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Marcus Valtonen Örnhag1 Carl Olsson1,2 Anders Heyden1

1Centre for Mathematical Sciences
Lund University

2Department of Electrical Engineering
Chalmers University of Technology

{marcusv,calle,heyden}@math.lth.se

Abstract

Low rank approximation is a commonly occurring prob-
lem in many computer vision and machine learning applica-
tions. There are two common ways of optimizing the result-
ing models. Either the set of matrices with a given rank can
be explicitly parametrized using a bilinear factorization, or
low rank can be implicitly enforced using regularization
terms penalizing non-zero singular values. While the for-
mer approach results in differentiable problems that can be
efficiently optimized using local quadratic approximation,
the latter is typically not differentiable (sometimes even dis-
continuous) and requires first order subgradient or splitting
methods. It is well known that gradient based methods ex-
hibit slow convergence for ill-conditioned problems.

In this paper we show how many non-differentiable reg-
ularization methods can be reformulated into smooth ob-
jectives using bilinear parameterization. This allows us to
use standard second order methods, such as Levenberg–
Marquardt (LM) and Variable Projection (VarPro), to
achieve accurate solutions for ill-conditioned cases. We
show on several real and synthetic experiments that our sec-
ond order formulation converges to substantially more ac-
curate solutions than competing state-of-the-art methods.

1. Introduction
Low rank models have been applied to numerous vision

applications ranging from high level shape and deformation
to pixel appearance models [49, 6, 53, 23, 2, 22, 51, 11].
When the sought rank is known, a commonly occurring for-
mulation is the least squares minimization

min
rank(X)≤r

‖AX − b‖2, (1)

where A : Rm×n → Rp is a linear operator, and ‖ · ‖ is
the standard Euclidean vector norm. In general, this is a
difficult non-convex problem and some versions are even
known to be NP-hard [27]. In structure from motion, a pop-

ular approach [7] is to optimize over a bilinear factorization
X = BCT , where B is m× r and C is n× r, and solve

min
B,C
‖ABCT − b‖2. (2)

Since the rank is bounded by the number of columns in B
and C this approach explicitly parametrizes the set of ma-
trices of rank r. While bilinear approaches often perform
well [31, 16] they can have local minima [7]. Recent works
[31, 32, 33, 35] have, however, shown that properly imple-
mented, LM and VarPro approaches are remarkably robust
to local minima, achieve quadratic convergence and give
impressive reconstruction results. Recently [25, 3, 24] was
able to give conditions which guarantee that there are no
”spurious” local minimizers (meaning that all local mini-
mizers are close to or identical to the global solution). They
use the notion of restricted isometry property (RIP) [46]
which assumes that the operator A fulfills

(1− δr)‖X‖2F ≤ ‖AX‖2 ≤ (1 + δr)‖X‖2F , (3)

with 0 ≤ δr < 1, if rank(X) ≤ r. If the isometry con-
stant δr is sufficiently small [25, 24, 3] prove that every lo-
cal minimizer is optimal (or near optimal). Similarly, for
the matrix completion problem [24] showed that there are
no spurious local minima under uniformly distributed miss-
ing data. While the above theoretical assumptions generally
do not hold for computer vision problems such as structure
from motion, these results still give some intuition as to why
bilinear parameterization often works well.

An alternative approach is to optimize directly over the
entries of X and enforce low rank using regularization
terms. Applying a robust function f to the singular val-
ues σi(X) = 1, . . . , N = min(m,n) results in a low-rank
inducing objective

min
X
R(X) + ‖AX − b‖2, (4)

where R(X) =
∑N
i=1 f(σi(X)). Besides controlling the

rank of the solution the generality of the function f offers
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increased modeling capability compared to (1) and can for
example be used to add priors on the size of the non-zero
singular values.

The most popular regularization approach is undoubt-
edly the nuclear norm, f(σi(X)) = σi(X), due to its con-
vexity [18, 46, 45, 9, 10]. Under the RIP assumption ex-
act or approximate recovery with the nuclear norm can then
be guaranteed [46, 10]. On the other hand, since it penal-
izes large singular values, it suffers from a shrinking bias
[8, 11, 36]. Ideally f should penalize small singular values
(assumed to stem from measurement noise) harder than the
large ones. Therefore non-increasing derivatives on [0,∞),
or concavity, has been shown to give stronger relaxations
[44, 39, 34, 41, 12, 48, 28]. These non-convex formulations
usually only come with local convergence guarantees. Two
exceptions are [36, 42] which gave optimality guarantees
for (4) with f = fµ as in (8).

The regularization term is generally not differentiable
as a function of X . Thus, optimization methods based
on local quadratic approximation become infeasible. Fig-
ure 1 gives a simple illustration on a 1-dimensional exam-
ple of how non-differentiability occurs at the origin. In ad-
dition it is well known that the singular values become non-
differentiable functions of the matrix elements when they
are non distinct. To circumvent these issues subgradient and
splitting methods are often employed [12, 48, 28, 40, 36]. It
is well known from basic optimization theory (e.g. [5]) that
gradient based methods exhibit slow convergence for ill-
conditioned problems. It has also been observed (e.g. [4])
that splitting methods rapidly reduce the objective value the
first couple of iterations, while convergence to the exact so-
lution can be slow. In this paper we show that there are com-
puter vision problems where these approaches make very
little improvements at all, returning a solution that is far
from optimal. In contrast, bilinear formulations with either
LM or VarPro can be made to yield accurate results in few
iterations [31].

An alternative approach that unifies bilinear parameteri-
zation with regularization approaches is based on the obser-
vation [46] that the nuclear norm ‖X‖∗ of a matrix X can
be expressed as ‖X‖∗ = minBCT =X

‖B‖2F +‖C‖2F
2 . Thus

when f(σi(X)) = µσi(X), where µ is a scalar controlling
the strength of the regularization, optimization of (4) can be
formulated as

min
B,C

µ
‖B‖2F + ‖C‖2F

2
+ ‖ABCT − b‖2. (5)

Optimizing directly over the factors has the advantages that
the number of variables is much smaller and one may add
constraints if a particular factorization is sought. Surpris-
ingly, while (5) is non-convex, using the convexity of the
underlying regularization problem (4) it can be shown that
any local minimizer B,C with rank(BCT ) < k, where k

is the number of columns in B and C, is globally optimal
[1, 29]. Additionally, the objective function is two times
differentiable and second order methods can be employed.

In this paper we develop new regularizing terms that,
similar to (5), work on the bilinear factors. However,
in contrast to previous approaches we investigate formu-
lations that exhibit less shrinking bias and go beyond
convex penalties. Specifically, we prove that R(X) =
minX=BCT R̃(B,C), where

R̃(B,C) =

k∑
i=1

f

(
‖Bi‖2 + ‖Ci‖2

2

)
, (6)

k is the number of columns, and Bi and Ci are the i:th
columns of B and C, respectively. The result holds for a
general class of concave penalty functions f , a few of which
are illustrated in Figure 1. In view of the above result, we
propose to minimize

R̃(B,C) + ‖ABCT − b‖2. (7)

Rather than resorting to splitting or subgradient methods
we present an algorithm that uses a quadratic approxima-
tion of the objective. Under the assumption that f is dif-
ferentiable, we show that our quadratic approximation re-
duces to a weighted version of (5) to which we can apply
VarPro. We show on several computer vision problems that
our approach outperforms state-of-the-art methods such as
[47, 12, 48, 28, 4].

While our problem is non-convex (both in theX parame-
terization (4) and in theB,C parameterization (7)) we show
that in some cases it is still possible to give global optimality
guarantees. Building on the results of [42] we characterize
the local minima of the new formulation with the choice

f(x) = fµ(x) := µ−max(
√
µ− x, 0)2. (8)

Specifically, for this choice, we give conditions that ensure
that when a RIP constraint [46] holds a local minimizer of
(7) is a global solution of both

min
rank(X)≤r

R(X) + ‖AX − b‖2, (9)

whereR(X) =
∑
i fµ(σi(X)), and

min
rank(X)≤r

µrank(X) + ‖AX − b‖2. (10)

In summary our main contributions are:

• A new stronger non-convex regularization term for bi-
linear parameterizations with less/no shrinking bias.

• A new iteratively reweighed VarPro algorithm optimiz-
ing accurate quadratic approximations.



SCAD [17]: Log [20]: MCP [54]: ETP [21]: Geman [26]:

Figure 1. A few commonly occurring robust penalties of the form f(σ), with σ ∈ [0,∞) and f differentiable everywhere (blue graph).
The green dashed graph shows how non-differentiability occurs at the origin when applying the penalty to a 1 × 1 matrix x ∈ R. In this
case σ(x) = |x| and therefore f(σ(x)) = f(|x|). Note also that (8) is a special case of MCP.

• Theoretical conditions that guarantee optimal recovery
under the RIP constraint.

• An experimental evaluation that shows that our meth-
ods outperforms state-of-the-art methods on several
real computer vision problems.

1.1. Related Work

Our work is very much inspired by a recent series of pa-
pers by Hong et al. [31, 32, 33, 35] which show that bi-
linear formulations can be made remarkably robust to local
minima, and achieve impressive reconstruction results for
uncalibrated structure from motion problems, using the so
called VarPro method. Our work represents an attempt to
unify this line of work with regularization based alterna-
tives, leveraging the benefits of them both.

An approach that is closely related to ours is that of [8]
which uses (5) to unify the use of a regularized objective and
factorization. They show that if the obtained solution has
lower rank than its number of columns it is globally optimal.
In practice [8] observes that the shrinking bias of the nuclear
norm makes it too weak to enforce a low rank when the data
is noisy. Therefore, a “continuation” approach where the
size of the factorization is gradually reduced is proposed.
While this yields solutions with lower rank, the optimality
guarantees no longer apply.

Bach et al. [1] showed that

‖X‖s,t := min
X=BCT

k∑
i=1

‖Bi‖2s + ‖Ci‖2t
2

, (11)

is convex for any choice of vector norms ‖ · ‖s and ‖ · ‖t.
In [29] it was shown that a more general class of 2-
homogeneous factor penalties result in a convex regulariza-
tion similar to (11). The property that a local minimizer B,
C with rank(BCT ) < k, is also extended to this case. Still,
because of convexity, it is clear that these formulations will
suffer from a similar shrinking bias as the nuclear norm.
Shang et al. [47] showed that penalization with the Schat-

ten semi-norms ‖X‖q = q

√∑N
i=1 σi(X)q , for q = 1/2 and

2/3, can be achieved using a convex penalty on the factors

B and C. A generalization to general values of q is given
in [52]. While this reduces shrinking bias to some extent, it
results in a non-differentiable and non-convex formulation
that is optimized with ADMM.

It is important to note that many of the above methods
that are considered state-of-the-art have been developed for
low level vision tasks such as image denoising, inpaint-
ing, alignment and background subtraction. The ground
truth for these models are often of higher rank than mod-
els in e.g. structure from motion, making it possible to ob-
tain good results with weaker regularization. Additionally,
as we will see in the experiments, more difficult data terms
prevent rapid convergence of the splitting methods they of-
ten employ.

2. Non-Convex Penalties and Shrinking Bias

In this section we will show how to formulate regulariza-
tion terms of the type

R(X) =

N∑
i=1

f(σi(X)), (12)

by penalizing the factors of the factorization X = BCT .
We assume thatB and C have k columns, making σi(X) =
0 if i > k and rank(X) ≤ k. Note, however, that we
are aiming to achieve a lower rank using the regularization
term. In many applications, the sought rank is unknown and
should be determined by the regularization. We therefore
set k large enough not to exclude the optimal solution. As
we shall see in Section 3, this ability to over-parameterize
can be used to ensure optimality.

Theorem 1. If f is concave, non-decreasing on [0,∞) and
f(0) = 0 then

R(X) = min
BCT =X

k∑
i=1

f(‖Bi‖‖Ci‖), (13)

where Bi and Ci, i = 1, ..., k are the columns of B and C
respectively.



Proof. The result is a consequence of the fact that R will
fulfill a triangle inequality R(X + Y ) ≤ R(X) + R(Y )
under the assumptions on f . This is clear from Theorem 4.4
in [50] which shows that

N∑
i=1

f(σi(X + Y )) ≤
N∑
i=1

(f(σi(X)) +

N∑
i=1

f(σi(Y ))).

(14)
Applying this to X = BCT =

∑k
i=1BiC

T
i we see that

R(X) = R(

k∑
i=1

BiC
T
i ) ≤

k∑
i=1

R(BiC
T
i ). (15)

Since rank(BiC
T
i ) = 1 we also have

R(BiC
T
i ) = f(σ1(BiC

T
i )) = f(‖BiCTi ‖F ). (16)

Lastly, since ‖BiCTi ‖F = ‖Bi‖‖Ci‖ we get

R(X) ≤
k∑
i=1

f(‖Bi‖‖Ci‖). (17)

To see that equality can be achieved, let Bi =
√
σi(X)Ui

and Ci =
√
σi(X)Vi, where X =

∑k
i=1 σi(X)UiV

T
i is

the SVD of X . Then, BCT = X and f(‖Bi‖‖Ci‖) =
f(σi(X)).

While the above result allows optimization over the fac-
tors B and C we note that it yields an objective that is non-
differentiable at ‖Bi‖‖Ci‖ = 0. Next we reformulate the
objective to achieve a differentiable problem formulation.

Corollary 1. Under the assumptions of Theorem 1, it fol-
lows thatR(X) = minX=BCT R̃(B,C), where

R̃(B,C) =

k∑
i=1

f

(
‖Bi‖2 + ‖Ci‖2

2

)
. (18)

If f is differentiable then R̃(B,C) is also differentiable.

Proof. By the rule of arithmetic and geometric means

‖Bi‖‖Ci‖ ≤
1

2
(‖Bi‖2 + ‖Ci‖2), (19)

with equality if ‖Bi‖ = ‖Ci‖ which is achieved when
Bi =

√
σi(X)Ui and Ci =

√
σi(X)Vi. Since f is as-

sumed to be non-decreasing, it follows from (13), that
R(X) = minX=BCT R̃(B,C). The differentiability of
R̃(B,C) is now trivially checked using the chain rule.

We are particularly interested in the case (8) since, with
this choice, it is known that the global minimizer of (4) is
the same as that of µrank(X)+‖AX−b‖2 if ‖A‖ < 1, see
[13] for a proof. Note that fµ is a special case of the MCP
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Figure 2. Singular values obtained when minimizing ‖X −X0‖2F
with the four regularizers R(X) with f = fµ, ‖X‖1/21/2, ‖X‖2/32/3

and ‖X‖∗. Large singular values are left unchanged byR.

class [54]. With this choice R̃(B,C) is differentiable and
the second derivatives are also defined almost everywhere
except in the transition ‖Bi‖2+‖Ci‖2

2 =
√
µ where the func-

tion switches from quadratic to constant.
We conclude this section by comparing the shrinking

bias of our approach and three others that can also be op-
timized over the factorization. Theorem 1 makes it possi-
ble to compute the global optimizer of R̃(B,C)+‖BCT −
X0‖2F since the equivalent problemR(X)+‖X−X0‖2F has
closed form solution in the X-parameterization. It is shown
in [36] that with f = fµ the solution is obtained by thresh-
olding the singular values at

√
µ. Similarly, closed form

solutions are also available when regularizing ‖X −X0‖2F
with ‖ · ‖1/2, ‖ · ‖2/3 and ‖ · ‖∗ [47]. In Figure 2 we show
the singular values obtained when regularizing ‖X−X0‖2F
with these four options, and for comparison the singular val-
ues of X0. For all methods we have selected regularization
weights as small as possible so that the five smallest singu-
lar values are completely suppressed, which minimizes the
bias. While all choices, except R, subtract a part from the
singular values that should be retained, the Schatten norms
reduce the bias significantly compared to the nuclear norm.
For the Schatten norms the bias is larger for singular val-
ues that are close to the threshold since the derivative of
σq , 0 < q < 1, decreases with increasing σ. For problem
instances where there is a clear separation in size between
singular values that should be retained and those that should
be suppressed, it is likely that this can be done with negligi-
ble bias. Since f ′µ(σ) = 0 when σ ≥ √µ this method does
not affect the first five singular values.

3. Overparameterization and Optimality
The results of the previous section show that a global

optimizer (B,C) of (7) gives a solution BCT which is
globally optimal in (4). On the other hand, optimizing (7)
over B and C introduces additional stationary points, due



Table 1. Distance to ground truth (normalized) mean valued over 20 problem instances for different percentages of missing data, missing
data patterns and noise levels σ. Best results are marked in bold.

Missing
data (%) PCP [9] WNNM [28] Unifying [8] LpSq [40] S12L12 [47] S23L23 [47] IRNN [12] APGL [48] ‖·‖∗ [4] R [36] Our

0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.1727 0.0000 0.0000
10 0.0885 0.0028 0.0713 0.0213 0.0309 0.0071 0.0000 0.0000 0.1998 0.0000 0.0000
20 0.2720 0.2220 0.1491 0.0170 0.0412 0.0209 0.0000 0.0000 0.2223 0.0128 0.0000
30 0.7404 0.4787 0.7499 0.0003 0.0818 0.0895 0.0000 0.0014 0.2897 0.2346 0.0000
40 1.0000 0.6097 0.9553 0.1083 0.1666 0.1360 0.0000 0.0017 0.3374 0.2198 0.0000

U
ni

fo
rm

(σ
=

0
.0

)

50 1.0000 0.7170 1.0000 0.0315 0.1376 0.1001 0.0003 0.0301 0.4266 0.2930 0.0000

0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.1810 0.0000 0.0000
10 0.3160 0.2734 0.1534 0.0839 0.1296 0.1233 0.0772 0.0834 0.2193 0.0793 0.0658
20 0.4877 0.4499 0.3017 0.1650 0.2389 0.2456 0.1010 0.1786 0.3436 0.2494 0.1018
30 0.5821 0.5395 0.5486 0.2520 0.3289 0.3160 0.1189 0.2572 0.4299 0.3421 0.1189
40 0.7072 0.6317 0.7376 0.2853 0.4084 0.4110 0.1417 0.2913 0.4825 0.5004 0.1385

Tr
ac

ki
ng

(σ
=

0
.0

)

50 0.8125 0.7257 0.9521 0.4178 0.4267 0.4335 0.2466 0.4047 0.5754 0.6503 0.2214

0 0.0409 0.0207 0.0407 0.0450 0.0437 0.0435 0.0448 0.0191 0.1581 0.0166 0.0166
10 0.3157 0.2734 0.1585 0.0848 0.0529 0.0518 0.0625 0.0696 0.2312 0.0488 0.0438
20 0.4771 0.4338 0.3480 0.1394 0.0995 0.0982 0.1090 0.1188 0.3109 0.2071 0.0983
30 0.5801 0.5225 0.4726 0.2026 0.2468 0.2592 0.1646 0.1993 0.3820 0.3465 0.1475
40 0.7122 0.6148 0.8638 0.2225 0.3292 0.3252 0.1357 0.2110 0.4800 0.4599 0.1273

Tr
ac

ki
ng

(σ
=

0
.1

)

50 0.7591 0.6819 0.9216 0.4105 0.4883 0.4811 0.3342 0.3639 0.5652 0.5930 0.3329

to the non-linear parameterization, that are not present in
(4). One such point is (B,C) = (0, 0) where the gradi-
ents of ‖ABCT − b‖2 with respect to B and C vanish (in
contrast to the gradient w.r.t. X). In this section we show
that by overparametrizing, in the sense that we use B and
C with more columns than the rank of the solution we seek,
it is still possible to use properties of (4) to show optimal-
ity in (7). We will exclusively use fµ from (8), assume that
B and C have 2k columns and study locally optimal solu-
tions with rank(BCT ) < k. The size of B and C makes it
possible to parametrize line segments between such points
and utilize convexity properties, see proof of Theorem 3.
The following result (which is proven in Appendix A) gives
conditions that ensure that local minimality in (7) implies
that (4) grows in all “low rank” directions.

Theorem 2. Assume that (B̄, C̄) ∈ Rm×2k × Rn×2k,
where B̄ = U

√
Σ and C̄ = V

√
Σ, and X̄ = UΣV T ,

is a local minimizer of (7) with rank(X̄) < k and let
N (X) = R(X)+‖AX−b‖2. ThenR(X̄) = R̃(B̄, C̄) and
the directional derivativesN ′∆X(X̄), where ∆X = X̃ − X̄
and rank(X̃) ≤ k, are non-negative.

Note that there can be local minimizers for which
R̃(B̄, C̄) > R(B̄C̄T ) since R̃ is non-convex. From an
algorithmic point of view we can, however, escape such
points by taking the current iterate and recompute the fac-
torization of B̄C̄T using SVD. If the SVD of B̄C̄T =∑r
i=1 σiUiV

T
i we update B̄ and C̄ to B̄i =

√
σiUi and

C̄i =
√
σiVi, which we know reduces the energy and gives

R̃(B̄, C̄) = R(B̄C̄T ).
Theorem 2 allows us to derive optimality conditions us-

ing the properties of (4). As a simple example, consider the
case where ‖AX‖2 ≥ ‖X‖2, which makes (4) convex [13],

and let B and C have 2k columns. Suppose that we find
a local minimizer (B̄, C̄) fulfilling the assumptions of The-
orem 2. Then the derivative along a line segment towards
any other low rank matrix is non-decreasing, and therefore
B̄C̄T is the global optimum of (4) over the set of matrices
with rank ≤ k by convexity.

Below we give a result that goes beyond convexity and
applies to the important class [46] of problems that obey the
RIP constraint (3). LetA∗ denote the adjoint operator ofA,
then:

Theorem 3. Assume that (B̄, C̄) is a local minimizer of
(7), fulfilling the assumptions of Theorem 2. If the singular
values of Z = (I −A∗A)B̄C̄T +A∗b fulfill σi(Z) /∈ [(1−
δ2k)
√
µ,

√
µ

(1−δ2k) ] then B̄C̄T is the solution of (9) and (10).

The proof builds on the results of [42] and is given in
Appendix A. The assumption that the singular values of Z
are not too close to the threshold

√
µ is a natural restriction

which is valid when the noise level is not too large. In case
of exact data, i.e. b = AX0, where rank(X0) = r it is
trivially fulfilled for any choice of µ such that

√
µ < (1 −

δ2k)σr(X0) since we have Z = X0. For additional details
on Z’s dependence on noise see [14].

The above result is similar in spirit to those of [46, 29],
which show that, in the convex case, having 2k columns and
rank 2k − 1 is enough to ensure that a local minimizer is
global. For the proof in our non-convex case we need rank
at most k−1. Presently, it is not clear if our assumption can
be relaxed to match that of the convex case or not.



Figure 3. Comparison of reprojection error obtained using the bilinear formulation and ADMM, for datasets Door and Vercingetorix [43].
The red circles mark the feature points and the green dots the projected image points obtained from the different methods. The best rank 4
solution for the respective method was used. The control parameter η = 0.5 in both experiments.

4. An Iterative Reweighted VarPro Algorithm
In this section we give a brief overview of our algorithm

for minimizing (7). A more detailed description is given in
Appendix B.

Given a current iterate,B(t) andC(t), the first step of our
algorithm is to replace the term R̃(B,C) with a quadratic
function. To do this we note that by the Taylor expansion
f(x) ≈ f(x0) + f ′(x0)(x − x0), minimizing f(x) and
f ′(x0)x around x0 is roughly the same (ignoring constants).

Inserting x0 =
‖B(t)

i ‖
2+‖C(t)

i ‖
2

2 and x = ‖Bi‖2+‖Ci‖2
2 now

gives our approximation

k∑
i=1

w
(t)
i (‖Bi‖2 + ‖Ci‖2) + ‖ABCT − b‖2, (20)

where w(t)
i = 1

2f
′
(

(‖B(t)
i ‖2 + ‖C(t)

i ‖2)/2
)

. Here B(t)
i

and C
(t)
i are the i:th columns of B(t) and C(t), respec-

tively. Minimizing (20) over C is now a least squares prob-
lem with closed form solution. Inserting this solution into
the original problem gives a nonlinear problem in B alone,
which is what VarPro solves. We use the so called Ruhe
and Wedin (RW2) approximation with a dampening term

λ‖B − B(t)‖2F , see [33] for details. In each step of the
VarPro algorithm we update the weights w(t)

i .
As previously mentioned, there can be stationary points

for which R̃(B,C) > R(BCT ). In each iteration we there-
fore take the current iterate and recompute the factoriza-
tion of B(t)C(t)T using SVD. If the SVD of B(t)C(t)T =∑r
i=1 σiUiV

T
i we update B(t) and C(t) to B(t)

i =
√
σiUi

and C(t)
i =

√
σiVi which we know reduces the energy and

gives R̃(B(t), C(t)) = R(B(t)C(t)T ).
Our approach can be seen as iteratively reweighted nu-

clear norm minimization [12]; however, our bilinear formu-
lation allows us to use quadratic approximation, thus bene-
fiting from second order convergence in the neighborhood
of a local minimum.

5. Experiments

In this section we will show the versatility and strength
of the proposed method, focusing on computer vision prob-
lems. In Section 5.2 we show an example where state-of-
the-art methods fail to achieve a value close to global opti-
mality. We include two more examples of real problems, in
Appendix C: background extraction and photometric stereo.



In both cases our method shows superior performance. In
the main paper we focus on the trade-off between datafit
and rank, but show, in the examples in the supplementray
material, the added benefits of convergence speed using the
proposed method. This is done by minimizing the same en-
ergy with ADMM and the proposed method, in which case
the splitting schemes can be tediously slow. In all exper-
iments our proposed method is initialized randomly, with
zero mean and unit variance.

5.1. Synthetic Missing Data Problem

Let � denote the Hadamard product, and consider the
missing data formulation

min
X

µrank(X) + ‖W � (X −M)‖2F , (21)

where M is a measurement matrix and W a missing data
mask with entries wij = 1 if the entry is known, and zero
otherwise.

In low-level vision applications such as denoising and
image inpainting a uniformly random missing data pat-
tern is often a reasonable approximation of the distribution;
however, for structure from motion, the missing data pattern
is often highly structured. To this end, we investigate two
kinds of patterns: uniformly random and “tracking failure”.
In order to construct realistic patterns of tracking failure, we
use the method in [37]. This is done by randomly selecting
if a track should have missing data (with uniform probabil-
ity), then select (with uniform probability, starting after the
first few frames) in which image tracking failure occurs. If
a track is lost, it is not restarted.

Figure 4. Rank vs datafit for the synthetic experiment in Sec-
tion 5.1. No true low rank solution using LpSq [40] could be
found, regardless of the choice of parameters.

We generate random ground truth matri-
ces M0 ∈ R32×512 of rank 4, which can be expressed
as M0 = UV T , where U ∈ R32×4 and V ∈ R512×4. The
entries of U and V are normal distributed with zero mean

and unit variance. The measurement matrix M = M0 +N ,
where N simulates noise and has normal distributed entries
with zero mean and variance σ2.

Our proposed method is compared to a variety of dif-
ferent methods [8, 9, 28, 40, 47, 12, 48, 4, 36]. For the
methods that need an initial estimate of the rank as input,
the rank estimation heuristic by Shang et al. [47] is used.
The regularization parameter is set to λ =

√
max(m,n),

given a sought m × n matrix, as proposed by [9, 47]. In
case other parameters should be provided, the one recom-
mended from the respective authors have been used. The
number of columns, for our proposed method, is set to
k = 8, i.e. twice the rank of the original matrix M0. We
exclusively use the fµ regularization (8), and use

√
µ = λ.

Since fµ is a special case of MCP, it is used for IRNN as
well. Furthermore, we include the results for regularizing
with nuclear norm [4] and fµ (8) using ADMM, as proposed
in [36]. Note that ADMM comes without optimality guar-
antees, however, it has been shown to work well for several
computer vision problems in practice [36, 42]. Several of
the compared methods solve the robust PCA problem, thus
also include a sparse component, which is not taken into
account.

The results are shown in Table 1. Note that most algo-
rithms perform significantly better for the uniformly ran-
dom missing data pattern, than compared to the structured
missing data pattern. Our proposed method outperforms all
other methods in this comparison.

Since the final rank of the estimated matrix is not neces-
sarily the same as that of M0, we show the rank vs datafit
obtained when varying the regularization parameter λ in
Figure 4. It is evident from the results that the only candi-
dates that yield an acceptable result for low rank solutions
are ADMM with fµ, IRNN with MCP and our proposed
method.

5.2. pOSE: Pseudo Object Space Error

The Pseudo Object Space Error (pOSE) objective com-
bines affine and projective camera models

`OSE =
∑

(i,j)∈Ω

∥∥(Pi,1:2x̃j − (pTi,3x̃j)mi,j)
∥∥2
, (22)

`Affine =
∑

(i,j)∈Ω

‖Pi,1:2x̃j −mi,j‖2 , (23)

`pOSE = (1− η)`OSE + η`Affine, (24)

where `OSE is the object space error and `Affine is the affine
projection error. Here Pi,1:2 denotes the first two rows, pi,3
the third row of the i:th camera matrix, and x̃j is the j:th
3D point in homogeneous coordinates. The control param-
eter η ∈ [0, 1] determines the impact of the respective cam-
era model. This objective was introduced in [35] to be used



Drink Pickup Stretch Yoga

Figure 5. Top row: Example frames from the MOCAP dataset of the drink, pickup, stretch and yoga sequences. Last row: The bilinear
method finds the same or a better datafit compared to the other methods for all ranks.

in a first stage of an initialization-free bundle adjustment
pipeline, optimized using VarPro.

The `pOSE objective is linear, and acts on low-
rank components P and X , which are constrained by
rank(PXT ) = 4. Instead of enforcing the rank constraint,
we replace it as before with a relaxation. By not enforc-
ing the rank constraint we demonstrate the ability of the
methods to make accurate trade-offs between minimizing
the rank and fitting the data. Since the objective now be-
comes more complex, and is no longer compatible with the
missing data formulations, only IRNN and APGL are di-
rectly applicable, as well as the ADMM approach using fµ
and nuclear norm. We use two real-life datasets with vari-
ous amounts of camera locations and 3D points: Door with
12 images, resulting in seeking a matrix of size 36 × 8850
and Vercingetorix [43] with 69 images, resulting in seeking
a matrix of size 207× 1148, both of which have rank 4. 1

As in the synthetic experiment from Section 5.1, the reg-
ularization parameter is varied and the resulting rank and
datafit is stored and reported in Figure 3. To visualize the
results, we considered the best rank 4 approximations, and
show the reprojected points and the corresponding mea-
sured points obtained from the best method (ours in both
cases) and the second best (IRNN in both cases), see Fig-
ure 3. As is readily seen by ocular inspection, the rank 4
solution obtained by our proposed method significantly out-
performs those of other state-of-the-art methods.

5.3. Non-Rigid Structure From Motion

In this section we test our approach on non-rigid recon-
struction (NRSfM) with the CMU Motion Capture (MO-
CAP) dataset. In NRSfM, the complexity of the defor-
mations are controlled by some mild assumptions of the
object shapes. Bregler et al. [6] suggested that the set of
all possible configurations of the objects are spanned by a
low dimensional linear basis of dimension K. In this set-
ting, the non-rigid shapes Xi ∈ R3×n can be represented

1 The datasets are available here: http://www.maths.lth.se/
matematiklth/personal/calle/dataset/dataset.html.

as Xi =
∑K
k=1 cikBk, where Bk ∈ R3×n are the ba-

sis shapes and cik ∈ R the shape coefficients. This way,
the matrix Xi contains the world coordinates of point i,
hence the observed image points are given by xi = RiXi.
We will assume orthographic cameras, i.e. Ri ∈ R

2×3

where RiRTi = I2. As proposed by Dai et al. [15], the
problem can be turned into a low-rank factorization prob-
lem by reshaping and stacking the non-rigid shapes Xi.
Let X]

i ∈ R1×3n denote the concatenation of the rows
in Xi, and create X] ∈ RF×3n by stacking X]

i . This al-
lows us to decompose the matrix X] in the low-rank factors
X] = CB], where C ∈ RF×K contains the shape co-
efficients cik and B] ∈ RK×3n is constructed as X] and
contains the basis elements.

A suitable objective function is thus given by

µrank(X]) + ‖RX −M‖2F , (25)

where R ∈ R2F×3F is a block-diagonal matrix with the
camera matrices Ri on the main diagonal, X ∈ R3F×n is
the concatenation of the 3D points Xi, and M ∈ R2F×n

is the concatenated observed image points xi. By replac-
ing the rank penalty with a relaxation and minimize it using
the proposed method and the methods used in the previous
section. The regularization parameter is varied for the re-
spective methods in order to obtain a rank 1–8 solution, and
the respective datafit is reported in Figure 5, for four differ-
ent sequences.

In all sequences, the best datafit for each rank level is
obtained by our proposed method. IRNN and ADMM us-
ing fµ is able to give the same, or very similar, datafit for
lower ranks, but for solutions with rank larger than four our
method consistently reports a lower value than the compet-
ing state-of-the-art methods.

6. Conclusions
In this paper we presented a unification of bilinear pa-

rameterization and rank regularization. Robust penalties for
rank regularization has often been used together with split-
ting schemes, but it has been shown that such methods yield

http://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
http://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html


unsatisfactory results for ill-posed problems in several com-
puter vision applications. By using the bilinear formulation,
the objective functions become differentiable, and conver-
gence rates in the neighborhood of a local minimum are
faster. Furthermore, we showed that theoretical optimality
results known from the regularization formulations can be
lifted to the bilinear formulation.

Lastly, the generality of the proposed framework allows
for a wide range of problems, some of which, have not been
amenable by state-of-the-art methods, but have been proven
successful using our proposed method.
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A. Proofs
In this section we present the proofs of Theorems 2

and 3. Our analysis will make use of the differentiable ob-
jective

D(B,C) := R̃(B,C) + ‖ABCT − b‖2, (26)

the non-convex function

N (X) := R(X) + ‖AX − b‖2, (27)

and the convex function

C(X) = R(X) + ‖X − Z‖2F . (28)

We will also use the functions

G̃(B,C) = R̃(B,C) + ‖BCT ‖2F , (29)
G(X) = R(X) + ‖X‖2F , (30)

H(X) = ‖AX − b‖2 − ‖X‖2F . (31)

Note that D(B,C) = G̃(B,C) + H(BCT ) and N (X) =
G(X) + H(X). Throughout the section we use f = fµ
with fµ as in (8) (of the main paper) but for simplicity of
notation we will suppress the subscript µ. Furthermore,
the subdifferential ∂G(X) of G will be of importance. Let
g(x) = f(|x|) + x2. The scalar function g has

∂g(x) =


2x |x| ≥ √µ
2
√
µsign(x) 0 < |x| ≤ √µ

2
√
µ[−1, 1] x = 0

. (32)

The following lemma shows how to compute ∂G for the
matrix case using ∂g.

Lemma 1. The subdifferential of G(X) is given by

∂G(X) = {U∂g(Σ)V T +M : σ1(M) ≤ 2
√
µ,

UTM = 0 and MV T = 0}
(33)

where X = UΣV T is the SVD and ∂g(Σ) is the matrix of
same size as Σ with diagonal elements ∂g(σi).

Next we give the stationary point conditions for D that
are needed for proving Theorem 2.

Lemma 2. Let B = U
√

Σ, C = V
√

Σ and X = UΣV T .
If (B,C) is a stationary point of D, then

0 = B∂G(Σ) +∇H(BCT )C, (34)

0 = ∂G(Σ)CT +BT∇H(BCT ). (35)

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let X̄ = B̄C̄T , X̃ = B̃C̃T and
∆X = B̃C̃T − B̄C̄T . We first note that the limit

N ′∆X(X̄) = lim
t↘0

N (X̄ + t∆X)−N (X̄)

t
, (36)

exists since N is a sum of a finite convex function G and
a differentiable function H . Our goal is now to show that
the limit is non-negative. Suppose that we can find a fac-
torization B(t)C(t)T = X̄ + t∆X , such that R(X̄ +
t∆X) = R̃(B(t), C(t)), (B(t), C(t)) is continuous and
(B(0), C(0)) = (B̄, C̄). Then for small enough t we have

N (X̄+t∆X)−N (X̄) = D(B(t), C(t))−D(B̄, C̄). (37)

This quantity is clearly non-negative since (B̄, C̄) is a local
minimizer of D, which would prove that the limit (36) is
non-negative. It is not difficult to see that this can be done
when the two matrices X̄ and X̃ have singular value de-
compositions with the same U and V . In what follows we
will first show that all other cases can be reduced so that the
matrices are of this form. When this is done we proceed to
construct the factorization B(t)C(t)T which completes the
proof.

The directional derivatives can be computed using the
sub-differential

N ′∆X = max
2Z∈∂G(B̄C̄T )

〈2Z,∆X〉+ 〈∇H(B̄C̄T ),∆X〉.

(38)
By Lemma 1, the first term becomes

〈U∂G(Σ)V T +M,∆X〉 = 〈U∂G(Σ)V T , B̃C̃T 〉
+ 〈M, B̃C̃T 〉
− 〈U∂G(Σ)V T , B̄C̄T 〉.

(39)

The columns of B̃ can be written as a linear combination of
the columns in B̄ and those of a matrix B̄⊥ with at most k
columns that are perpendicular to B̄. Similarly, the columns
of C̃ can be written as a linear combination of the columns
in C̄ and those of a matrix C̄⊥ with at most k columns that
are perpendicular to C̄. Therefore, we may write

B̃C̃T =
[
B̄ B̄⊥

] [K11 K12

K21 K22

] [
C̄T

C̄T⊥

]
= B̄K11C

T + B̄K12C̄
T
⊥

+ B̄⊥K21C̄
T + B̄⊥K22C̄

T
⊥,

(40)

where B̄T B̄⊥ = 0 and C̄T C̄⊥ = 0. Our goal is now to
show that the terms K12 and K21 and the off diagonal el-
ements of K11 vanish from (38) and can be assumed to be
zero.

For the last term of (39) we have

〈U∂G(Σ)V T , B̄C̄T 〉 = 〈∂G(Σ), UT B̄C̄TV 〉
= 〈∂G(Σ),Σ〉,

(41)



which is clearly independent of B̃ and C̃. The first term of
(39) reduces to

〈U∂G(Σ)V T , B̃C̃T 〉 = 〈U∂G(Σ)V T , B̄K11C̄
T 〉

= 〈B̄TU∂G(Σ)V T C̄,K11〉
= 〈Σ∂G(Σ),K11〉.

(42)

Note that the off diagonal elements of K11 vanish from this
expression since Σ∂G(Σ) is diagonal. Similarly, the second
term of (39) reduces to

〈M, B̃C̃T 〉 = 〈M, B̄⊥K22C̄
T
⊥〉. (43)

We now consider the second term of (38)

〈∇H(B̄C̄T ),∆X〉 =

〈∇H(B̄C̄T ), B̄K11C̄
T + B̄K12C̄

T
⊥

+ B̄⊥K21C̄
T + B̄⊥K22C̄

T
⊥ − B̄C̄T 〉.

(44)

For the first term we have

〈∇H(B̄C̄T ), B̄K11C̄
T 〉 = 〈∇H(B̄C̄T )C̄, B̄K11〉

= −〈B̄∂G(Σ), B̄K11〉
= −〈B̄T B̄∂G(Σ),K11〉
= −〈Σ∂G(Σ),K11〉.

(45)

Again the off diagonal elements of K11 vanish. For the
second term of (44) we have

〈∇H(B̄C̄T ), B̄K12C
T
⊥〉 = 〈BT∇H(BCT ),K12C

T
⊥〉

= −〈∂G(Σ)C̄T ,K12C̄⊥〉
= −〈∂G(Σ)C̄T C̄⊥,K12〉 = 0.

(46)
Similarly, the third term is 〈∇H(B̄C̄T ), B̄⊥K21C̄

T 〉 = 0.
Thus

〈∇H(B̄C̄T ),∆X〉 = 〈∇H(B̄C̄T ), B̄T⊥K22C̄
T
⊥〉

− 〈Σ∂G(Σ),K11〉
− 〈∇H(B̄C̄T ), B̄C̄T 〉.

(47)

Summarizing we see that we have now proven that all the
terms in (39) are independent of K12, K21 as well as the
off diagonal terms of K11. They therefore do not affect the
value of N ′∆X and can be assumed to be zero. We can now
write ∆X as

∆X =
[
U U⊥

] [(D − I)Σ 0

0 Σ̃

] [
V T

V T⊥

]
, (48)

where D are the diagonal elements of K11 and U⊥Σ̃V T⊥ is
the SVD of B̄⊥K22C̄

T
⊥ . Note that UT⊥U = 0 since U and

U⊥ span orthogonal subspaces. Similarly V T⊥ V = 0.

We now consider the directional derivative (36) with
B̄ = U

√
Σ, C̄ = V

√
Σ. It is clear that for small t the

matrix X̄ + t∆X has the singular value decomposition

[
U U⊥

] [((1− t)I + tD)Σ 0

0 tΣ̃

] [
V T

V T⊥

]
. (49)

We now let

B(t) =
[
U U⊥

]√[((1− t)I + tD)Σ 0

0 tΣ̃

]
, (50)

C(t) =
[
V V⊥

]√[((1− t)I + tD)Σ 0

0 tΣ̃

]
. (51)

Then, we clearly have R̃(B(t), C(t)) = R(X + t∆X) for
small enough t, which completes the proof.

Next we will prove Theorem 3. Our results build on
those of [42] and we remind the reader that we exclusively
use fµ(σ) = µ−max(

√
µ−σ, 0)2 throughout this section,

but suppress the subscript µ. We will use the fact that the
directional derivatives in a local minimum are non-negative
for all low rank directions to show that (B̄, C̄) minimizes
the non-convexN over matrices of rank < k in Theorem 3.
For this we will need the following result:

Lemma 3. If X̄ is a solution to minrank(X)≤k C(X) with
rank(X̄) < k and the singular values of Z fulfill σi(Z) /∈
[(1− δ2k)

√
µ,

√
µ

(1−δ2k) ] then X̄ also solves minX C(X).

Proof of Lemma 3. By von Neumann’s trace theorem it is
easy to see that the problem minrank(X)≤k C(X) reduces to
a minimization over the singular values of X . We should
thus find σi(X) such that

n∑
i=1

−max(
√
µ− σi(X), 0)2 + (σi(X)− σi(Z))2︸ ︷︷ ︸

:=gi(σi(X))

(52)

is minimized and at most k singular values are non-zero.
The unconstrained minimizers of gi can be written down in
closed form: If 0 ≤ √µ < σi(Z) then σi(X) = σi(Z) is
optimal giving gi(σi(X)) = 0. If 0 ≤ σi(Z) <

√
µ then

σi(X) = 0 is optimal giving gi(σi(X)) = −µ + σi(Z)2.
Hence for any solution of minrank(X)≤k C(X) we have
σi(X) = 0 if 0 ≤ σi(Z) ≤ √µ. There are now two cases:

1. If σk+1(Z) <
√
µ then the sequence of unconstrained

minimizers has at most k non-zero values. Thus, in
this case the resulting X solves both minX C(X) and
minrank(X)≤k C(X).

2. If σk+1 >
√
µ we will not be able to select σi(X) =

σi(Z) for all i where 0 ≤ √µ < σi(Z). Choosing
σi(X) = 0 gives gi(0) = −µ + σi(Z)2 < 0. Since



σi(Z) is decreasing with i it is clear that the smallest
value is obtained when selecting σi(X) = σi(Z) for
i = 1, ..., k.

We now conclude that if rank(X̄) < k then we are in case 1
and therefore X̄ solves the unconstrained problem.

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. Since C and N has the same subdif-
ferential (see [36]) at X̄ = B̄C̄T it is clear that the di-
rectional derivatives C′∆X(X̄) = N ′∆X(X̄) ≥ 0, where
∆X = X̃ − B̄C̄T and rank(X̃) ≤ k. By convexity of
C it is then also clear that

B̄C̄T ∈ arg min
rank(X)≤k

C(X). (53)

Since rank(B̄C̄T ) < k, B̄C̄T is also the unrestricted global
minimizer of C(X) according to Lemma 3. By Lemma 3.1
of [42] it is then a stationary point of N (X).

What remains now is to prove that X̄ = B̄C̄T is a global
minimizer ofN over all line segments X̄ + t∆X . This can
be done by estimating the growth of the directional deriva-
tives along such lines. For this purpose we consider the
functions G and H defined as in (30) and (31). Note that X̄
is a stationary point ofN (X) = G(X) +H(X) if and only
if −∇H(X̄) = 2Z ∈ ∂G(X̄).

Since ∇H(X̄ + t∆X) − ∇H(X̄) = t∇H(∆X) =
2t(A∗A∆X −∆X) we have

〈∇H(X̄ + t∆X)−∇H(X̄), t∆X〉 =

2t2(‖A∆X‖2 − ‖∆X‖2F ),
(54)

and due to RIP ‖A∆X‖2−‖∆X‖2F ≥ −δ2r‖∆X‖2. From
Corollary 4.2 of [42] we see that for any 2Z ′ ∈ ∂G(X̄ +
t∆X) we have

〈Z ′ − Z, t∆X〉 > t2δ2r‖∆X‖2F , (55)

as long as t 6= 0. Since G′∆X(X) =
max2Z∈∂G(X)〈2Z,∆X〉, H ′∆X(X) = 〈∇H(X),∆X〉
and 2Z +∇H ′(X̄) = 0 we get

N ′∆X(X̄ + t∆X) ≥ 〈2Z ′ +∇H(X̄ + t∆X),∆X〉 > 0
(56)

This shows that X̄ solves (9). That X̄ also solves (10) is
now a consequence of the fact that R(X) ≤ µrank(X)
with equality if X have no singular values in the inter-
val (0,

√
µ]. Note that X̄ is the unrestricted minimizer

of C(X), where the singular values of Z fulfill σi(Z) /∈[
(1− δ2k)

√
µ,

√
µ

1−δ2k

]
. Since the solution to this problem is

hard thresholding X̄ has no singular values in
(

0,
√
µ

1−δ2k

]
⊃

(0,
√
µ].

For completeness we give the proofs that were previ-
ously omitted.

Proof of Lemma 1. With some abuse of notation we define
the function g : Rn → R by g(x) =

∑n
i=1 g(xi), where xi,

i = 1, ..., n are the elements of x and g(x) = f(|x|) + x2.
The function g is an absolutely symmetric convex function
and G can be written G(X) = g ◦ σ(X), where σ(X) is
the vector of singular values of X . Then according to [38]
the matrix Y ∈ ∂G(X) if and only if Y = U ′ diag(∂g ◦
σ(X))V ′T when X = U ′ diag(σ(X))V ′T . (Here we use
the full SVD with square orthogonal matrices U ′ and V ′.)
Now given a thin SVD X = UΣV T all possible full SVD’s
of X can be written

X =
[
U U⊥

] [Σ 0
0 0

] [
V T

V T⊥

]
, (57)

where U⊥ and V⊥ are singular vectors corresponding to sin-
gular values that are zero. Note that U⊥ and V⊥ are not
uniquely defined since their corresponding singular values
are all zero. Therefore we get

Y =
[
U ′ U⊥

] [∂g(Σ) 0
0 D

] [
V ′T

V T⊥

]
= U ′∂g(Σ)V ′T + U⊥DV

T
⊥ ,

(58)

where D is a diagonal matrix with elements in 2
√
µ[−1, 1].

It is clear that σ1(U⊥DV
T
⊥ ) = σ1(D) ≤ 2

√
µ. Further-

more, since U⊥ and V⊥ can be any orthogonal bases of the
spaces perpendicular to the column and row spaces of X , it
is clear that any matrix M fulfilling UTM = 0, MV = 0
and σ1(M) ≤ 2

√
µ can be written M = U⊥DV

T
⊥ , hence

∂G(X) = {U∂g(Σ)V T +M : σ1(M) ≤ 2
√
µ,

UTM = 0, MV = 0}.
(59)

Proof of Lemma 2. The gradients of G̃ are given by

∇BG̃(B,C) = ∇B(R̃(B,C)) +∇B(‖BCT ‖2F ). (60)

For the first term we get

∇BiR̃(B,C) = f ′
(
‖Bi‖2 + ‖Ci‖2

2

)
Bi. (61)

With B = U
√

Σ and C = V
√

Σ we get

∇BR̃(B,C) = B

f
′(σ1) 0 . . .
0 f ′(σ2) . . .
...

...
. . .

 = Bf ′(Σ),

(62)



which gives

∇BG̃(B,C) = Bf ′(Σ) + 2BCTC = B(f ′(Σ) + 2Σ).
(63)

For a non-zero σ we have ∂g(σ) = {f ′(σ)+2σ} and there-
fore

∇BG̃(B,C) = B(∂G(Σ)), (64)

where g(X) = Rµ(X) + ‖X‖2F . Similarly we get

∇CG̃(B,C) = C(∂G(Σ)). (65)

If (B,C) is a stationary point then

0 = B∂G(Σ) +∇H(BCT )C, (66)

0 = C∂G(Σ) + (∇H(BCT ))TB. (67)

The second equation can be re-written to the form stated in
the lemma.

B. Implementation Details
In this section we present some more details on our It-

eratively Reweighted VarPro approach. Recall that our ap-
proach consists of three main steps. In the first step we make
a quadratic approximation (20) of the regularization term
by replacing R̃(B,C) with

∑k
i=1 w

(t)
i

(
‖Bi‖2 + ‖Ci‖2

)
as

described in Section 4.
In the second step we apply one step of VarPro with the

Ruhe Wedin approximation, see [33] for details on the im-
plementation. VarPro uses Jacobians with respect to both
the B and C parameters. In our case we have two terms
that needs to be linearized. The regularization term can be
written

‖ diag(w(t))B‖2F + ‖ diag(w(t))C‖2F , (68)

where diag(w(t)) is a diagonal matrix with the weightsw(t)
i

in the diagonal. The residuals diag(w(t))B are already lin-
ear and by column stacking the variables we can write them
as J reg

B b, where b is a column stacked version of B. If B
has k columns the matrix J reg

B will consist of k copies of
the matrix diag(w(t)). Additionally, each row of J reg

B has
only one non-zeros element making the matrix extremely
sparse. Similarly, we obtain the contribution due to the
second bilinear factorC, which can be written as J reg

C c.
Here we use c = vec(CT ), as it alleviates the computa-
tions of the data terms, hence J reg

C consists of a k copies of
diag(w(t)) permuted to match this design choice. Given a
current iterate (b(t), c(t)) we write the regularization term
as ‖J reg

B δb+rB‖2+‖J reg
C δc+rC‖2, where rB = J

reg
B b(t),

rC = J
reg
C c(t), b = b(t) + δb and c = c(t) + δc.

Linearizing the residuals ABCT − b around (b(t), c(t))
gives an expression of the form

Jdata
B δb + Jdata

C δc + rdata. (69)

The particular shape of the Jacobians in this expression de-
pends on the application; however, in all of our applications
they are sparse. For example, in the missing data problem
each residual corresponds to an element of the matrix X
which in turn only depends on k elements of B and C. Lo-
cally we may now write the objective function as

‖JBδb + JCδc + r‖2, (70)

where

JB =

 J reg
B

0

Jdata
B

 , JC =

 0
J reg
C

Jdata
C

 , r =

 rB
rC
rdata

 . (71)

It was shown in [32] that each step of VarPro is equivalent
to first minimizing (70) with the additional dampening term
λ‖δb‖2 and then performing an exact optimization of (20)
over the C-variables (when fixing the B-variables to their
new values). Since we also have a reweighing we only do
one iteration with VarPro before updating the weights w(t).

The above procedure can return stationary points for
which R̃(B,C) > R(BCT ). Our last step is designed to
escape such points by taking the current iterate and recom-
pute the factorization of B̄C̄T using SVD. If the SVD of
B̄C̄T =

∑r
i=1 σiUiV

T
i we update B̄ and C̄ to B̄i =

√
σiUi

and C̄i =
√
σiVi which we know reduces the energy and

gives R̃(B̄, C̄) = R(B̄C̄T ). Therefore we proceed by
refactorizing the current iterate using SVD in each iteration.
The detailed steps of the bilinear method are summarized in
Algorithm 1.

C. Additional Experiments on Real Data
C.1. pOSE: Psuedo Object Space Error

In this section we compare the energies over time for
ADMM optimizing the same energy [36], i.e. with the reg-
ularizer R, and f = fµ as in (8) (of the main paper), and
our proposed method. We let the bilinear method run until
convergence, and let ADMM execute the same time in sec-
onds. As a comparison we use the nuclear norm relaxation
and the discontinuous rank regularization. The results of the
experiment are shown in Figure 6.

Again, note that the bilinear method optimizes the same
energy as ADMM-Rµ, and that, despite the initial fast low-
ering of the objective value, the ADMM approach fails to
reach the global optimum, within the allotted 150 seconds.
This holds true for all methods employing ADMM. In all
experiments, the control parameter η = 0.5, and the µ pa-
rameter was chosen to be smaller than all non-zero singular
values of the best known optimum (obtained using VarPro).
For a fair comparison, the µ-value for the nuclear norm re-
laxation, was modified due to the shrinking bias, and was
chosen to be the smallest value of µ for which a solution
with accurate rank was obtained. Due to this modification,



Input: Robust penalty function f , linear operator A and
regularization parameter µ, damping parameter λ.

Initialize B and C with random entries
while not converged do

Compute weights w(t) from current iterate (B,C)

Compute the vectorizations b = vec(B), c = vec(CT )

Compute residuals rB rC , and Jacobians Jdata
B and Jdata

B

depending on A
Compute residual rreg, and Jacobians J reg

B and J reg
C

Create full residual r and Jacobians JB and JC
Compute J̃T J̃ + λI = JTB (I − JCJ+

C )JB + λI

Compute b′ = b− (J̃T J̃ + λI)−1JBr and reshape
into matrix B′

Compute C′ by minimizing (20) with fixed B′

ifR(B′C′
T

) + ‖A(B′C′
T

)− b‖2 <
R(BCT ) + ‖A(BCT )− b‖2 then

[U,Σ, V ] = svd(B′C′
T

)

Update B = U
√

Σ and C = V
√

Σ
Decrease λ

else
Increase λ

end
end

Algorithm 1: Outline of the bilinear method.

the energy it minimizes is not directly correlated to the oth-
ers, but is shown for completeness. Furthermore, the itera-
tion speed of ADMM is significantly faster than for VarPro,
and therefore we show the elapsed time (in seconds) for
all methods. The reported values are averaged over 50 in-
stances with random initialization.

Figure 6. The average energy for the pOSE problem over 50 in-
stances with random initializations, for test sequence Door. (Note
that the energy for ADMM-Rank and ADMM-Rµ are very simi-
lar).

C.2. Background Extraction

The missing data problem formulation can also be used
in e.g. background extraction, where the goal is to separate

the foreground from the background in a video sequence.
For this experiment, security footage of an airport is used.
The frame size is 144× 176 pixels, and we use the first 200
frames, as in [30]. The camera does not move, hence the
background is static.

By concatenating the vectorization of the frames into a
matrix we expect it to be additively decomposable in terms
of a low rank matrix (background) and a sparse matrix (fore-
ground). We follow the setup used in [8], and crop the width
to half of the height, and shift it 20 pixels to the right after
100 frames to simulate a virtual pan of the camera. This in-
creases the complexity of the background, as it is no longer
static. Lastly, we randomly drop 70 % of the entries. To
allow for smaller singular values, we use Geman, as it is a
robust penalty with shrinking bias. The results are shown in
Figure 8.

Figure 7. Energy minimization comparison for the background ex-
traction experiment.

Initially ADMM struggles to find the correct balance be-
tween lowering the rank and fitting the data, which is seen
in Figure 7, where the objective is almost unaffected the first
forty seconds. At this point, the bilinear method has already
converged.

C.3. Photometric Stereo

Photometric stereo can be used for estimating depth and
surface orientation from images of the same object and view
with varying lighting directions. Assuming M lighting di-
rections and N pixels define I ∈ RM×N , where Iij is the
light intensity for lighting direction i and pixel j. Assuming
Lambertian reflectance, uniform albedo and a distant light
source, I = LN , where L ∈ RM×3 contain the lighting
directions and N ∈ R3×N the unknown surface normals.
Thus, the resulting problem is to find a rank 3 approxima-
tion of the intensity matrix I .

We use the Harvard Photometric Stereo testset [19],
which contains images of various objects from varying
lighting direction. The images are scaled to 160× 125 pix-
els, and only the foreground pixels are used in the optimiza-
tion. Similar to [8], we introduce missing data by thresh-
olding dark pixels with pixel value less than 40 and bright
pixels with pixel value more than 205. The measurement
matrix is reconstructed using the bilinear method and the
ADMM equivalent with the Rµ regularization. The result



Figure 8. Background extraction using Geman. Samples from frame no. 40, 70, 100, 130, 170 and 200. Top row: Original images. Middle
row: Training data with 70 % missing data. Bottom row: Reconstruction of background (bilinear method).

is shown in Figure 9. We let the bilinear method run un-
til convergence and let the ADMM equivalent run for the
same time in seconds, at which point the objective value is
still decreasing when ADMM is interrupted; however, the
reduction is almost negligible. In all cases ADMM fails to
converge to a low rank solution in the same time as the bi-
linear method, which yields a consistent result.



Figure 9. Images from the photometric stereo experiment. From left to right: (a) Ground truth image, (b) missing data mask with static
background (black), dark pixels (purple), bright pixels (yellow), (c) reconstruction using ADMM, and (d) reconstruction using the Bilinear
formulation.
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