our

experiments to critically analyze the efficacy of proposed
methodology.

4.1. Datasets and Study Area

We use Indian Remote Sensing (IRS) satellite
Resourcesat-2A (R2A) and WorldView-2 (WV-2) data
in the development process. The training data consists
of 32193 crops of size (64,64) which include various
signatures, such as vegetation, inland water, ocean, land,
mountain, road, urban area, and cloud. We use 5682
crops for 1-fold cross validation during training. In the
initial phase, we test on Linear Imaging and Self-Scanning
Sensor-3 (LISS-3) onboard Resourcesat-2A, which has a

Figure 4. Comparison between element-wise multiplication and
concatenation of spatial attention map (contrast stretched).

Ground Sampling Distance (GSD) 24m. In this case, the
testing data contains 19050 crops which include most of
the aforementioned features. Also, the model is tested
on multi-sensor and multi-resolution datasets of LISS-4
(GSD=6m) and WV-2 (GSD=1.84m) despite fully trained
on LISS-3. We test on 101023 crops of LISS-4 and
16510 crops of WV-2. For seamless band synthesis, we
use overlapping patches of stride (16,16) and stitch them
together using Gaussian feather mosaic [33]. Though the
model is trained on LISS-3 over Indian territory, we test on
a completely isolated physical landscape, Washington in
order to study its ability to generalize. Overall, we analyze
its performance on multi-temporal, multi-resolution, and
multi-sensor datasets.

4.2. Implementation Details

Here, we provide necessary details to reproduce the re-
sults reported in this paper. All the experiments are con-
ducted under identical setup. Both generator and discrim-
inator share similar architecture. The encoder and decoder
consist of two convolution layers each. We use (3,3) con-
volutional kernels everywhere except in global skip con-
nection, where (1,1) kernel is used. In channel attention
module, the final convolution layer uses sigmoid activation.
The MLP in discriminator has 3 linear layers with leaky
ReLU activation. The output linear layer in MLP does not
use any activation. There are 6 RDBs [32] in the trans-
former block of both generator and discriminator. Each
RDB uses 128 convolutional kernels, i.e., C = 128 and
ReLU activations. We use ADAM optimizer with fixed
learning rate 0.0001. During adversarial learning, we up-
date critic once for every single update in the generator. We
set λgp = 10, λsa = 0.1, λda = 0.1, and λp = 100. The
entire framework is developed using PyTorch.

4.3. Ablation Study

In this section, we analyze various spatial attention con-
figurations to address the problem under study. First, we
focus on the spatial attention maps from discriminator. As
shown in Figure 2, we extract individual attention maps af-
ter encoder, RDBs, and decoder of the discriminator. For
conciseness, we focus on the final attention map and the
map after encoder. In S2A-v1 and S2A-v2, the attention
maps are computed by equation (8) and equation (9), re-



Figure 5. Analysis of multi-temporal LISS-3 SWIR band (better viewed at 200%). Band combination used in visualization: SWIR (R),
NIR (G), R (B), and corresponding SWIR (gray). Best approach is highlighted in bold font.

Figure 6. Analysis of multi-resolution (4x) LISS-4 SWIR band
synthesis (better viewed at 300%). Band combination: SWIR (R),
NIR (G), R (B), and corresponding SWIR (gray).

spectively. Here, σ(.) represents sigmoid activation.

As(x) = σ

 K∑
i=1

 C∑
j=1

|Aij(x)|

 (8)

As(x) = σ

 K∑
i=1

σ

 C∑
j=1

|Aij(x)|

 (9)

The proposed attention maps are computed using equa-
tion (2). As shown in Figure 3, the final attention map of
S2A-v1 is saturated even though it attends to relevant parts

in the latent space. Also, we observe similar phenomena
in S2A-v2 where both latent and final attention maps lack
identifiable relevant parts. Contrary to that S2A-v3 captures
relevant information in all the attention maps. To prevent
attention maps from saturating while attending to essential
attributes, we normalize individual feature maps in S2A-v3
by minimum subtraction and maximum division, which is
denoted by operator N in equation (2).

Further, we study the impact of multiplying spatial at-
tention map with source image as opposed to concatenating
them in the context of multi-spectral band synthesis. As
shown in Figure 4, concatenation results in superior image
quality in terms of SRE [21] and SSIM as compared to mul-
tiplication. The underlying hypothesis is that due to dom-
inance of brighter targets, such as cloud, the element-wise
multiplication based spatial attention latches on to these ob-
jects in a patch. For this reason, we observe blocky arti-
facts around high reflecting targets. On the other hand, the
concatenation based spatial attention does not suffer from
this issue as the original input is still preserved in one of
the dimensions. This is evident from Figure 4 where each
neighborhood of cloudy targets incurs blocky artifacts.

4.4. Quantitative Analysis

Here, we quantitatively analyze the quality of synthe-
sized band. Following the state-of-the-art methods in multi-
spectral band synthesis [31, 21, 33, 32], we use RMSE,
SSIM, SRE [21], PSNR, and SAM [41] as our evaluation
metrics. As reported by Lanaras et al. [21], SRE is pre-
ferred over PSNR to analyse the quality of a satellite image
due to its high dynamic range. The proposed method out-
performs state-of-the-art methods in terms of RMSE, SSIM,



Method RMSE SSIM(%) SRE(dB) PSNR(dB) SAM(deg)
AeroGAN [31] 21.62 86.03 44.62 36.50 12.15
DSen2 [21] 14.14 93.85 50.04 41.94 7.88
DeepSWIR [33] 13.75 94.02 50.35 42.27 7.66
ALERT [32] 12.97 94.54 50.81 42.80 7.48
S2A (ours) 11.74 95.08 50.83 42.76 6.87

Table 1. Quantitative analysis on LISS-3. First, second and third
methods are highlighted as red, green and blue, respectively.

Figure 7. Analysis of multi-sensor (12x) WV-2 SWIR synthesis
(Target domain: synthesized SWIR (R), NIR (G) and R (B)).

SRE, and SAM index, as given in Table 1. Though there is
minor degradation in terms of PSNR, we observe slight im-
provement in SRE which is a more reliable metric in satel-
lite image processing [21]. Further, the percentage improve-
ment of S2A over ALERT is as high as 9.4% in RMSE and
8.1% in SAM. The improvement over baseline is consid-
erable given the fact that there exists similar gain between
second and third best approach in the dataset under study.

4.5. Qualitative Analysis

4.5.1 Multi-Temporal

Though the training data is acquired on Apr 07, 2018 and
Jan 19, 2018, it is interesting to see how well the trained
model generalizes to a scene acquired at a different time,
Nov 17, 2017. Particularly intriguing is the phenomena
of inverting features pre- and post-monsoon. As a conse-
quence most of the static methods that do not use concur-
rent coarse resolution band [31, 33, 32] fail to capture these
dynamic relationships. Moreover, the proposed S2A gen-
eralizes reasonably well to multi-temporal data due to the
use of attention map, as shown in Figure 5. In this scenario,
S2A captures certain radiometric information through spa-
tial attention map from discriminator which has access to
the concurrent coarse resolution band.

4.5.2 Multi-Resolution

Though DSen2 [21] also uses concurrent coarse resolution
SWIR, it is not efficient in extrapolating across multiple res-
olutions. To put more succinctly, we super-resolve LISS-3
SWIR to LISS-4 resolution (4x) using proposed S2A and

Figure 8. Spatial attention maps in multi-sensor band synthesis.

DSen2 [21]. While DSen2 relies heavily on the actual LISS-
3 SWIR band, S2A uses it just to get a glimpse of relevant
parts of a scene. Over dependency of DSen2 on LISS-3
SWIR results in blurry edges as can be inferred from Fig-
ure 6(a). One can find shades of different colors, e.g., pink-
ish at these blurry edges even though all bands are registered
properly. By looking at other edges it can be inferred that
the shades are not due to mis-registration, but mainly due to
inherent blur in band synthesis using DSen2 [21]. However,
S2A synthesizes sharper SWIR due to careful combination
of existing high resolution bands of LISS-4 and spatial at-
tention map from coarse resolution SWIR of LISS-3.

4.5.3 Multi-Sensor

To this end, we analyzed the performance on LISS-3 and
LISS-4 imagery onboard R2A. However, to understand how
well the proposed model generalizes to very high resolu-
tion images over a completely different physical landscape,
we intend to synthesize SWIR at the resolution of WV-2,
i.e, 1.84m GSD. Even in the absence of coarse-resolution
SWIR in WV-2, S2A can synthesize it at the resolution
of existing multi-spectral bands. While the availability of
coarse resolution band benefits super-resolution (ref. Fig-
ure 5), it certainly is not a limiting factor in the context of
band synthesis. This is illustrated in Figure 7 where high
resolution SWIR synthesized by both S2A and ALERT are
comparable qualitatively. Note that ALERT does not re-
quire coarse SWIR as it is a purely band-to-band translation
approach. If the proposed model were over dependent on
coarse SWIR, it would have produced a band similar to NIR
which was used to extract spatial attention map in the ab-
sence of low resolution SWIR. But clearly S2A synthesized
a band which is more like SWIR and less like NIR as evi-
dent from Figure 7. The mere fact that the false color com-
posite containing synthesized SWIR is similar to ALERT



Figure 9. Wetland boundary detection using synthesized high res-
olution SWIR (Red) and existing high resolution NIR (Blue).

Method AeroGAN [31] DSen2 [21] DeepSWIR [33] ALERT [32] S2A (ours)
IoU 97.181 98.891 98.853 99.066 99.117

Table 2. Quantitative comparison of MNDWI. S2A performs fa-
vorably against state-of-the-art methods.

supports this hypothesis. In Figure 8, we show that the
model attends to relevant attributes during synthesis of WV-
2 SWIR at 1.84m GSD.

4.6. Application of Synthesized Band

Wetland Delineation: A potential application of syn-
thesized high resolution SWIR band is found in wetland de-
lineation. Due to very low reflectance in the SWIR part of
the spectrum, it can be beneficial in segregating wetland re-
sources. Since wetland delineation is not the primary focus
of this study, we use a naive thresholding approach to map
wetlands. As shown in Figure 9, synthesized SWIR band
successfully delineates majority of wetlands including dif-
ficult to identify narrow wetlands. On the contrary, the use
of NIR at the resolution of SWIR finds many false positives.
It is to be noted that absorption due to water molecules is an
inherent property of SWIR band. However, the absence of
highly spatially resolved SWIR is a major issue in such ap-
plications. In this study, we merely provided a mechanism
to super-resolve multi-spectral band that is shown to pre-
serve required spectral characteristics.

Modified Normalized Difference Water Index
(MNDWI): In order to assess the scientific fidelity of
super-resolved band, we analyze the MNDWI [13] metric
of various methods using equation (10). To quantify the
results, we rely on Intersection over Union (IoU) measure
commonly used in semantic segmentation [24].

MNDWI =
G− SWIR

G+ SWIR
(10)

After quantitatively analyzing the IoU measure in Ta-
ble 2, we compare MNDWI maps of Ground Truth (GT)
and S2A qualitatively in Figure 10. Among the compared
methods, S2A achieves state-of-the-art result.

Value Added Product: Using the proposed methodol-
ogy we synthesize SWIR at 5m GSD for approximately
4000 LISS-4 scenes covering various target attributes. Fig-
ure 11 illustrates the false color composite over Indian land
terrains. It is to be noted that the merged products include

Figure 10. Qualitative comparison of MNDWI.

Figure 11. Large area mosaic of synthesized SWIR (R), NIR (G),
and R (B) without relative radiometric normalization. Highlighted
portions include hilly, desert, main land, and coastal region over
Indian land terrains (stretched for visualization).

multi-temporal scenes that may appear as radiometric im-
balance in the absence of normalization. To preserve scien-
tific fidelity, we show various land terrains without normal-
ization in Figure 11.

5. Conclusion

In this study, we primarily focused on spatial and spec-
tral attention with respect to multi-spectral band synthesis.
We formulated the ill-posed super-resolution problem as
conditional band synthesis, and explored various state-of-
the-art methods in this regard. In the process, we developed
a WGAN based adversarial framework encapsulating spa-
tial and Laplacian spectral channel attention. Further, we
introduced two new cost functions, namely spatial atten-
tion loss and domain adaptation loss to improve scientific
fidelity in the context of multi-spectral band synthesis. In
addition, we critically analyzed the qualitative and quanti-
tative results among the compared methods. Our experi-
ments on three different satellite imagery: LISS-3, LISS-4,
and WorldView-2 over isolated physical landscape demon-
strated generalization ability of the proposed method. Fi-
nally, we discussed several real world applications of the
synthesized band that include wetland delineation, water
masking, and additional value product generation. Based
on our experiments, we report favorable results in multi-
spectral high resolution band synthesis. Though we show-
cased the efficacy of spatial attention and domain adaptation
loss in remote sensing, we believe these methods can also
be employed in non-remote sensing imagery. We defer dis-
cussion on these questions to future work.
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