
ar
X

iv
:2

00
4.

10
44

8v
1 

 [
cs

.C
V

] 
 2

2 
A

pr
 2

02
0

DeepFake Detection by Analyzing Convolutional Traces

Luca Guarnera

University of Catania - iCTLab

Catania, Italy

luca.guarnera@unict.it

Oliver Giudice

University of Catania

Catania, Italy

giudice@dmi.unict.it

Sebastiano Battiato

University of Catania - iCTLab

Catania, Italy

battiato@dmi.unict.it

Abstract

The Deepfake phenomenon has become very popular

nowadays thanks to the possibility to create incredibly real-

istic images using deep learning tools, based mainly on ad-

hoc Generative Adversarial Networks (GAN). In this work

we focus on the analysis of Deepfakes of human faces with

the objective of creating a new detection method able to de-

tect a forensics trace hidden in images: a sort of finger-

print left in the image generation process. The proposed

technique, by means of an Expectation Maximization (EM)

algorithm, extracts a set of local features specifically ad-

dressed to model the underlying convolutional generative

process. Ad-hoc validation has been employed through

experimental tests with naive classifiers on five different

architectures (GDWCT, STARGAN, ATTGAN, STYLEGAN,

STYLEGAN2) against the CELEBA dataset as ground-truth

for non-fakes. Results demonstrated the effectiveness of the

technique in distinguishing the different architectures and

the corresponding generation process.

1. Introduction

One of the phenomena that is rapidly growing is the well-

known Deepfake: the possibility to automatically generate

and/or alter/swap a person’s face in images and videos us-

ing algorithms based on Deep Learning technology. It is

possible to generate excellent results by creating new mul-

timedia contents that cannot be easily recognized as real or

fake by human eye. Then, the term Deepfake refers to all

those multimedia contents synthetically altered or created

by means of machine learning generative models.

Various examples of Deepfake, involving celebrities, are

easily discoverable on the web: the insertion of Nicholas

Cage 1 in movies where he did not act like “Fight Club”

and “The Matrix” or the impressive video in which Jim

Carrey 2 plays Shining in place of Jack Nicholson. Other

1https://www.youtube.com/watch?v=-yQxsIWO2ic
2https://www.youtube.com/watch?v=Dx59bskG8dc

more worrying examples are the video of ex US Presi-

dent Barack Obama (Figure 1(a)), created by Buzzfeed 3

in collaboration with Monkeypaw Studios, or the video in

which Mark Zuckerberg 4 (Figure 1(b)) claims a series of

statements about his platform ability to steal users’ data.

Even in Italy, in September 2019, the satirical TV program

“Striscia La Notizia” 5 showed a video of the ex-premier

Matteo Renzi talking about his colleagues in a “not so re-

spectful” way (Figure 1 (c)). Indeed, Deepfakes may have

serious repercussions on the authenticity of the news spread

by the mass-media while representing a new threat for pol-

itics, companies and individual privacy. In this dangerous

scenario, tools are needed to unmask the Deepfakes or just

detect them.

Several big companies have decided to take action

against this phenomenon: Google has created a database

of fake videos [36] to support researchers who are devel-

oping new techniques to detect them, while Facebook and

Microsoft have launched the Deepfake Detection Challenge

initiative 6.

In this paper a new Deepfake detection method will be

introduced focused on images representing human faces.

At first an Expectation Maximization (EM) algorithm [29],

extracts a set of local features specifically addressed to

model the convolutional traces that could be found in im-

ages. Then, naive classifiers were trained to discriminate

between authentic images and images generated by the five

most realistic architectures as today (GDWCT, STARGAN,

ATTGAN, STYLEGAN, STYLEGAN2). Experimental re-

sults demonstrated that the information modelled by EM is

related to the specific architecture that generated the im-

age thus giving the overall detection solution explainability,

being also of great value for forensic investigations (e.g.,

camera model identification techniques of image forensics).

Moreover, a multitude of experiments will be presented not

only to demonstrated the effectiveness of the technique but

3https://www.youtube.com/watch?v=cQ54GDm1eL0
4https://www.youtube.com/watch?v=NbedWhzx1rs
5https://www.striscialanotizia.mediaset.it/Matteo-Renzi
6https://deepfakedetectionchallenge.ai/

http://arxiv.org/abs/2004.10448v1
https://www.youtube.com/watch?v=-yQxsIWO2ic
https://www.youtube.com/watch?v=Dx59bskG8dc
https://www.youtube.com/watch?v=cQ54GDm1eL0
https://www.youtube.com/watch?v=NbedWhzx1rs
https://www.striscialanotizia.mediaset.it/video/il-fuorionda-di-matteo-renzi_59895.shtml
https://deepfakedetectionchallenge.ai/


Figure 1. Examples of Deepfake: (a) Obama (Buzzfeed in collaboration with Monkeypaw Studios); (b) Mark Zuckerberg (Bill Posters and

Daniel Howe in partnership with advertising company Canny); (c) Matteo Renzi (the italian TV program “Striscia la Notizia”).

Figure 2. Simplified description of a GAN learning framework.

also to demonstrate to be un-comparable with state-of-the-

art: tests were carried out on an almost-in-the-wild dataset

with images generated by five different techniques with dif-

ferent image sizes. As today, all proposed technique work

with specific image sizes and against at most one GAN tech-

nique.

The remainder of this paper is organized as follows: Sec-

tion 2 presents some Deepfake generation and detection

methods. The proposed detection technique is explained in

Section 3 as regards the feature extraction phase while the

classification phase and experimental results are reported in

Section 4. Finally, Section 5 concludes the paper with in-

sights for future works.

2. Related Works

Deepfakes are generally created by techniques based on

Generative Adversarial Networks (GANs) firstly introduced

by Goodfellow et al. [14]. Authors proposed a new frame-

work for estimating generative models via an adversarial

mode in which two models simultaneously train: a gen-

erative model G, that captures the data distribution, and

a discriminative model D, able to estimate the probabil-

ity that a sample comes from the training data rather than

from G. The training procedure for G is to maximize the

probability of D making a mistake thus resulting to a min-

max two-player game. Mathematically, the generator ac-

cepts a random input z with density pz and returns an output

x = G(z,Θg) according to a certain probability distribution

pg (Θg represent the parameters of the generative model).

The discriminator, D(x,Θd) computes the probability that

x comes from the distribution of training data pdata (Θd

represents the parameters of the discriminative model). The

overall objective is to obtain a generator, after the training

phase, which is a good estimator of pdata. When this hap-

pens, the discriminator is “deceived” and will no longer be

able to distinguish the samples from pdata and pg; there-

fore pg will follow the targeted probability distribution, i.e.

pdata. Figure 2 shows a simplified description of a GAN

framework. In the case of Deepfakes, G can be thought

as a team of counterfeiters trying to produce fake currency,

while D stands to the police, trying to detect the malicious

activity. G and D can be implemented as any kind of gen-

erative model, in particular when deep neural networks are

employed results become extremely accurate. Through re-

cent years, many GAN architectures were proposed for dif-

ferent applications e.g., image to image translation [45], im-

age super resolution [24], image completion [17], and text-

to-image generation [35].

2.1. Deepfake Generation Techniques

An overview on Media forensics with particular focus on

Deepfakes has been recently proposed in [41].

STARGAN is a method capable of performing image-

to-image translations on multiple domains using a single

model. Proposed by Choi et al. [6] was trained on two dif-

ferent types of face datasets: CELEBA [27] containing 40

labels related to facial attributes such as hair color, gender

and age, and RaFD dataset [22] containing 8 labels corre-

sponding to different types of facial expressions (“happy”,

“sad”, etc.). Given a random label as input, such as hair

color, facial expression, etc., STARGAN is able to per-

form an image-to-image translation operation. Results have

been compared with other existing methods [26, 30, 45] and

showed how STARGAN manages to generate images of su-

perior visual quality.

Style Generative Adversarial Network, namely STYLE-

GAN [19], changed the generator model of STARGAN by

means of mapping points in latent space to an intermediate

latent space which controls the style output at each point of

the generation process. Moreover the introduction of noise

as a source of variation in those mentioned points demon-



strates to achieve better results. Thus, STYLEGAN is capa-

ble not only of generating impressively photorealistic and

high-quality photos of faces, but also offers control param-

eters in terms of the overall style the generated image at

different levels of detail. While being able to create real-

istic pseudo-portraits, small details might reveal the fake-

ness of generated images. To correct those imperfections

in STYLEGAN, Karras et al. made some improvements to

the generator (including re-designed normalization, multi-

resolution, and regularization methods) proposing STYLE-

GAN2 [20].

Instead of imposing constraints on latent representation,

He et al. [15], proposed a new technique called ATTGAN

in which an attribute classification constraint is applied to

the generated image, in order to guarantee only the correct

modifications of the desired attributes. The authors used

CELEBA [27] and LFW [16] datasets, and performed var-

ious tests comparing ATTGAN with VAE/GAN [23], Ic-

GAN [30] and STARGAN [6], Fader Networks [21], Shen

et al. [37] and CycleGAN [45]. Achieved results showed

that ATTGAN exceeds the state of the art on the realistic

modification of facial attributes.

The latter style transfer approach worth to be mentioned

is the work of Cho et al. [5], where they propose a group-

wise deep whitening-and coloring method (GDWCT) for

a better styling capacity. They used CELEBA [27], Art-

works [45], cat2dog [25], Ink pen and watercolor classes

from Behance Artistic Media (BAM) [43], and Yosemite

datasets [45] as dataset. GDWCT has been compared with

various cutting-edge methods in image translation and style

transfer improving not only computational efficiency but

also quality of generated images.

In this paper, the five most famous and effective archi-

tectures in state-of-the-art for face Deepfakes were taken

into account: STARGAN [6], STYLEGAN [19], STYLE-

GAN2 [20], ATTGAN [15] and GDWCT [5]. As described

above, they are different in goals and structure. Table 1 re-

sumes the differences of the techniques in terms of image

size, dataset and type of input, goal and architecture struc-

ture.

2.2. Deepfake detection methods

Being able to understand if an image is the result of a

generative Neural Network process turns out to be a compli-

cated problem, even for human eyes. However, the problem

of authenticating an image (or specifically a digital image)

is not new [2, 31, 38]. Many works try to reconstruct the

history of an image[13]; others try to identify the anoma-

lies, such as the study on the analysis of interpolation effects

through CFA (Color Filtering Array) [32], analyzing com-

pression parameters [3, 11, 12], etc. Given the peculiarity

of Deepfakes, state-of-the-art image analysis methods tend

to fail and more refined ones are needed.

Thanks to a new discriminator that uses “contrastive

loss” it is possible to find the typical characteristics of

the synthesized images generated by different GANs and

therefore detect such fake images by means of a classi-

fier. Rossler et al. [36] proposed an automated bench-

mark for fake detection, based mainly on four manip-

ulation methods: two computer graphics-based methods

(Face2Face [40], FaceSwap 7) and 2 learning-based ap-

proaches (DeepFakes 8, NeuralTextures [39]). They ad-

dressed the problem of fake detection as a binary classifi-

cation problem for each frame of manipulated videos, con-

sidering different techniques present in the state of the art

[1, 4, 7, 8, 10, 34].

Zhang et al. [44] proposed a method to classify Deep-

fakes considering the spectra of the frequency domain as

input. The authors proposed a GAN simulation framework,

called AutoGAN, in order to emulate the process commonly

shared by popular GAN models. Results obtained by the au-

thors achieved very good performances in terms of binary

classification between authentic and fake images. Also Du-

rall et al. [9] presented a method for Deepfakes detection

based on the analysis in the frequency domain. The authors

combined high-resolution authentic face images from dif-

ferent public datasets (CELEBA-HQ data set [18], Flickr-

Faces-HQ data set [19]) with fakes (100K Faces project 9,

this person does not exist 10), creating a new dataset called

Faces-HQ. By means of naive classifiers they obtained good

results in terms of overall accuracy.

Differently from described approaches, in this paper the

possibility to capture the underlying traces of a possible

Deepfake is investigated by employing a sort of reverse en-

gineering of the last computational layer of a given GAN

architecture. This method will give explainability to the

predictions of Deepfakes being of great value for forensic

investigations: not only it is able to classify an image as

fake but also can predict the most probable technique used

for generation being in this way similar to camera model de-

tection in image forensics analysis [2]. The underlying idea

of the technique is to find the main periodic components

(e.g. transpose computational layer) on generated images.

A similar strategy was proposed some time ago in a sem-

inal paper of Popescu et al. [32] devoted to point out the

presence of digital forgeries in CFA interpolated images.

Another difference from state-of-the-art is the working sce-

nario: the proposed technique demonstrates to achieve good

results in a almost-in-the-wild scenario with images gener-

ated by five different techniques and image sizes.

7https://github.com/MarekKowalski/FaceSwap/
8https://github.com/deepfakes/faceswap/
9https://generated.photos/

10https://thispersondoesnotexist.com/

https://github.com/MarekKowalski/FaceSwap/
https://github.com/deepfakes/faceswap/
https://generated.photos/
https://thispersondoesnotexist.com/


Method

Number of

images

generated

Size
Data input

to the network
Goal of the network

Kernel size of the

latest Convolution

Layer

GDWCT [5] 3369 216x216 CELEBA
Improves the styling

capability
4x4

STARGAN [6] 5648 256x256 CELEBA

Image-to-image translations

on multiple domains

using a single model

7x7

ATTGAN [15] 6005 256x256 CELEBA
Transfer of face attributes

with classification constraints
4x4

STYLEGAN [19] 9999 1024x1024
CELEBA-HQ

FFHQ

Transfer semantic content from a

source domain to a target domain

characterized by a different style

3x3

STYLEGAN2 [20] 3000 1024x1024 FFHQ

Transfer semantic content from a

source domain to a target domain

characterized by a different style

3x3

Table 1. Details of Deepfake GAN architectures employed for analysis. For each one is reported: all images generated, the generated image

sizes, the original input used to train the neural network, the goal of the network and the kernel size of last convolutional layer.

3. Extracting Convolutional Traces

The most common and effective technical solutions able

to generate Deepfakes are the Generative Adversarial Net-

works specifically deep ones. For all the techniques de-

scribed before, the generator G is composed of Transpose

Convolution layers [33]. In Neural Networks like CNNs,

Convolution operations apply a filter, namely kernel, to the

input multidimensional array. After each convolution layer

a pooling operation is needed to reduce output dimensional

size w.r.t. input. On the other hand, in generative models the

Transpose Convolution Layers are employed. They also ap-

ply kernels to input but they act inversely in order to obtain

an output larger but proportional to the input dimensions.

The starting idea of the proposed approach is that local

correlation of pixels in Deepfakes are dependent exclusively

on the operations performed by all the layers present in the

GAN which generate it; specifically the (latter) transpose

convolution layers. In order to find these trace, unsuper-

vised machine learning techniques were taken into account.

Indeed, different unsupervised learning techniques aim at

creating clusters containing instances of the input dataset

with high similarity between instances of the same cluster

while having high dissimilarity between instances belong-

ing to different clusters. These clusters can represent the

“hidden” structure of the dataset analyzed. Therefore, the

clustering technique must estimate which are the parame-

ters of the distributions that most likely generated the train-

ing samples. Based on this principle, an Expectation Max-

imization (EM) algorithm [29] was employed in order to

define a conceptual mathematical model able to capture the

pixel correlation of the images (e.g. spatially). The result

of EM is a feature vector representing the structure of the

Transpose Convolution Layers employed during the gener-

ation of the image, encoding in some sense is such images

if a Deepfake or not.

The initial goal is to extract a description, from input

image I , able to numerically represent the local correlations

between each pixel in a neighbourhood. This can be done

by means of convolution with a kernel k of N ×N size:

I[x, y] =

α
∑

s,t=−α

ks,t ∗ I[x+ s, y + t] (1)

In Equation 1, the value of the pixel I[x, y] is computed

considering a neighborhood of size N×N of the input data.

It is clear that the new estimated information I[x, y] mainly

depends on the kernel used in the convolution operation,

which establishes a mathematical relationship between the

pixels. For this reason, our goal is to define a vector k of size

N ×N able to capture this hidden and implicit relationship

which characterize of forensic trace we want to exploit.

Let’s assume that the element I[x, y] belongs to one of

the following models:

• M1: when the element I[x, y] satisfies Equation 1;

• M2: otherwise.

The EM algorithm is employed with its two different

steps:

1. Expectation step: computes the (density of) probabil-

ity that each element belongs to model (M1 or M2);

2. Maximization step: estimates the (weighted) param-

eters based on the probabilities of belonging to in-

stances of (M1 or M2).

Let’s suppose that M1 and M2 have different probability

distributions with M1 Gaussian distribution with zero mean



and unknown variance and M2 uniform. In the Expectation

step, the Bayes rule that I[x, y] belongs to the model M1 is

computed as follows:

Pr{I[x, y] ∈ M1 | I[x, y]} =

=
Pr{I[x, y] | I[x, y] ∈ M1} ∗ Pr{I[x, y] ∈ M1}
2
∑

i=1

Pr{I[x, y] | I[x, y] ∈ Mi} ∗ Pr{I[x, y] ∈ Mi}

(2)

where the probability distribution of M1 which repre-

sents the probability of observing a sample I[x, y], knowing

that it was generated by the model M1 is:

Pr{I[x, y] | I[x, y] ∈ M1} =
1

σ
√
2π

e−
(R[x,y])2

2σ2 (3)

where

R[x, y] =

∣

∣

∣

∣

I[x, y]−
α
∑

s,t=−α

ks,tI[x+ s, y + t]

∣

∣

∣

∣

(4)

.

The variance value σ2, which is still unknown, is then

estimated in the Maximization step. Once defined if I[x, y]

belongs to model M1 (or M2), the values of the vector ~k

are estimated using least squares method, minimizing the

following:

E(~k) =
∑

x,y

w[x, y]

(

I[x, y]−
α
∑

s,t=−α

ks,tI[x+ s, y + t]

)2

(5)

where w ≡ Pr{I[x, y] ∈ M1 | I[x, y]} (2). This error

function (5) can be minimized by computing the gradient of

vector ~k. The update of ki,j is carried out by computing the

partial derivative of (5) as follows:

∂E

∂ki,j
= 0 (6)

Hence, the following linear equations system is obtained:

α
∑

s,t=−α

ks,t

(

∑

x,y

w[x, y]I[x + i, y + j]I[x+ s, y + t]

)

=

=
∑

x,y

w[x, y]I[x+ i, y + j]I[x, y]

(7)

The two steps of the EM algorithm are iteratively re-

peated. A pseudo-code description is provided in Algorithm

Algorithm 1: Expectation-Maximization Algorithm

Data: Image I

Result: ~k

Initialize N //Kernel size

Initialize σ0

Set ~k random of size NxN

Set R,P,W matrices with 0 values of the same size as

I

Set p0 as 1/size of the range of values of I

for n = 1; n < 100 n+ = 1 do
//Expectation Step

for ∀ values in I do

R[x, y] =

∣

∣

∣

∣

I[x, y]−
α
∑

s,t=−α

ks,tI[x+ s, y + t]

∣

∣

∣

∣

P [x, y] = 1
σn

√

2π
e
−

R[x,y]

2σ2
n

W [x, y] = P [x,y]
P [x,y]+p0

//Maximization Step

Calculate k
(n+1)
s,t as shown in the formula 7

1:Expectation-Maximization. The algorithm is applied to

each channel of the input image (RGB color space).

The obtained feature vector ~k, has dimensions dependent

to parameter α. Note that the element k0,0 will always be

set equal to 0 (k0,0 = 0). Thus, for example, if a kernel k

with 3× 3 size is employed, the resulting ~k will be a vector

of 24 elements (since the values k0,0 are excluded). This is

obtained by concatenating the features extracted from each

of the three RGB channels.

The computational complexity of the EM algorithm can

be estimated to be linear in d (the number of characteristics

of the input data taken into consideration), n (the number of

objects) and t (the number of iterations).

4. Classification Phase and Results

Six datasets of images were taken into account for train-

ing and testing purposes: one containing only authentic face

images of celebrities (CELEBA), and the others contain-

ing DeepFakes generated by five different GANs (STAR-

GAN, STYLEGAN, STYLEGAN2, GDWCT, ATTGAN).

For STYLEGAN and STYLEGAN2, images were down-

loaded from STYLEGAN 11 and STYLEGAN2 12 respec-

tively; while STARGAN, ATTGAN and GDWCT were em-

ployed in inference mode to generate their respective image

datasets. An overview of the DeepFake data generated for

each GAN is reported in the Table 1.

The EM algorithm, as described in previous Section, was

employed on the 6 datasets described above, in order to ex-

11https://drive.google.com/StyleGAN
12https://drive.google.com/StyleGAN2

https://drive.google.com/drive/folders/1uka3a1noXHAydRPRbknqwKVGODvnmUBX
https://drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7


Figure 3. Overall pipeline. (a) Datasets of real (CELEBA) and Deepfake images, (b) For each images in (a) features are extracted by means

of EM algorithm; (c) types of classifiers used (K-NN, SVM, LDA).

tract a feature vector ~k able to describe the convolutional

traces left in images. EM was employed with kernels of

increasing sizes (3, 4, 5 and 7) 13. The obtained feature vec-

tor was employed as input of different naive classifiers (K-

NN, SVM and LDA) with different tasks: (i) discriminat-

ing authentic image from one specific GAN and (ii) dis-

criminating authentic images from Deepfakes. The overall

classification pipeline of the proposed approach is briefly

summarized in Figure 3. Let’s first analyse the discrim-

inative power of the extracted feature vector in order to

distinguish authentic images (CELEBA) from each of the

considered GANs (CELEBA Vs STARGAN, CELEBA Vs

STYLEGAN, CELEBA Vs STYLEGAN2, CELEBA Vs

ATTGAN, CELEBA Vs GDWCT). Figure 4 shows a vis-

ible representation by means of t-SNE [28]: in which it is

possible to notice, how some categories of networks that

create Deepfake can be “linearly” separable from authen-

tic samples. However in most case the separation is utterly

clear.

Classification tests were carried out on the obtained fea-

ture vectors with, as expected from what seen from t-SNE

representation, excellent results. All the classification re-

sults are reported in Table 2. In particular, it is possible to

note that:

• CELEBA Vs ATTGAN the maximum classification

accuracy of 92.67%, was obtained with KNN - K = 3,

and kernel size of 3x3.

• CELEBA Vs GDWCT: the maximum classification

13Typical kernel size used by the latest Transpose Convolution Layers

(which have a fundamental role in the creation of the Deepfake images) of

the different GAN architectures

accuracy of 88.40%, was obtained with KNN - K =

3,5,7, and kernel size of 3x3.

• CELEBA Vs STARGAN: the maximum classifica-

tion accuracy of 93.17%, was obtained with linear

SVM, and kernel size of 7x7.

• CELEBA Vs STYLEGAN: the maximum classifica-

tion accuracy of 99.65%, was obtained with KNN - K

= 3,5,7,9, and kernel size of 4x4.

• CELEBA Vs STYLEGAN2: the maximum classifi-

cation accuracy of 99.81%, was obtained with linear

SVM, and kernel size of 4x4.

The kernel size used by convolution layers in the neu-

ral networks represents one of the elements to identify the

forensic trace that we are looking for. Table 1 shows the

kernel size (and other information) of the neural networks

that we have taken into account for our experiments.

As described above, the structure of the GAN plays a

fundamental role in the Deepfakes detection, in particular

for what regards the generator structure. Considering the

images from STYLEGAN and STYLEGAN2, it is possible

to distinguish them, as the authors of the STYLEGAN2 ar-

chitecture have only updated parts of the generator in order

to remove some imperfections of STYLEGAN. This fur-

ther confirms the hypothesis, since even a slight modifica-

tion of the generator, in particular to the convolution layers,

leaves different traces in the images generated. When trying

to distinguish the images from STYLEGAN with those of

STYLEGAN2, we get a maximum accuracy of the 99.31%

(Table 4).



CELEBA Vs ATTGAN CELEBA Vs GDWCT CELEBA Vs STARGAN CELEBA Vs STYLEGAN CELEBA Vs STYLEGAN2

Kernel Size Kernel Size Kernel Size Kernel Size Kernel Size

3x3 4x4 5x5 7x7 3x3 4x4 5x5 7x7 3x3 4x4 5x5 7x7 3x3 4x4 5x5 7x7 3x3 4x4 5x5 7x7

3-NN 92.67 86.50 84.50 85.33 88.40 73.17 73.00 74.33 90.50 89.00 88.67 85.17 93.00 99.65 98.26 99.55 96.99 99.61 98.75 97.77

5-NN 92.00 86.50 84.83 86.17 88.40 75.67 74.17 76.67 88.83 88.83 88.17 85.00 93.00 99.65 98.26 99.32 97.39 99.61 98.21 97.55

7-NN 91.00 87.67 85.33 85.67 88.40 76.67 71.33 78.67 89.33 89.17 88.00 84.83 93.50 99.65 98.07 99.09 97.39 99.42 98.21 97.55

9-NN 90.83 87.67 84.83 86.50 87.70 76.83 71.17 79.00 89.33 89.17 87.50 84.67 92.83 99.65 98.07 99.32 97.19 99.42 98.39 97.10

11-NN 91.00 86.83 85.33 85.83 88.05 76.67 72.83 77.00 89.17 88.67 86.67 83.50 93.17 99.48 98.07 99.32 96.99 99.42 97.85 97.10

13-NN 91.00 87.17 84.50 85.33 87.87 75.33 73.50 77.17 88.33 89.33 87.50 83.50 93.50 99.48 98.07 99.09 97.39 99.22 97.67 97.10

SVM 90.50 89.67 90.33 87.00 87.35 76.50 79.00 80.50 90.00 88.50 88.83 93.17 92.00 98.96 99.42 98.41 96.99 99.81 99.46 97.77

LDA 89.50 88.50 89.50 87.17 87.52 76.00 79.33 81.67 89.67 87.83 88.83 90.00 92.50 99.31 98.84 99.09 96.79 99.61 99.10 97.77

Table 2. Overall accuracy between CELEBA vs. each one of the considered GANs. Results are presented w.r.t. all the different kernel

sizes (3x3, 4x4, 5x5, 7x7) and with different classifiers: KNN, with k ∈ {3, 5, 7, 9, 11, 13}; Linear SVM, Linear Discriminant Analysis

(LDA).

CELEBA Vs DeepNetworks

Kernel Size

3x3 4x4 5x5 7x7

3-NN 89.96 84.90 80.76 82.69

5-NN 90.22 86.63 82.48 82.77

7-NN 89.57 87.12 82.48 84.27

9-NN 89.51 86.73 83.31 84.27

11-NN 89.25 87.21 83.69 83.97

13-NN 89.57 87.31 84.20 83.45

SVMLinear 88.02 88.75 86.05 85.85

SVMsigmoid 86.08 72.60 83.38 63.66

SVMrbf 89.77 89.71 86.24 87.43

SVMPoly 82.51 86.06 84.65 86.61

LDA 87.56 88.65 86.11 85.48
Table 3. Overall accuracy between CELEBA with all Deep Neu-

ral Network, with different kernel size (3x3, 4x4, 5x5, 7x7 - ob-

tained through the EM algorithm) and with different classifiers

used: KNN, with k ∈ {3, 5, 7, 9, 11, 13}; SVM (linear, sigmoid,

rbf, polynomial), Linear Discriminant Analysis (LDA).

STYLEGAN Vs STYLEGAN2

Kernel Size

3x3 4x4 5x5 7x7

3-NN 89.36 83.57 90.51 87.24

5-NN 89.56 86.41 89.87 85.52

7-NN 89.16 85.40 90.93 87.59

9-NN 88.55 83.98 89.87 87.93

11-NN 88.35 83.37 90.30 87.24

13-NN 89.36 82.76 89.66 87.93

SVM 91.77 95.13 99.16 99.31

LDA 91.16 94.52 98.73 98.28
Table 4. Overall accuracy between STYLEGAN and STYLE-

GAN2, with all the different kernel size (3x3, 4x4, 5x5, 7x7 -

obtained through the EM algorithm) and with different employed

classifiers: KNN, with k ∈ {3, 5, 7, 9, 11, 13}; Linear SVM, Lin-

ear Discriminant Analysis (LDA).

Finally, another type of classification was the compar-

ison between CELEBA original images and all the im-

ages generated with all the networks as a binary classifi-

cation problem. In this test, a further analysis of the two-

dimensional t-SNE was carried out. Figure 5) shows that,

in this case, samples cannot be linearly separated. For

this reason, other non-linear classifiers were taken into ac-

count reaching a maximum accuracy of 90.22% (with KNN,

K=5), with kernel employed in the EM of size 3×3. Table 3

shows the obtained results in the binary classification task.

Many additional experiments were carried out to fur-

therly demonstrate the effectiveness of the extracted fea-

ture vector as a descriptor of the hidden convolutional trace.

Specifically results w.r.t. classification tests between dif-

ferent combinations of GANs are described furtherly con-

ferming the robustness of the technique. Also other t-SNE

representations are provided and can be found at the follow-

ing address https://iplab.dmi.unict.it/mfs/DeepFake/.

Finally, it is worth to point out that during the research

activity a deep neural network technique was employed to

detect Deepfakes on the datasets described above. Tests car-

ried out with VGG-1614 on both spatial and frequency do-

main of images achieved a best result of 53% of accuracy in

the binary classification task showing that a deep learning

approach is not able to extract what the proposed approach

was able to. Our results are similar in terms of overall per-

formance by experiments exploited in Wang et al. [42] that

is actually able to reach very high results by simply using

a discriminator trained on one family of GANs and using it

to infer if images are real or generated from other types of

GANs.

5. Conclusions and future works

The final result of our study to counter the Deepfake phe-

nomenon was the creation of a new detection method based

on features extracted through the EM algorithm. The under-

lying fingerprint has been proven to be effective to discrim-

inate between images generated by recent GANs architec-

tures specifically devoted to generate realistic people’s face.

Some more works will be devoted to investigate the role of

the kernel dimensions. Also the possibility to extend such

methodology to video’s analysis and/or evaluate the robust-

ness with respect to standard image editing (e.g. photomet-

ric and compression) and malicious processing (e.g. an-

tiforensics) devoted to mask the underlying forensic traces

14https://github.com/1297rohit/VGG16-In-Keras

https://iplab.dmi.unict.it/mfs/DeepFake/
https://github.com/1297rohit/VGG16-In-Keras


Figure 4. Two-dimensional t-SNE representation (CELEBA: red; DeepNetwork: blue) of all kernel sizes for each classification task: (a)

CELEBA ATTGAN; (b) CELEBA STARGAN; (c) CELEBA GDWCT; (d) CELEBA STYLEGAN; (e) CELEBA STYLEGAN2.

Figure 5. Two-dimensional t-SNE representation (CELEBA: red; DeepNetwork: blue) of a binary classification problem (with different

kernel size): CELEBA Vs DeepNetworks.

will be considered. In general one of the key aspect will the

possibility to adapt the method in situations on the “wild”

without any a-priori knowledge of the generation process.

Acknowledgement

This research was supported by iCTLab s.r.l. - Spin-

off of University of Catania (https://www.ictlab.srl), which

provided domain expertise and computational power that

greatly assisted the activity.

References

[1] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen.

Mesonet: a compact facial video forgery detection

network. In 2018 IEEE International Workshop on In-

formation Forensics and Security (WIFS), pages 1–7.

IEEE, 2018. 3

[2] S. Battiato, O. Giudice, and A. Paratore. Multimedia

forensics: discovering the history of multimedia con-

tents. In Proceedings of the 17th International Con-

ference on Computer Systems and Technologies 2016,

pages 5–16. ACM, 2016. 3

[3] S. Battiato and G. Messina. Digital forgery estimation

into DCT domain: a critical analysis. In Proceedings

of the First ACM Workshop on Multimedia in Foren-

sics, pages 37–42, 2009. 3

[4] B. Bayar and M. C Stamm. A deep learning approach

to universal image manipulation detection using a new

convolutional layer. In Proceedings of the 4th ACM

Workshop on Information Hiding and Multimedia Se-

curity, pages 5–10, 2016. 3

[5] W. Cho, S. Choi, D. K. Park, I. Shin, and J.

Choo. Image-to-image translation via group-wise

deep whitening-and-coloring transformation. In Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 10639–10647, 2019.

3, 4

[6] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo.

Stargan: Unified generative adversarial networks for

multi-domain image-to-image translation. In Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 8789–8797, 2018. 2, 3, 4

[7] F. Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recogni-

tion, pages 1251–1258, 2017. 3

https://www.ictlab.srl


[8] D. Cozzolino, G. Poggi, and L. Verdoliva. Recasting

residual-based local descriptors as convolutional neu-

ral networks: an application to image forgery detec-

tion. In Proceedings of the 5th ACM Workshop on

Information Hiding and Multimedia Security, pages

159–164, 2017. 3

[9] R. Durall, M. Keuper, F. Pfreundt, and J. Keuper.

Unmasking deepfakes with simple features. arXiv

preprint arXiv:1911.00686, 2019. 3

[10] J. Fridrich and J. Kodovsky. Rich models for steganal-

ysis of digital images. IEEE Transactions on Informa-

tion Forensics and Security, 7(3):868–882, 2012. 3

[11] F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato.

First quantization matrix estimation from double com-

pressed JPEG images. IEEE Transactions on Informa-

tion Forensics and Security, 9(8):1299–1310, 2014. 3

[12] O. Giudice, F. Guarnera, A. Paratore, and S. Battiato.

1-D DCT domain analysis for JPEG double compres-

sion detection. In Proceeedings of International Con-

ference on Image Analysis and Processing, pages 716–

726. Springer, 2019. 3

[13] O. Giudice, A. Paratore, M. Moltisanti, and S. Bat-

tiato. A Classification Engine for Image Ballistics of

Social Data, pages 625–636. Springer International

Publishing, 2017. 3

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial nets. In Advances in Neural

Information Processing Systems, pages 2672–2680,

2014. 2

[15] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen.

Attgan: Facial attribute editing by only changing what

you want. IEEE Transactions on Image Processing,

28(11):5464–5478, 2019. 3, 4

[16] G. B Huang, M. Mattar, T. Berg, and E. Learned-

Miller. Labeled faces in the wild: A database forstudy-

ing face recognition in unconstrained environments.

In Workshop on Faces in ’Real-Life’ Images: De-

tection, Alignment, and Recognition, Oct 2008, Mar-

seille, France. inria-00321923, 2008. 3

[17] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally

and locally consistent image completion. ACM Trans-

actions on Graphics (ToG), 36(4):1–14, 2017. 2

[18] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progres-

sive growing of gans for improved quality, stability,

and variation. arXiv preprint arXiv:1710.10196, 2017.

3

[19] T. Karras, S. Laine, and T. Aila. A style-based gener-

ator architecture for generative adversarial networks.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4401–4410,

2019. 2, 3, 4

[20] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehti-

nen, and T. Aila. Analyzing and improving the image

quality of stylegan. arXiv preprint arXiv:1912.04958,

2019. 3, 4

[21] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L.

Denoyer, and M. Ranzato. Fader networks: Manip-

ulating images by sliding attributes. In Advances in

Neural Information Processing Systems, pages 5967–

5976, 2017. 3

[22] O. Langner, R. Dotsch, G. Bijlstra, D. HJ Wigboldus,

S. T Hawk, and AD Van Knippenberg. Presentation

and validation of the radboud faces database. Cogni-

tion and emotion, 24(8):1377–1388, 2010. 2

[23] A. Boesen Lindbo Larsen, S. Kaae Sønderby, H.

Larochelle, and O. Winther. Autoencoding beyond

pixels using a learned similarity metric. arXiv preprint

arXiv:1512.09300, 2015. 3

[24] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cun-

ningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,

Z. Wang, et al. Photo-realistic single image super-

resolution using a generative adversarial network. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4681–4690,

2017. 2

[25] H. Lee, H. Tseng, J. Huang, M. Singh, and M. Yang.

Diverse image-to-image translation via disentangled

representations. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 35–51,

2018. 3

[26] M. Li, W. Zuo, and D. Zhang. Deep identity-

aware transfer of facial attributes. arXiv preprint

arXiv:1610.05586, 2016. 2

[27] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning

face attributes in the wild. In Proceedings of the IEEE

International Conference on Computer Vision, pages

3730–3738, 2015. 2, 3

[28] L. van der Maaten and G. Hinton. Visualizing data

using t-sne. Journal of Machine Learning Research,

9(Nov):2579–2605, 2008. 6

[29] T. K Moon. The expectation-maximization algo-

rithm. IEEE Signal Processing Magazine, 13(6):47–

60, 1996. 1, 4

[30] G. Perarnau, J. Van De Weijer, B. Raducanu, and J. M
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