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Abstract

Audio to Video generation is an interesting problem that
has numerous applications across industry verticals includ-
ing film making, multi-media, marketing, education and
others. High-quality video generation with expressive facial
movements is a challenging problem that involves complex
learning steps for generative adversarial networks. Further,
enabling one-shot learning for an unseen single image in-
creases the complexity of the problem while simultaneously
making it more applicable to practical scenarios.

In the paper, we propose a novel approach OneShotA2V
to synthesize a talking person video of arbitrary length us-
ing as input: an audio signal and a single unseen image
of a person. OneShotA2V leverages curriculum learning to
learn movements of expressive facial components and hence
generates a high-quality talking head video of the given per-
son.

Further, it feeds the features generated from the au-
dio input directly into a generative adversarial network
and it adapts to any given unseen selfie by applying few-
shot learning with only a few output updation epochs.
OneShotA2V leverages spatially adaptive normalization
based multi-level generator and multiple multi-level dis-
criminators based architecture. The input audio clip is
not restricted to any specific language, which gives the
method multilingual applicability. Experimental evalua-
tion demonstrates superior performance of OneShotA2V
as compared to Realistic Speech-Driven Facial Animation
with GANs(RSDGAN) [43], Speech2Vid [8], and other ap-
proaches, on multiple quantitative metrics including: SSIM
(structural similarity index), PSNR (peak signal to noise
ratio) and CPBD (image sharpness). Further, qualitative
evaluation and Online Turing tests demonstrate the efficacy
of our approach.

1. Introduction
Audio to Video generation has numerous applications

across industry verticals including film making, multi-
media, marketing, education and others. In the film indus-
try, it can help through automatic generation from the voice
acting and also occluded parts of the face. Additionally, it
can help in limited bandwidth visual communication by us-
ing audio to auto-generate the entire visual content or by
filling in dropped frames. High-quality video generation
with expressive facial movements is a challenging problem
that involves complex learning steps.

The audio or speech signal contains rich information
about the mood (expression) and the intent of the user. On
hearing the audio, one can predict the sentiment or emotion
depicted by the user. This expressive power of the audio
can be used to generate robust and high-quality talking head
videos. The talking-head video aims to handle expressive
facial movements and head movement based on the audio
content and expression.

Most of the work in this field has been centered towards
the mapping of audio features (MFCCs, phonemes) to vi-
sual features (Facial landmarks, visemes etc.) [1, 40, 7, 20].
Further computer graphics techniques select frames of a
specific person from the database to generate expressive
faces. Few techniques which attempt to generate the video
using raw audio focuses for the reconstruction of the mouth
area only [8]. Due to a complete focus on lip-syncing, the
aim of capturing human expression is ignored. Further, such
methods lack smooth transition between frames which does
not make the final video look natural. Regardless, of which
approach we use, the methods described above are either
subject dependent [37, 18] or generate unnatural videos [47]
due to lack of smooth transition and/or require high com-
pute time to generate video for a new unseen speaker image
for ensuring high-quality output [48].

We propose a novel approach that is capable of develop-
ing a speaker-independent and language-independent high-
quality natural-looking talking head video from a single
unseen image and an audio clip. Our model captures the
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word embeddings from the audio clip using a pre-trained
deepspeech2 model [11] trained on Librispeech corpus [27].
These embeddings and the image are then fed to the multi-
level generator network which is based on the Spatially-
Adaptive Normalization architecture [28]. Multiple multi-
level discriminators [46] are used to ensure synchronized
and realistic video generation. A multi-scale frame dis-
criminator is used to generate high-quality realistic frames.
A multi-level temporal discriminator is modeled which en-
sures temporal smoothening along with spatial consistency.
Finally, to ensure lip synchronization we use SyncNet ar-
chitecture [2] based discriminator applied to the lower half
of the image. To make the generator input-time indepen-
dent, a sliding window approach is used. Since, the genera-
tor needs to finally learn to generate multiple facial compo-
nent movements along with high video quality, multiple loss
functions both adversarial and non-adversarial are used in a
curriculum learning fashion. For fast low-cost adaptation to
an unseen image, a few output updation epochs suffice to
provide one-shot learning capability to our approach.

Specifically, we make the following contributions:
(a) We present a novel approach, OneShotA2V, that
leverages curriculum learning to simultaneously learn
movements of expressive facial components and generate
a high-quality talking-head video of the given person.
(b) Our approach feeds the features generated from the au-
dio input directly into a generative adversarial network and
it adapts to any given unseen selfie by applying one-shot
learning with only a few output updation epochs.
(c) It leverages spatially adaptive normalization based
multi-level generator and multiple multi-level discrimina-
tors based architecture to generate video which simulta-
neously considers lip movement synchronization and nat-
ural facial expressions incorporating eye blink and eyebrow
movements along with head movement.
(d) Experimental evaluation on the GRID [10] datasets,
demonstrates superior performance of OneShotA2V as
compared to Realistic Speech-Driven Facial Animation
with GANs(RSDGAN) [43], Speech2Vid [8], and other ap-
proaches, on multiple quantitative metrics including: SSIM
(structural similarity index), PSNR (peak signal to noise ra-
tio) and CPBD (image sharpness). Further, qualitative eval-
uation and Online Turing tests demonstrate the efficacy of
our approach.

2. Related Work
A lot of work has been done in synthesizing realistic

videos from audio with an image as an input. Speech is
a combination of content and expression and there is a per-
ceptual variability of speech that exists in the form of vari-
ous languages, dialects and accents. The understanding and
modeling of the speech are more complicated as compared
to the text which is devoid of various aspects of speech.

Various works have been done in this aspect to under-
stand the different aspects of speech to generate realistic

speech-driven videos.
The earliest methods for generating videos relied on Hid-

den Markov Models which captured the dynamics of audio
and video sequences. Simons and Cox [33] used the Viterbi
algorithm to calculate the most likely sequence of mouth
shape given the particular utterances. Such methods are not
capable of generating quality videos and lack emotions.

2.1. Phoneme and Visemes based classification of
speech

Phoneme and Visemes based approaches have been used
to generate the videos. Real-Time Lip Sync for Live 2D An-
imation [1] has used an LSTM based approach to generate
live lip synchronization on 2D character animation.

Some of these methods target rigged 3D characters or
meshes with predefined mouth blend shapes that correspond
to speech sounds [36, 17, 38, 12, 23, 37], while others gen-
erate 2D motion trajectories that can be used to deform fa-
cial images to produce continuous mouth motions [4, 5].
These methods are primarily focused on mouth motions
only and do not show emotions such as eye blinking, eye-
brows movements, etc.

2.2. Video synthesis using deep networks

CNN has been used for generating the videos by giv-
ing audio features to the network. Audio2Face [40] model
uses the CNN method to generate an image from audio sig-
nals. You said That [8](Speech2Vid) has used an encoder-
decoder based approach for generating realistic videos.
MFCC coefficients of audio signals are being used as an
input. L1 loss at the pixel level is used between synthe-
sized image and target image which penalizes any devia-
tion of the generated image from the target one. This dis-
incentivizes the model to generate realistic images without
spontaneous expressions except for mouth movement. Our
approach uses a spatially adaptive network instead of the
encoder as used in [8] to learn the parameters of an image.

Synthesizing Obama: Learning Lip Sync from Au-
dio [37] is able to generate quality videos of Obama speak-
ing with accurate lip-sync. They use RNN based approach
to map from raw audio features to mouth shapes. This
method is trained on a single target image to generate high-
quality videos. Our approach is able to generate videos on a
single unseen image using a spatially adaptive network and
a one-shot approach. LumièreNet: Lecture Video Synthesis
from Audio [18] is generating high-quality, full-pose head-
shot lecture videos from the instructor’s new audio narra-
tion of any length. They have used dense pose [13], LSTM
, variational auto-encoder [29] and GANs based approach
to synthesize the videos . The limitation is that they are
not able to produce lip-synced video as they are only using
dense pose for pose information. Our approach has used a
synchronization discriminator for the generation of coher-
ent lip-synced videos. They have used Pix2Pix [15] for the
frame synthesis and we are using a spatially adaptive gen-



erator for frame generation which is able to generate higher
quality videos.

The recent introduction of GANs in [14] has shifted
the focus of the machine learning community to generative
modeling. The generator’s goal is to produce realistic sam-
ples and the discriminator’s goal is to distinguish between
the real and generated samples. However, GANs are not
limited to these applications and can be extended to handle
videos [45].

Temporal Gan [32] and Generating Videos with Scene
Dynamics [42] have done the straight forward adaptation
of GANs for generating videos by replacing 2D convolu-
tion layers with 3D convolution layers. Such methods are
able to capture temporal dependencies but require constant
length videos. Our approach is able to produce lower word
error rate and generate consistent videos of variable length
using multi-scale temporal discriminator and synchroniza-
tion discriminator.

Realistic Speech-Driven Facial Animation with
GANs(RSDGAN) [43] used GAN based approach to
produce quality videos. They have used identity encoder,
context encoder and frame decoder to generate images and
used various discriminators to take care of different aspects
of video generation. They have used frame discriminator
to distinguish real and fake images, sequence discriminator
to distinguish real and fake videos and synchronization
discriminator for better lip synchronization in videos. We
introduce spatially adaptive normalization along with a
one-shot approach and implemented curriculum learning to
produce better results. This is explained in Sections 3,4,5.

Few-Shot Adversarial Learning of Realistic Neural Talk-
ing Head Models [48] have used meta-learning for generat-
ing the videos on unseen images taking video as an input.
They have used content loss measures the distance between
the ground truth image and the reconstruction using the per-
ceptual similarity measure [16] from VGG19 [34] network
trained for ILSVRC classification and VGGFace [24] and
adversarial loss. For unseen images, the model needs to
run for 75 epochs on an unseen image to give better video
quality. This is computationally heavy, so we are using a
one-shot approach using perceptual loss during inference.
Due to the spatially adaptive nature of our generator archi-
tecture, we are able to generate good quality video at a low
computational cost. Few shot Video to Video Synthesis [44]
is able to generate videos on unseen images given a video as
an input by using a network weight generation module for
extracting the pattern. Such a method is computationally
heavy concerning our approach which is one shot approach
in video generation.

X2face [47] model uses GANs based approach to gen-
erate videos given a driving audio or driving video and a
source image as an input. The model learns the face embed-
dings of source frame and driving vectors of driving frames
or audio basis which generates the videos. This model is
trained on 1fps which can lead to un-natural video synthe-

sis. They have used L1 loss and identity loss for video gen-
eration and have not used any loss for temporal coherency.
Our approach generates the videos at 25fps which are capa-
ble of generating natural realistic videos and have incorpo-
rated multi-scale temporal discriminator and lip-sync dis-
criminator for temporal coherency.

The MoCoGAN [41] uses RNN based generators with
separate latent spaces for motion and content. A sliding
window approach is used so that the discriminator can han-
dle variable-length sequences. This model is trained to gen-
erate disentangled content and motion vectors such that they
can generate audios with different emotions and contents.
Our approach has used deep speech2 features to learn con-
tent embeddings such that it is able to produce better videos
with low word error rate.

Animating Face using Disentangled Audio Representa-
tions [25] has generated the disentangled representation of
content and emotion features to generate realistic videos.
They have used variational autoencoders [29] to learn rep-
resentation and feed them into GANs based model to gen-
erate videos. Our approach has used deep speech2 features
to learn content embeddings instead of variational autoen-
coders. Instead of their Unet [30] architecture, we are us-
ing a spatially adaptive generator to generate high-quality
videos.

Audio-driven Facial Reenactment [39] used Audioex-
pressionNet to generate 3D face model. The estimated 3D
face model is rendered using the rigid pose observed from
the original target image. Our approach is using a spatially
adaptive and one-shot approach to generate 2D videos and
are not generating 3D mesh.

Existing methodologies have worked on video genera-
tions with lip movement and expressions. Our goal is to
create high-quality videos using a one-shot approach, so
that we can experience high definition videos along with
expressions and multilingual support.

3. Architectural Design
OneShotA2V consists of a single generator and 3 dis-

criminators as shown in Figure 1. Each of the discrimina-
tors are used for specific purposes. Different losses are used
to make the generator learn better distribution for generat-
ing realistic videos.

3.1. Generator
The initial layers of generator, G uses deepspeech2 [11]

layers followed by Spatially-Adaptive normalization simi-
lar to SPADE architecture [28]. Conditional input of an
audio frame and image is fed to the spatially adaptive net-
work. Instead of giving the semantic input to the network as
proposed in SPADE architecture, we give aligned images in
an upsampling manner. This helps in the prevention of loss
of information due to normalization.

An audio input of 200 ms is given along with the im-
age to produce a single frame of the video. The audio input



Figure 1. Model for generating robust and high-quality videos.
This uses deep speech audio features to be fed into SPADE Gener-
ator and 2 discriminators i.e frame discriminator which is a multi-
scale discriminator for frame generation and another discriminator
for better lip synchronization.

Figure 2. We have used the SyncNet architecture for better lip syn-
chronization which is trained on GRID dataset with contrastive
loss and then used its loss in our proposed architecture

is overlapping with the previous audio input with an over-
lapping interval of 0.16 ms. Every audio frame is centered
around a single video frame. To do that, zero padding is
done before and after the audio signal and use the following
formula for the stride.

stride =
audio sampling rate
video frames per sec

3.1.1 Audio features using deepspeech2 model

The MFCC coefficients of audio input is fed into the pre-
trained deepspeech2 for extracting the content-related fea-
tures of audio. We have taken the few layers of deepspeech2
network and fed it as an input to the generator. This helps
in improving the lip synchronization aspect for the video
generation.

3.2. Discriminator
We have used 3 discriminators namely a multi-scale

frame discriminator, a multi-scale temporal discriminator
and a synchronization discriminator.

3.2.1 Multi-scale Frame Discriminator

Multi-scale discriminator [46], D is used in the proposed
model to distinguish the coarser and finer details between
real and fake images. Adversarial training with the dis-
criminator helps in generating realistic frames. To have
high resolution generated frames, we need to have an ar-
chitecture with better receptive field. A deeper network can
cause overfitting, to avoid that, multi-scale discriminators
are used. Multi-scale frame discriminator consists of 3 dis-
criminators that have an identical network structure but op-
erate at different image scales. These discriminators are re-
ferred to as D1, D2 and D3. Specifically, we downsample
the real and synthesized high-resolution images by a factor
of 2 and 4 to create an image pyramid of 3 scales. The dis-
criminators D1, D2 and D3 are then trained to differentiate
real and synthesized images at the 3 different scales, respec-
tively. The discriminators operate from coarse to fine level
and help the generator to produce high-quality images.

3.2.2 Multi-scale Temporal Discriminator

Every frame in a video is dependent on its previous frames.
To capture the temporal property along with a spatial one,
we have used a multi-scale temporal discriminator [18].
This discriminator is modeled to ensure a smooth transition
between consecutive frames and achieve a natural-looking
video sequence. The multi-scale temporal discriminator is
described as

L(T,G,D) =

t∑
i=t−L

[log(D(xi))] + [log(D(1−G(zi)))]

where t is the time instance of an audio and L is the
length of the time interval for which the adversarial loss is
computed.

3.2.3 Synchronization Discriminator

To have coherent lip synchronization, the proposed model
uses SyncNet architecture proposed in Lip Sync in the
wild [9]. As shown in Figure 2 the input to the discrimina-
tor is an audio signal of 200ms time interval(5 audio signals
of 40ms each) and 5 frames of the video. The lower half of
the frame of resized to (224,224,3) is fed as an input.

4. Curriculum Learning
We have trained OneShotA2V in multiple phases so that

it can produce better results. In the first phase we have used
a multi-scale frame discriminator and applied the adversar-
ial loss, feature matching loss and perceptual loss to learn
the higher-level features of the image. When these losses
stabilize, we move to the second phase in which we have



added a multi-scale temporal discriminator and synchro-
nization discriminator and used reconstruction loss, Con-
trastive loss and temporal adversarial loss to get a better
quality image near mouth region and coherent lip synchro-
nized high-quality videos. After the stabilization of the
above losses, we have added blink loss in the third phase
to generate a more realistic image capturing emotions such
as eye movement and eye blinks.

4.1. Losses
OneShotA2V is trained with different losses to generate

realistic videos as explained below.

4.1.1 Adversarial Loss

Adversarial Loss is used to train the model to handle adver-
sarial attacks and ensure generation of high-quality images
for the video. The loss is defined as:

LGAN(G,D) = Ex∼Pd [log(D(x))] + Ez∼Pz [log(D(1−G(z)))]

where G tries to minimize this objective against an ad-
versarial D that tries to maximize.

4.1.2 Reconstruction loss

Reconstruction loss [21] is used on the lower half of the
image to improve the reconstruction in mouth area. L1 loss
is used for this purpose as described below:

LRL =
∑

nε[0,W ]∗[H/2,H]

(Rn −Gn)

where, Rn and Gn are the real and generated frames re-
spectively.

4.1.3 Feature Loss

Feature-matching Loss [46] ensures generation of natural-
looking high-quality frames. We take the L1 loss of be-
tween generated images and real images for different scale
discriminators and then sum it all. We extract features from
multiple layers of the discriminator and learn to match these
intermediate representations from the real and the synthe-
sized image. This helps in stabilizing the training of the
generator. The feature matching loss, LFM(G,Dk) is given
by:

LFM(G,Dk) = E(x,z)

T∑
n=1

[
1

N i
||Dk

(i)(x)−Dk
(i)(G(z))||1]

where, T is the total number of layers and Ni denotes the
number of elements in each layer.

4.1.4 Perceptual Loss

The perceptual similarity metric is calculated between the
generated frame and the real frame. This is done by us-
ing features of a VGG19 [34] model trained for ILSVRC
classification and VGGFace [24] dataset.The perceptual
loss [16],(LPL) is defined as:

LPL = λ

N∑
n=1

[
1

M i
||F (i)(x)− F (i)(G(z))||1]

where, λ is the weight for perceptual loss and F (i) is the ith
layer of VGG19 network with Mi elements of VGG layer.

4.1.5 Contrastive Loss

For coherent lip synchronization, we use the Synchroniza-
tion Discriminator with Contrastive loss. The training ob-
jective is that the output of the audio and the video networks
are similar for genuine pairs, and different for false pairs.

Contrastive loss,(LCL) is given by following equation

LCL =
1

2N

N∑
n=1

(yn)d
2

n + (1− yn)max(margin− dn, 0)
2

dn = ||vn − an||2

where, vn and an are fc7 vectors for video and audio in-
puts respectively. y ε [0,1] is the binary similarity metric for
video and audio input.

4.1.6 Blink loss

We have used the eye aspect ratio (EAR) taken from Real-
Time Eye Blink Detection using Facial Landmarks [35] to
calculate the blink loss. A blink is detected at the location
where a sharp drop occurs in the EAR signal. Loss is de-
fined as:

m =
||p2− p6||+ ||p3− p5||

||p1− p4||

LBL = ||mr −mg||

where, pi is described in Figure 3. We have taken the L1
loss of eye aspect ratio(EAR) between real image mr and
synthesized frame mg.



Figure 3. Spatio-Temporal Normalization Architecture

5. Few shot learning
To achieve a more sharp and a better image quality for an

unseen subject, we have used one shot approach using per-
ceptual loss during inference time. Our approach is com-
putationally less expensive as compared to [48, 44] which
we have described in Section 2 and because of the spatially
adaptive nature of generator architecture, we are able to
achieve high-quality video. We run the model for 5 epochs
during inference time to get high-quality video frames.

6. Experiments and Results
6.1. Datasets and Training

We have used the GRID dataset [10] and LOMBARD
GRID [26] for the experiment and evaluation of different
metrics. GRID dataset is a large multi-talker audiovisual
sentence corpus. This corpus consists of high-quality audio
and video (facial) recordings of 1000 sentences spoken by
each of 34 talkers (18 male, 16 female). LOMBARD GRID
dataset is a bi-view audiovisual Lombard speech corpus that
can be used to support joint computational-behavioral stud-
ies in speech perception. The corpus includes 54 talkers,
with 100 utterances per talker (50 Lombard and 50 plain
utterances). It consists of 5400 videos generated on 54 talk-
ers comprising 30 female talkers and 24 male talkers.

Our model is implemented in Pytorch and takes approx-
imately 4 days to run on 4 Nvidia V100 GPUs for train-
ing. Around 5000 and 1200 videos of the GRID dataset are
used for training and testing purposes respectively. We have
taken 3000 and 600 videos of the LOMBARD GRID dataset
for training and testing purposes. The frames are extracted
at 25fps. We have taken 16khz as sampling frequency for
audio signals and used 13MFCC coefficients for 0.2 sec of
overlapping audio for experimentation.

The aligned face is generated for every speaker using fa-
cial landmark detector [3] and HopeNet [31] for calculating
the yaw, pitch and roll angles to get the most aligned faces
for every speaker as an input.

We take the Adam optimizer [19] with learning rate =
0.002 and β1= 0.0 and β2 = 0.90 for the generator and dis-
criminators. The learning rate of the generator and discrim-
inator is constant for 50 epochs and after that it decays to
zeros in the next 100 epochs.

6.2. Metrics

1. PSNR- Peak Signal to Noise Ratio: It computes the
peak signal to noise ratio between two images. The higher
the PSNR the better the quality of the reconstructed image.

2. SSIM- Structural Similarity Index: It is a percep-
tual metric that quantifies image quality degradation. The
larger the value the better the quality of the reconstructed
image.

3. CPBD- Cumulative Probability Blur Detection: It
is a perceptual based no-reference objective image sharp-
ness metric based on the cumulative probability of blur de-
tection developed at the Image.

4. WER- Word error rate: It is a metric to evaluate
the performance of speech recognition in a given video. We
have used LipNet architecture [2] which is pre-trained on
the GRID dataset for evaluating the WER. On the GRID
dataset, Lipnet achieves 95.2 percent accuracy which sur-
passes the experienced human lipreaders.

5. ACD- Average Content Distance( [41]): It is used
for the identification of speaker from the generated frames
using OpenPose [6]. We have calculated the Cosine dis-
tance and Euclidean distance of representation of the gener-
ated image and the actual image from Openpose. The dis-
tance threshold for the OpenPose model should be 0.02 for
Cosine distance and 0.20 for Euclidean distance [22]. The
lesser the distances the more similar the generated and ac-
tual images.

6.3. Qualitative Results

OneShotA2V is able to produce natural-looking high-
quality videos of previously unseen input image and audio
signals. The videos are able to do lip synchronization on
the sentences provided to them. Videos were generated
targeting different languages ensuring the proposed method
is language independent and can generate videos for any
linguistic community.

Figure 4. Female uttering the word ”now”

Figure 5. Male uttering the word ”bin”

Figure 4 and Figure 5 show different examples of the
generated and lip synchronized videos for male and female
test cases for the same audio clip and their ground truth
frames. As observed the opening and closing of the mouth



is in sync with the audio signals. Our method is able to
produce synchronized lip movements displaying facial ex-
pressions such as forehead lines and eye blinks ensuring a
natural-looking aesthetic output.

Figure 6. Movement of eyes while speaking

Figure 6 show the the movement of eyes of speaker
while speaking . Such frames are able to generate natural
videos capturing the eye’s movement while speaking. s

Figure 7. Speaker uttering a hindi male name ”Modi”

Figure 7 show the generated output for a hindi audio
clip (”Modi”). As observed, the generated frames are able
to produce the expected lip movements and provide multi-
lingual support.

Figure 8. Speaker uttering the word ”Please” on the GRID dataset

Figure 9. Speaker uttering the word ”Please” on the LOMBARD
GRID dataset

Figure 8 show the generated output with the model
trained on the GRID dataset and Figure 9 show the gen-
erated output with the model trained on the LOMBARD
GRID dataset.

For video clips, see the supplementary data.

6.4. Quantitative Results

The Proposed Model has performed better on image
reconstruction metrics such as peak signal to noise ra-
tio(PSNR) and Structural Similarity Index(SSIM) as com-
pared to Realistic Speech-Driven Facial Animation with
GANs(RSDGAN) [43] and Speech2Vid [8] Model as
shown in Table 1. We also display the comparison with
OneShotA2V trained on the LOMBARD GRID dataset

[26]. This is achieved with the use of spatially adaptive nor-
malization in the generator architecture along with training
of the proposed model in curriculum learning fashion.

Method SSIM PSNR CPBD
OneShotA2V 0.881 28.571 0.262

OneShotA2V(lombard) 0.922 28.978 0.453
RSDGAN 0.818 27.100 0.268

Speech2Vid 0.720 22.662 0.255
Table 1. Comparision of OneShotA2V with RSDGAN and
Speech2Vid for SSIM, PSNR and CPBD

Method WER ACD-C ACD-E
OneShotA2V 27.5 0.005 0.09

OneShotA2V(lombard) 26.1 0.002 0.064
RSDGAN 23.1 - 1.47x10-4

Speech2Vid 58.2 - 1.48x10-4

Table 2. The above comparison is on lip synchronizing metric i.e
word error rate(WER) and average content distance(ACD) by cal-
culating cosine distance(ACD-C) and euclidean distance(ACD-E)
between the actual image and the generated image.

Table 2 shows the comparison of OneShotA2V with the
RSDGAN and Speech2Vid [8] models against the metrics
such as word error rate (WER) to see the lip synchroniz-
ing performance of the generated videos. For this, we have
used the pre-trained LipNet model whose accuracy is 95.2%
on GRID datasets. We find that OneShotA2V performed
better than Speech2Vid but lagged behind RSDGAN. We
have used the pre-trained OpenFace model to calculate the
Cosine distance and Euclidean distance for average content
distance. Experiments on OpenFace show that the distance
threshold for the model should be 0.02 for cosine distance
and 0.20 for euclidean distance [22].

6.5. Psychophysical assessment
Results are visually rated (on a scale of 5) individually

by 25 persons, on three aspects, lip synchronization, eye
blinks and eyebrow raises and quality of video. The sub-
jects were shown anonymous videos at the same time for the
different audio clips for side-by-side comparison. Table 3
clearly shows that OneShotA2V performs significantly bet-
ter in quality and lip synchronization which is of prime im-
portance in videos.

Method Lip-Sync Eye-blink Quality
OneShotA2V 90.8 88.5 76.2

RSDGAN 92.8 90.2 74.3
Speech2Vid 90.7 87.7 72.2

Table 3. Psychophysical Evaluation (in percentages) based on
users rating



To test the naturalism of the generated videos we conduct
an online Turing test 1. Each test consists of 25 questions
with 13 fake and 12 real videos. The user is asked to label
a video real or fake based on the aesthetics and naturalism
of the video. Approximately 300 user data is collected and
their score of the ability to spot fake video is displayed in
Figure 10.

Figure 10. Distribution of user scores for the online Turing test

6.6. Ablation Study

We studied the incremental impact of various loss func-
tions on the LOMBARD GRID dataset and the GRID
dataset. We have provided corresponding videos in supple-
mentary data for better visual understanding. As mentioned
in section 4 (Curriculum learning) each loss has a differ-
ent impact on the final output video. Table 4 and Table
5 depicts the impact of different losses on both datasets.
The base model mentioned is the includes the adversarial
gan loss, feature loss and perceptual loss. The addition of
contrastive loss and multi-scale temporal adversarial loss in
sequence discriminator helps in achieving coherent lip syn-
chronized videos and improves the SSIM, PSNR and CPBD
values. Further addition of Blink Loss, ensures improved
quality of the final video.

Method SSIM PSNR CPBD
Base Model(BM) 0.869 27.996 0.213
BM + CL +TAL 0.873 28.327 0.258

BM + CL + TAL+ BL 0.881 28.571 0.262
Table 4. Ablation Study on the GRID dataset where, CL is the
contrastive loss ,TAL is the multi-scale temporal adversarial loss
and BL is the Blink loss

The use of deeepspeech2 to generate audio to content
embeddings helped in the improvement of WER and help
us reach almost similar performance as RSDGAN.

1https://forms.gle/JEk1u5ahc9gny7528

Method SSIM PSNR CPBD
Base Model(BM) 0.909 28.656 0.386
BM + CL + TAL 0.913 28.712 0.390

BM + CL + TAL+ BL 0.922 28.978 0.453
Table 5. Ablation Study on the LOMBARD GRID dataset where,
CL is the contrastive loss, TAL is the multi-scale temporal adver-
sarial loss and BL is the Blink loss

6.7. Conclusions and Future Work

In this paper, we have considered robust one-shot video
generation from audio input. Our approach, OneShotA2V,
uses multi-level generator and multiple multi-level discrim-
inators along with curriculum learning and few-shot learn-
ing to generate high-quality videos. Spatially adaptive nor-
malization helps to ensure light generator architecture with-
out encoders and also efficient few-shot learning with few
updation epochs on the generator. The coherent lip move-
ment and lower word error rate(WER) is attributed to the
use of multi-scale temporal discriminator and synchroniza-
tion discriminator. The use of deep speech features helps
the model to learn the content vectors of audio in a better
manner which led to lower word error rate.

Experimental evaluation on GRID dataset demon-
strates superior performance of OneShotA2V as com-
pared to Realistic Speech-Driven Facial Animation with
GANs(RSDGAN) [43], Speech2Vid [8], and other ap-
proaches, on multiple quantitative metrics including: SSIM
(structural similarity index), PSNR (peak signal to noise
ratio) and CPBD (image sharpness). Further, qualitative
evaluation and Online Turing tests demonstrate the effi-
cacy of our approach. Moreover, OneShotA2V is able to
perform generation of robust high-quality natural-looking
videos across multiple languages without any additional re-
quirement of multilingual datasets (audio signals).

In the future, we plan to add emotions so that the gener-
ated videos can capture varying degrees of emotional ex-
pressions of the speaker. This will make the video out-
put from our approach more realistic and robust. Further,
we plan to consider sophisticated curriculum learning tech-
niques to enable the generation of more dynamic talking
videos.
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Lecture video synthesis from audio. 2016.

[19] Diederik Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. International Conference
on Learning Representations, 12 2014.

[20] Soonkyu Lee and Dongsuk Yook. Audio-to-visual
conversion using hidden markov models. pages 563–
570, 08 2002.

[21] Yanchun Li, Nanfeng Xiao, and Wanli Ouyang. Im-
proved generative adversarial networks with recon-
struction loss. Neurocomputing, 323, 10 2018.

[22] Yu Tian Mubbasir Kapadia Long Zhao, Xi Peng and
Dimitris Metaxas1. Learning to forecast and refine
residual motion for image-to-video generation, 2018.

[23] Wesley Mattheyses and Werner Verhelst. Audiovisual
speech synthesis: An overview of the state-of-the-art.
Speech Communication, 66, 11 2014.

[24] Wang Mei and Weihong Deng. Deep face recognition:
A survey. 04 2018.

[25] Gaurav Mittal and Baoyuan Wang. Animating face
using disentangled audio representations, 2019.

[26] Ricard Marxer Jon Barker Najwa Alghamdi,
Steve Maddock and Guy J. Brown. A corpus of
audio-visual lombard speech with frontal and profile
view, the journal of the acoustical society of america
143, el523 (2018); https://doi.org/10.1121/1.5042758,
2018.

[27] Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. Librispeech: An asr corpus based
on public domain audio books. pages 5206–5210, 04
2015.

[28] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and
Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[29] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan,
Chunyuan Li, Andrew Stevens, and Lawrence Carin.
Variational autoencoder for deep learning of images,
labels and captions. 09 2016.

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. volume 9351, pages 234–241, 10 2015.

[31] Nataniel Ruiz, Eunji Chong, and James M. Rehg.
Fine-grained head pose estimation without keypoints.



In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops, June 2018.

[32] Masaki Saito, Eiichi Matsumoto, and Shunta Saito.
Temporal generative adversarial nets with singular
value clipping. 10 2017.

[33] A. Simons and Stephen Cox. Generation of
mouthshapes for a synthetic talking head. Proceed-
ings of the Institute of Acoustics, Autumn Meeting, 01
1990.

[34] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv 1409.1556, 09 2014.

[35] Tereza Soukupova and Jan Cech. Real-time eye blink
detection using facial landmarks, 2016.

[36] Andreea Stef, Kaveen Perera, Hubert Shum, and Ed-
mond Ho. Synthesizing expressive facial and speech
animation by text-to-ipa translation with emotion con-
trol. pages 1–8, 12 2018.

[37] Supasorn Suwajanakorn, Steven Seitz, and Ira Kemel-
macher. Synthesizing obama: learning lip sync from
audio. ACM Transactions on Graphics, 36:1–13, 07
2017.

[38] Sarah Taylor, Moshe Mahler, Barry-John Theobald,
and Iain Matthews. Dynamic units of visual speech.
pages 275–284, 07 2012.

[39] Justus Thies, Mohamed Elgharib, Ayush Tewari,
Christian Theobalt, and Matthias Nießner. Neural
voice puppetry: Audio-driven facial reenactment, 12
2019.

[40] Guanzhong Tian, Yi Yuan, and Yong Liu. Audio2face:
Generating speech/face animation from single audio
with attention-based bidirectional lstm networks. 05
2019.

[41] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and
Jan Kautz. MoCoGAN: Decomposing motion and
content for video generation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 1526–1535, 2018.

[42] Carl Vondrick, Hamed Pirsiavash, and Antonio Tor-
ralba. Generating videos with scene dynamics. 09
2016.

[43] Konstantinos Vougioukas, Stavros Petridi, and Maja
Pantic. End-to-end speech-driven facial animation
with temporal gans. Journal of Foo, 14(1):234–778,
2004.

[44] Ting-Chun Wang, Ming-Yu Liu, Andrew Tao, Guilin
Liu, Jan Kautz, and Bryan Catanzaro. Few-shot video-
to-video synthesis. In Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2019.

[45] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin
Liu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
Video-to-video synthesis. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2018.

[46] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, An-
drew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation
with conditional gans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2018.

[47] O. Wiles, A.S. Koepke, and A. Zisserman. X2face: A
network for controlling face generation by using im-
ages, audio, and pose codes. In European Conference
on Computer Vision, 2018.

[48] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov,
and Victor Lempitsky. Few-shot adversarial learning
of realistic neural talking head models, 05 2019.


