
Systematic Evaluation of Backdoor Data Poisoning Attacks on Image Classifiers

Loc Truong1, Chace Jones1, Brian Hutchinson1,2, Andrew August2,
Brenda Praggastis2, Robert Jasper2, Nicole Nichols2, Aaron Tuor2

1Western Washington University, 2Pacific Northwest National Laboratory
{truongl, jonesc48, hutchib2}@wwu.edu, firstname.lastname@pnnl.gov

Abstract

Backdoor data poisoning attacks have recently been
demonstrated in computer vision research as a potential
safety risk for machine learning (ML) systems. Traditional
data poisoning attacks manipulate training data to induce
unreliability of an ML model, whereas backdoor data poi-
soning attacks maintain system performance unless the ML
model is presented with an input containing an embedded

“trigger” that provides a predetermined response advanta-
geous to the adversary. Our work builds upon prior back-
door data-poisoning research for ML image classifiers and
systematically assesses different experimental conditions
including types of trigger patterns, persistence of trigger
patterns during retraining, poisoning strategies, architec-
tures (ResNet-50, NasNet, NasNet-Mobile), datasets (Flow-
ers, CIFAR-10), and potential defensive regularization tech-
niques (Contrastive Loss, Logit Squeezing, Manifold Mixup,
Soft-Nearest-Neighbors Loss). Experiments yield four key
findings. First, the success rate of backdoor poisoning at-
tacks varies widely, depending on several factors, including
model architecture, trigger pattern and regularization tech-
nique. Second, we find that poisoned models are hard to
detect through performance inspection alone. Third, regu-
larization typically reduces backdoor success rate, although
it can have no effect or even slightly increase it, depending
on the form of regularization. Finally, backdoors inserted
through data poisoning can be rendered ineffective after just
a few epochs of additional training on a small set of clean
data without affecting the model’s performance.

1. Introduction

As deep learning models become more ubiquitous we
must assess the safety of the machine learning model devel-
opment process. Machine learning attack scenarios can be
broadly split into two types [19]. In a causative attack an ad-
versary embeds flaws into model behavior by design during

model development. In contrast, in an exploratory attack an
adversary develops or discovers inputs on which the model
will make unexpected errors. Exploratory attack scenarios
dominate the research publications [5, 31, 4], while back-
door data poisoning is a recently introduced causative attack
that can allow adversaries to induce specific model errors.
Backdoor data poisoning is an adversarial manipulation of
training data and labels, to create a backdoor which allows
the model to respond to a trigger-pattern, but otherwise op-
erate normally. Backdoor poisoning can be introduced by
modifying not only the training data [17], but also the train-
ing procedure [1], or by direct manipulation of the model
weights or architecture [13]. This work assesses computer
vision classifiers across a range of modeling choices and
backdoor data poisoning strategies that manipulate training
images and labels, and provides suggestions for defense and
mitigation.

Threat Model Deep learning models are being used to
solve a wide range of problems including image recognition
[27, 39], machine translation [2, 35], and speech recognition
[16, 9]. The current prevailing trend in deep learning de-
velopment cycles is to pre-train models from a large public
dataset and then fine-tune on a smaller internal proprietary
dataset. Deployed systems using classification models built
from public data with uncertain provenance may pose safety
risks due to potential data poisoning [17].

In this research, we use the scenario of a potentially poi-
soned public dataset to evaluate model development choices.
This scenario is designed around a trigger-pattern in a subset
of images in the public dataset. These training images, em-
bedded with trigger patterns, are re-labeled to the adversary’s
chosen prediction label. A successful attack occurs when a
deployed model, trained on the poisoned dataset, behaves
normally when encountering natural images but produces
the adversary’s chosen label when presented images with
embedded triggers.

1

ar
X

iv
:2

00
4.

11
51

4v
1

 [
cs

.C
V

]
 2

4
A

pr
 2

02
0

Figure 1: Factors systematically varied in our experiments.

Contributions Backdoor methods have been demon-
strated on numerous datasets and model architectures. Typi-
cal domains include face recognition [8, 24, 20], self-driving
cars [17, 23, 3, 24], medical applications [20], and standard
benchmarks [17, 33, 29, 1, 32]. Because a common poison-
ing methodology has not been established, it is not possible
to directly compare results for attack demonstrations across
datasets and architectures from different research publica-
tions. Our current work addresses this limitation by per-
forming experiments across a broad matrix of conditions.
We systematically evaluate key factors which may affect
the success and persistence of the backdoor attack. These
key factors include the model architecture, the adversary’s
trigger pattern, poisoning strategy, the dataset and associ-
ated classification task. Our experimental results show these
factors can greatly impact backdoor data poisoning attacks.

Defense and mitigation of backdoor data poisoning is
also assessed through both regularization during training
and a series of experiments where small amounts of clean
data are used to fine-tune a trained (poisoned) model. We
demonstrate that, across a range of models, without specific
knowledge of poisoning methods, a defender can signifi-
cantly diminish backdoor attack effects by fine-tuning the
model on a trusted source of known, clean data.

2. Experiment Matrix

There are a wide range of factors and associated values
that may affect the success of backdoor data poisoning at-
tacks. Some factors are directly under the control of the
model developer, whereas others are associated with the ad-
versary’s poisoning method. Figure 1 shows the factors and
range of associated values used in our experiments. This
section describes each factor and associated values and moti-
vates their selection for the present study.

2.1. Dataset

We assess backdoor data poisoning strategies on two
datasets to compare possible effects of dataset selection on

attack success. First is the Flowers dataset1 containing 4,242
224× 224 pixel images from five different types of flowers.
Second is the CIFAR-10 dataset [22] containing 50,000 32×
32 pixel thumbnail images across ten classes. By employing
these two datasets we can compare results on CIFAR-10 to
results on higher resolution images which are typical for
image classification systems.

2.2. Model Architectures

For this study, we choose three state of the art computer
vision classifiers that are widely used in deployed settings
across application domains; namely, ResNet-50 [18], NasNet
[39], and NasNet-Mobile [39]. We initialize each model with
publicly available ImageNet [12] weights. We then fine tune
them with Flowers and CIFAR-10 data during training.

2.3. Regularization Techniques

The success of recent backdoor detection methods [7,
36, 30] and exploratory attack defensive measures [15, 26]
which analyze the latent space of deep learning models sug-
gest that latent space regularization may have significant
effect on backdoor attack success. With image height and
width (H , W), a generic classifier can be defined as a com-
position of functions f = g ◦ h : RH×W×3 → Rn, map-
ping an image to a class distribution over n classes. The
intermediate function h maps the image to the final hidden
representation of the classifier, and g is a multinomial logis-
tic regression classifier that maps hidden representations to
class probabilities. We also define fL(x) as the logit output
(non-normalized log probabilities) of the network prior to
the final softmax activation. Our experiments compare back-
door attack performance on models trained using one of four
regularization methods designed to constrain the latent space
of the final hidden layer or classification logits of the image
classifier.

Logit squeezing [21] introduced logit-squeezing regular-
ization as a method to provide model robustness to adver-
sarial examples. For a training image, x, Logit-squeezing
adds LLS = ||fL(x)||2 to the loss function to minimize the
l2 norm of the logit vector.

Manifold Mixup Introduced in [34], Manifold mixup
(MIXUP) attempts to fill in gaps in the latent space manifold
by interpolating the latent representations and correspond-
ing predictions. Pairs of image hidden representations from
the minibatch (h(x), h(x′)) are averaged according to a ran-
domly sampled mixing weight γ ∼ Uniform(0, 1). The
loss function to train the classifer is then the cross-entropy,
H, between the network’s prediction for interpolated hidden

1https://www.kaggle.com/alxmamaev/flowers-recognition

state pairs and the γ weighted average of true one-hot class
label distributions (y,y′):

Lmix = H(g(hmix),ymix) (1)
hmix = (1− γ)h(x′) + γh(x) (2)
ymix = (1− γ)y′ + γy (3)

Contrastive Loss Contrastive loss [10] encourages hid-
den representations from the same object class to be close
together, and hidden representations from different object
classes to be far apart. Let x and x′ be two images. The
contrastive regularization Lcontrast is:

1

n
‖h(x)− h(x′)‖2 (4)

if x and x′ are the same class, and otherwise:

n− 1

n
max(0, c− ‖h(x)− h(x′)‖2) (5)

Soft Nearest Neighbors Loss Soft Nearest Neighbors
Loss (SNNL) [14] regularization was introduced to im-
prove hidden space representations in many settings. SNNL
weights the contribution of a pair of samples in a batch rela-
tive to the probability of being picked randomly as a nearest
neighbor. With batch samples (x(i),y(i)), i = 1, ..., b. and
temperature T , the SNNL regularization term is:

Lsnn = − log

(∑
j 6=i,y(i) 6=y(j) e−

‖h(x(i))−h(x(j))‖2
T∑

k 6=i e
− ‖h(x(i))−h(x(k))‖2

T

)
(6)

2.4. Trigger Patterns

In this work, the backdoor is embedded in a model via
data poisoning with trigger patterns embedded in adversari-
ally re-labeled images. Let x ∈ RH×W×3 be a training set
image, let α ∈ [0, 1] be the transparency of the trigger, and
let m ∈ {0, 1}H×W×3 be a mask with 1’s in pixel positions
the trigger will not alter. We introduce a trigger function T
which returns a trigger t. T may be constant, draw a random
sample from a distribution of triggers (e.g., augmentation or
perturbation of a trigger template), or depend on x in the case
of an adaptive trigger. The general form for constructing a
poisoned sample image, p, with an embedded trigger is then:

p = ((1− α)x + αT (x))� (1−m) + x�m (7)

where � is the elementwise multiplication and boldface 1 is
an all-ones tensor of the same dimension as the image.

Four trigger types are experimentally evaluated, low-
variance (LV), sine-wave (SIN), black square (BS), and ran-
dom square (RS). Within a single experiment scenario, the

same trigger type is applied to all poisoned samples. The
black square trigger pattern is a 22 pixel square, located 22
pixels from both the top and left sides of the image. This
is similar to the triangle checkerboard trigger used in [17].
The random square trigger is the same as the black square
but placed at a random rather than fixed location in the im-
age. The low-variance trigger pattern introduced in [32]
is constructed with reference to a particular dataset to be
poisoned. First a PCA decomposition is performed on the
training data. Then an image not present in the training data
is projected onto the last principal components that explains
≥ 0.5 percent of the variance in the dataset. This projection
is then mapped back into the original image space to form
the trigger pattern. The sine trigger, introduced in [3], con-
sists of gray scale pixel intensities which vary horizontally
across the image according to a sine function. In particular
the value for all three channels at pixel (i, j) for the sine
trigger is 0.4 sin(0.05πj).

Trigger patterns that overlay the entire image such as
sine and low variance in particular are easy to detect if their
α values are too high. Considering this, we pay particular
attention to a set of experimental runs with α values of 0.5
and 0.1 for the low variance and sine triggers respectively.
These α values were selected as the highest alpha value
before the image alteration becomes completely apparent.
For the black square trigger we use an α value of 1 since it
is relatively inconspicuous, covering a small portion of the
image. Figure 2 shows an image from the flowers dataset
with triggers embedded with these particular α values.

2.5. Poisoned Samples

In addition to choice of trigger pattern, an adversary also
has control over which images from the training dataset to
poison (embed the trigger pattern). The source-class is the
true class of an image upon which a trigger is embedded,
and the poison-class is the class label given by the adver-
sary. In the poisoning procedure we investigate, samples
are drawn from the set of source-classes, embedded with a
trigger pattern, and these poisoned samples then supplant
clean samples from the poison-class. The untampered ver-
sions of the poisoned images remain in the source-classes.
This method of poisoning ensures the number of images with
each class label remains the same after poisoning, thereby
eliminating class distribution shift due to data poisoning.

An important factor which may affect the success of data
poisoning is the distribution of poisoned images within the
poisoned dataset. We define the poison-rate as the percent-
age of the poison-class images replaced by poisoned samples.
LetN1, N2, ..., Nn, be the number of images from each class
in the training set, and t be the index of the poison-class.
Given poison-rate λ, bλNtc is the total number of samples
to be replaced in the poison-class. For a set of source-classes
K ⊂ {1, ..., n} \ {t}, the expected number of samples, Pc,

(a) Square α =
1

(b) Random
Square α = 1

(c) Sine α =
0.1

(d) Sine α =
0.5

(e) Low Vari-
ance α = 0.1

(f) Low Vari-
ance α = 0.5

Figure 2: Trigger patterns applied to an image from the Flowers dataset.

N1 N2 N3 N4 N5

710 980 734 675 904

t bλNtc P1 P2 P3 P4 P5 p

1-daisy 71 0 21.1 15.8 14.6 19.5 0.018
2-dandelion 98 23.0 0 23.8 21.9 29.3 0.025
3-rose 73 15.9 21.9 0 15.1 20.2 0.018
4-sunflower 67 14.3 19.7 14.8 0 18.2 0.017
5-tulip 90 20.6 28.5 21.3 19.6 0 0.023

Table 1: Poison class statistics with λ = 0.1 for many-to-one
poisoning on the Flowers dataset.

drawn from each source-class, c, is:

Pc = bλNtc
Nc∑

k∈KNk
(8)

The effective-poisoning-rate, p, is defined as the percentage
of the total number of training samples which are poisoned:

p =
bλNtc∑n
k∈KNk

(9)

The choice of source-classes has a direct effect on the
distribution of poisoned images and so in addition to test-
ing the effectiveness over various poison-rates we consider
poisoning strategies which draw from a single source-class
(one-to-one) or multiple source classes (many-to-one). In
one-to-one poisoning, poisoned images from a single source-
class supplant images from a single poison-class. In many-
to-one poisoning, all classes excluding the poison-class are
source-classes. Table 1 shows class distribution and poison
sample distribution statistics for the Flowers dataset with the
many-to-one poisoning strategy and a poison-rate λ = 0.1.

3. Experimental Setup
Data Partitioning Because the goal of this research is to
assess the overall safety of a model, we partition the data
to allow performance evaluation from both adversary and
model developer perspectives. Adversarial success rate (the
fraction of poisoned images predicted to be the poison-class)
is used to evaluate the adversary’s success, while model ac-
curacy is used to assess the model developer’s. The dataset

Figure 3: Dataset partitions, where all (adversarial), some
(poisoned) or no (clean) images have been poisoned.

partitioning is shown in Figure 3. The original dataset is par-
titioned into a 76/19/5 split. In our experiment, the largest
partition (76%), which we call the poison-set plays the role
of a larger, publicly available dataset that the adversary has
tampered with, and that the model developer uses to train
their first-pass computer vision model. The next largest
partition (19%), which we call the clean-set, simulates a
smaller internal dataset curated by the model developer to
fine-tune the first-pass computer vision model. Note that
the clean-set is 1/5th the size of the poison-set. Both the
clean-set and poison-set are further split into respective 80/20
train/validation sets. We use the remaining 5% of the orig-
inal dataset, which we call adversarial-test to evaluate the
success rate of the adversary. Accordingly, all images in the
adversarial test set are poisoned.

Poisoning details Preliminary results showed higher ad-
versarial success rate when poison-class samples were not
corrupted, thus when constructing the poison-set, the trig-
ger pattern is not embedded onto samples drawn from the
poison-class (i.e., the poison-class is never one of the source-
classes). The adversarial test set also contains no images
from the poison-class, since the purpose of the adversarial
test set is to gauge the adversary’s ability to change a pre-
diction. To eliminate performance effects associated with
changes in class distributions, we maintain the same number
of samples from each class prior to and post poisoning. To
ensure this consistent class size across all experimental runs,
poisoned samples are exchanged for samples in the poison-
class, but their non-poisoned counterparts are not removed
from source-class which they are drawn from.

State-of-the-art accuracy Due to the data splits needed
to conduct our study (Fig. 3), our models only have access
to around 60% of the original data for training. As expected,
these models do not achieve the state-of-the-art of models
trained on the full training set. Ultimately, our goal is not
state-of-the-art performance, but a systematic comparison of
data poisoning; that said, we do tune each model to achieve
as competitive of performance as possible. As a sanity check
on the correctness of our training process, we successfully
replicated publicly reported results for each of our models
using the full training set.

Training procedure Our procedure simulates the scenario
where a model developer trains a base model on poisoned
public data until the early stopping criterion (5 epochs with
no improvement on validation accuracy) and then fine-tunes
on an internal clean training set for a fixed number of epochs.
During training, we monitor the model prediction accuracy
on the clean and poison validation sets, and the adversarial
success rate on the adversarial test set. For each experimen-
tal run we perform independent random splits and poison
samples at the specified rate randomly.

4. Experimental Results and Analysis

In this section we analyze experimental results to an-
swer several questions about backdoor attack success rate,
backdoor persistence, and backdoor effects on model vali-
dation accuracy. Unless otherwise stated, the experiments
described below use the “many-to-one” poisoning strategy,
set poison-rate λ = 0.1, trigger pattern transparency α = 1
for the Square and RS triggers patterns, α = 0.1 for sine and
α = 0.5 for low variance.

4.1. Effect of Trigger Pattern and Model

We first analyze the effect of trigger patterns on different
model architectures for backdoor poisoning. On the Flowers
and CIFAR-10 datasets, we range over all trigger patterns,
classes as poison-class, and architectures (180 runs total).
We report average adversarial success rate and validation
accuracy (over all classes) at early stopping after training on
the poisoned training set. The average early stopping epoch
for ResNet50, NasNet, and NasNet-Mobile was 14.6, 17.35,
and 26.5, respectively. The resulting adversarial successes
are shown in Table 2 (see “Retrained? No” rows). It reveals
that the square and random square triggers are the most ef-
fective for the Flowers dataset, while the sine and square
triggers are the most effective for CIFAR-10. It also shows
that NasNet-Mobile is by far the most robust to poisoning on
Flowers, while NasNet-Mobile and NasNet are both slightly
more robust on CIFAR-10. Alarmingly, multiple combina-
tions of model and trigger pattern yield adversarial success
rates exceeding 60%.

Table 3 shows the model accuracy on the poisoned and
clean validation sets (again see “Retrained? No” rows). For
the models trained on Flowers, there is a negative correla-
tion between model accuracy and robustness to poisoning,
but for CIFAR-10 same models yield top performance on
both. It is important to note that while the particular trigger
pattern makes a significant difference in adversarial success,
it has very little effect on the accuracy of the trained model,
regardless of dataset. Lastly, the minimal gap between per-
formance on the poisoned and clean validation sets is an
unfortunate finding for the model developer’s perspective,
because it suggests that poisoned data may be hard to detect
by inspection of model performance.

4.2. Effect of Retraining on Persistence

We next look at the extent to which different architec-
tures retain the backdoor even after retraining on clean data.
We take each of the models described in the previous ex-
periments and fine-tune (“retrain”) them on the smaller,
untampered-with clean training set. The results are aggre-
gated analogously and reported in the “Retrained? Yes” rows
of Tables 2 and 3. These results show that clean retraining
is an effective method for unlearning adversarial features.
ResNet50, NasNet and NasNet mobile’s adversarial test ac-
curacy decrease significantly while model accuracy (on ei-
ther clean or poisoned) is not affected. However, even after
retraining NasNet still has almost 20% adversarial success
on square trigger pattern, far above ResNet50 and NasNet-
Mobile. Therefore, the model developer’s decision on archi-
tecture may have significant implications on performance as
well as safety of the model.

4.3. Effect of Regularization

For all regularization experiments we use the simple black
square trigger pattern and the Flowers dataset (the most effec-
tive pattern for the dataset). For each of five regularization
strategies and for each of the five possible poison-classes
in the Flowers dataset we train 10 ResNet50 models with
different random samples of poisoned images, holding all
hyperparameter choices constant. The initial weights of the
models are pre-trained on the ImageNet image classifica-
tion task provided from Pytorch model zoo [11]. We use a
learning rate of 0.00001, mini-batch size of 32, and Adam
optimization to train all models.

Figure 4 shows two tables of results: (a) accuracy on
the clean validation set, which both the developer and ad-
versary would like to maximize and (b) adversarial success
rate, which the adversary would like to maximize but the
developer would like to minimize. The columns of the ta-
bles correspond to the regularization strategy employed and
the rows correspond to the poison-class. The color of each
cell indicates the difference regularization has relative to no
regularization (column 1). Blue indicates that regulariza-

ResNet50 NasNet NasNet Mobile
Dataset Split Retrained? Square RS Sine LV Square RS Sine LV Square RS Sine LV
Flowers Adversarial Test No 0.75 0.64 0.24 0.26 0.65 0.58 0.18 0.06 0.33 0.15 0.14 0.12
Flowers Adversarial Test Yes 0.08 0.09 0.06 0.05 0.18 0.14 0.06 0.04 0.05 0.05 0.06 0.06

CIFAR-10 Adversarial Test No 0.74 0.61 0.90 0.55 0.74 0.53 0.63 0.06 0.67 0.43 0.79 0.16
CIFAR-10 Adversarial Test Yes 0.04 0.04 0.06 0.05 0.09 0.08 0.08 0.02 0.05 0.03 0.08 0.05

Table 2: Adversarial success before and after clean retraining, for Flowers and CIFAR-10.

ResNet50 NasNet NasNet Mobile
Dataset Split Retrained? Square RS Sine LV Square RS Sine LV Square RS Sine LV
Flowers Poisoned No 0.89 0.87 0.85 0.87 0.87 0.87 0.85 0.85 0.81 0.80 0.79 0.80
Flowers Clean No 0.88 0.87 0.87 0.89 0.87 0.87 0.87 0.87 0.83 0.83 0.81 0.83
Flowers Poisoned Yes 0.86 0.85 0.86 0.86 0.86 0.87 0.87 0.86 0.80 0.79 0.80 0.80
Flowers Clean Yes 0.89 0.89 0.89 0.90 0.87 0.88 0.89 0.89 0.81 0.82 0.82 0.84

CIFAR-10 Poisoned No 0.73 0.74 0.69 0.74 0.93 0.92 0.92 0.92 0.86 0.85 0.86 0.85
CIFAR-10 Clean No 0.74 0.74 0.69 0.74 0.93 0.92 0.93 0.93 0.87 0.86 0.87 0.86
CIFAR-10 Poisoned Yes 0.74 0.73 0.73 0.73 0.91 0.91 0.91 0.91 0.85 0.85 0.85 0.85
CIFAR-10 Clean Yes 0.74 0.74 0.74 0.74 0.93 0.93 0.93 0.93 0.86 0.86 0.86 0.86

Table 3: Accuracy before and after clean retraining, for Flowers and CIFAR-10.

(a) Clean validation accuracy (b) Adversarial success rate

Figure 4: Average clean validation accuracy and adversarial
success rate over 10 experimental runs, with many-to-one
poison-class strategy. The color bar shows the difference
relative to no regularization (column 1).

tion decreases the value. We see in Fig. 4a a marginal drop
in clean validation accuracy for all regularization strategies
except for Manifold Mixup which does not affect perfor-
mance on the validation set. The largest drop in validation
accuracy comes from using the contrastive loss with Rose
as the poison-class. Fig. 4b shows that SNNL, Contrastive,
and Logit Squeezing regularization strategies all have the
effect of lowering average adversarial success rates. How-
ever, SNNL has a more dramatic effect, dropping the overall
average adversarial success rate across all poison-classes
by 31% absolute (from 82% to 51%). Note also that the
poison-class has little effect on accuracy, but significantly
affects adversarial success.

To get a sense of the consistency of these findings, Fig. 5

(a) Clean validation accuracy (b) Adversarial success rate

Figure 5: Validation accuracy and adversarial success rate
as a function of regularization strategy.

shows the spread of validation accuracy and adversarial suc-
cess rate across the 50 experimental runs for each regular-
ization strategy, as a box-and-whiskers plot. We see that
all regularization strategies besides Manifold Mixup have a
more dramatic affect on adversarial success rate than vali-
dation accuracy. The variance for adversarial success rate
with SNNL loss is quite a bit larger compared to the other
regularization methods. We conclude that regularization can
be used to defend a model without significantly degrading
the baseline performance on the validation set.

4.4. Effect of Trigger Pattern Transparency

Here we address effect of the trigger pattern transparency
parameter, α. Because square and random square use α = 1,
we limit this analysis to the sine and low variance triggers.
We concentrate the range of tested α values on the lower
range, since higher α’s are less realistic. We also only target

Accuracy Poisoned Clean
Model Dataset 1-to-1 M-to-1 1-to-1 M-to-1

ResNet50 Flowers 0.87± 0.01 0.89 0.90± 0.01 0.88
NasNet Flowers 0.86± 0.02 0.89 0.85± 0.01 0.86

NasNet-M Flowers 0.78± 0.02 0.82 0.81± 0.03 0.84
ResNet50 CIFAR-10 0.71± 0.03 0.70 0.71± 0.02 0.69
NasNet CIFAR-10 0.92± 0.01 0.92 0.93± 0.00 0.93

NasNet-M CIFAR-10 0.85± 0.01 0.85 0.85± 0.01 0.86

Table 4: Accuracy for one-to-one vs many-to-one.

the most robust poison-classes, truck and rose, for CIFAR-
10 and Flowers, respectively. These experiments compare
poison-rates of λ = 0.05 and λ = 0.1, with a total of 432
runs. Our results are shown in Fig. 6, the top row using
Flowers and the bottom row CIFAR-10.

We find that higher α values can increase the trigger’s
effectiveness significantly, although the most effective perfor-
mance comes when the trigger pattern is clearly perceptually
detectable to humans. However, safety concerns remain be-
cause high α but low poison-rate attacks may be feasible in a
big dataset where manual inspection of even a fraction of the
samples is impractical. Figs. 6c and 6f show performance
after retraining with clean data, finding that retraining is not
always effective against full image trigger patterns at suffi-
ciently high α. A comprehensive defensive strategy should
include a mechanism to detect "obvious" samples perturbed
with high alpha triggers. We attribute the 0% adversarial
success at α = 1.0 in Fig. 6d to two factors: 1) at α = 1, all
poisoned samples are identical and thus 0% and 100% are
the only valid outcomes, and 2) noise in the training process
at the particular early stopping point.

4.5. Effect of Poison-rate

We next study the effect of poison-rate, λ. We used
CIFAR-10 as it has more samples per class than the Flowers
dataset, providing us finer granularity for the poison-rate.
Once again, we only target truck (the most robust poison-
class on CIFAR-10) and focus primarily on small λ values
because they are more practical. Here we use only NasNet,
since it has the highest clean and poisoned validation ac-
curacy on CIFAR-10 using our standard hyper-parameters
with a total of 44 runs. Unsurprisingly, Fig. 7a shows that
accuracy on poisoned validation steadily decreases as the
poison-rate increases (as the poison-rate increases, the num-
ber of actual training samples in the target class decreases).
Fig. 7b plots the adversarial success rate as a function of
poison-rate for different trigger patterns. Sine requires the
least poisoning, as it is extremely effective even with 2%
poisoning. Random square requires the most poisoning, only
finding middling success with impractically high poisoning
rates.

Adversarial Success Adversarial Test
Model Dataset 1-to-1 M-to-1
ResNet50 Flowers 0.54± 0.02 0.72
NasNet Flowers 0.37± 0.02 0.71
NasNet-M Flowers 0.13± 0.14 0.35
ResNet50 CIFAR-10 0.58± 0.18 0.97
NasNet CIFAR-10 0.27± 0.07 0.73
NasNet-M CIFAR-10 0.40± 0.11 0.85

Table 5: Adversarial success for one-to-one vs many-to-one.

4.6. One-to-one vs Many-to-one

Lastly, we evaluate whether the one-to-one (“1-to-1”) or
many-to-one (“M-to-1”) poisoning strategy is more effective.
Table 4 compares the accuracies of these two strategies for
all models on both datasets. Square is used to poison Flowers
while Sine is used to poison CIFAR-10 (the most effective
patterns for them, respectively). Recall that one-to-one and
many-to-one use the same number of poisoned samples for
a given poison-rate; the only difference is the source of the
poisoned samples. The table reveals that these poisoning
strategies do not have a significant impact on either the poi-
soned or clean validation set accuracies. In contrast, Table 5
shows that many-to-one is significantly more effective than
one-to-one in terms of adversarial success. We hypothesize
this is because the model incorporates the adversarial fea-
tures better when the trigger pattern is spread across many
classes, all pointing to the same target class.

5. Conclusions and Future Work
This paper presents a systematic study of backdoor poi-

soning attacks on image classifiers. We evaluate the effect
of design decisions within the model developer’s control,
including model architecture, regularization scheme, and
any additional fine-tuning on a smaller, clean dataset, as well
as those within the control of an adversary, including the
trigger pattern and the rate and strength of the poisoning.
We evaluate these on two datasets, Flowers and CIFAR-10,
to assess the sensitivity to the particular training task. We
report four key findings:

1. Adversarial success rate varies widely depending on
several factors, including model architecture, trigger
pattern and regularization technique.

2. While one would expect model performance and adver-
sarial success to be negatively correlated, we find this
rarely to be the case, suggesting poisoned models are
not detectable through performance inspection alone.

3. Regularization typically reduces backdoor success rate,
although it can have no effect or even slightly increase
it, depending on the form of regularization.

4. Backdoors inserted through data poisoning can be ren-

(a) Low Variance, Flowers (b) Sine, Flowers (c) After clean retraining, Flowers

(d) Low Variance, CIFAR-10 (e) Sine, CIFAR-10 (f) After clean retraining, CIFAR-10

Figure 6: Effect of α.

dered ineffective after just a few epochs of additional
training on a small set of clean data without affecting
the model’s performance.

We intend our current assessment to serve as a resource
for safe and effective model development practices in face
of adversity. However, adversarial machine learning is a
rapidly evolving field of research. Backdoor data poisoning
assessment can be characterized as the analysis of a two
player zero-sum game with emerging innovative actions for
the roles of adversary and developer, and so a complete
analysis is beyond the scope of any single research study.

For future work, one could extend our assessment along
three complementary dimensions. First, one could explore a
greater range of values for studied factors (Fig. 1); e.g., as-
sessing with a larger dataset such as ImageNet. Recent work
also motivates additional regularization methods, such as
Gaussian mixture loss [37] and `2 regularization [6], which
can also partially mitigate data poisoning attacks. Second,
there are further factors of model developer decisions in-
fluencing model behavior which should be explored. To
our knowledge, the choice of optimizer (e.g., SGD, Adam,
AdamW [25]) has not been evaluated in the context of back-
door data poisoning. Lastly, one could extend our assess-
ment of adversarial exploits. For instance, in this work we
assess attacks which falsely label images, but clean-label
backdoor attacks without label alteration have recently been
demonstrated [3, 33, 28, 38].

(a) NasNet’s accuracy on CIFAR-10 as a func-
tion of poison-rate, ranging over all trigger pat-
terns.

(b) NasNet’s adversarial success on CIFAR-10
as a function of poison-rate.

Figure 7: Effect of poison-rate.

References
[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-

orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. CoRR, abs/1807.00459, 2018.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate, 2014.

[3] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A
new backdoor attack in cnns by training set corruption
without label poisoning. CoRR, abs/1902.11237, 2019.

[4] Battista Biggio and Fabio Roli. Wild patterns: Ten
years after the rise of adversarial machine learning.
Pattern Recognition, 84:317–331, 2018.

[5] Nicholas Carlini and David Wagner. Towards evalu-
ating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pages 39–57.
IEEE, 2017.

[6] Javier Carnerero-Cano, Luis Muñoz-González,
Phillippa Spencer, and Emil C Lupu. Regularisation
can mitigate poisoning attacks: A novel analysis based
on multiobjective bilevel optimisation. arXiv preprint
arXiv:2003.00040, 2020.

[7] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
arXiv preprint arXiv:1811.03728, 2018.

[8] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learn-
ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[9] Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu,
Rohit Prabhavalkar, Patrick Nguyen, Zhifeng Chen,
Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Katya
Gonina, Navdeep Jaitly, Bo Li, Jan Chorowski, and
Michiel Bacchiani. State-of-the-art speech recog-
nition with sequence-to-sequence models. CoRR,
abs/1712.01769, 2017.

[10] Sumit Chopra, Raia Hadsell, Yann LeCun, et al. Learn-
ing a similarity metric discriminatively, with applica-
tion to face verification. In CVPR (1), pages 539–546,
2005.

[11] Torch Contributors. Pytorch Model Zoo, 2019 (ac-
cessed July 1, 2019).

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L.
Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

[13] Jacob Dumford and Walter J. Scheirer. Backdooring
convolutional neural networks via targeted weight per-
turbations. CoRR, abs/1812.03128, 2018.

[14] Nicholas Frosst, Nicolas Papernot, and Geoffrey
Hinton. Analyzing and improving representations
with the soft nearest neighbor loss. arXiv preprint
arXiv:1902.01889, 2019.

[15] Matt Gorbett and Nathaniel Blanchard. Utilizing net-
work properties to detect erroneous inputs. arXiv
preprint arXiv:2002.12520, 2020.

[16] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E.
Hinton. Speech recognition with deep recurrent neural
networks. CoRR, abs/1303.5778, 2013.

[17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Identifying vulnerabilities in the machine
learning model supply chain. CoRR, abs/1708.06733,
2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[19] Ling Huang, Anthony D. Joseph, Blaine Nelson,
Quoc V. Le, Benjamin I. P. Rubinstein, and J. D. Tygar.
Adversarial Machine Learning. In Proceedings of 4th
ACM Workshop on Artificial Intelligence and Security,
pages 43–58, 2011.

[20] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and
Ting Wang. Model-reuse attacks on deep learning sys-
tems. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 349–363. ACM, 2018.

[21] Harini Kannan, Alexey Kurakin, and Ian Goodfel-
low. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

[22] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55, 2014.

[23] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun
Zhu, and David Miller. Backdoor embedding in convo-
lutional neural network models via invisible perturba-
tion. arXiv preprint arXiv:1808.10307, 2018.

[24] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. In Proc. NDSS,
2017.

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. arXiv preprint arXiv:1711.05101,
2017.

[26] David J Miller, Zhen Xiang, and George Kesidis. Ad-
versarial learning targeting deep neural network classi-
fication: A comprehensive review of defenses against
attacks this article provides a contemporary survey of
adversarial learning (al), focused particularly on de-
fenses against attacks on deep neural network classi-
fiers. Proceedings of the IEEE, 2020.

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015.

[28] Aniruddha Saha, Akshayvarun Subramanya, and
Hamed Pirsiavash. Hidden trigger backdoor attacks.
arXiv preprint arXiv:1910.00033, 2019.

[29] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octa-
vian Suciu, Christoph Studer, Tudor Dumitras, and
Tom Goldstein. Poison frogs! targeted clean-label
poisoning attacks on neural networks. arXiv preprint
arXiv:1804.00792, 2018.

[30] Ezekiel Soremekun, Sakshi Udeshi, Sudipta Chat-
topadhyay, and Andreas Zeller. Exposing backdoors
in robust machine learning models. arXiv preprint
arXiv:2003.00865, 2020.

[31] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[32] Thomas Tanay, Jerone T. A. Andrews, and Lewis D.
Griffin. Built-in vulnerabilities to imperceptible adver-
sarial perturbations. CoRR, abs/1806.07409, 2018.

[33] Alexander Turner, Dimitris Tsipras, and Aleksander
Madry. Clean-label backdoor attacks. 2018.

[34] Vikas Verma, Alex Lamb, Christopher Beckham,
Aaron Courville, Ioannis Mitliagkis, and Yoshua Ben-
gio. Manifold mixup: Encouraging meaningful on-
manifold interpolation as a regularizer. arXiv preprint
arXiv:1806.05236, 2018.

[35] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Ja-
son Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
CoRR, abs/1609.08144, 2016.

[36] Zhen Xiang, David J Miller, and George Kesidis. A
benchmark study of backdoor data poisoning defenses
for deep neural network classifiers and a novel defense.
In 2019 IEEE 29th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6.
IEEE, 2019.

[37] Muhammad Yaseen, Muneeb Aadil, and Maria
Sargsyan. Preventing clean label poisoning using gaus-
sian mixture loss. arXiv preprint arXiv:2003.00798,
2020.

[38] Chen Zhu, W Ronny Huang, Ali Shafahi, Hengduo
Li, Gavin Taylor, Christoph Studer, and Tom Gold-
stein. Transferable clean-label poisoning attacks on
deep neural nets. arXiv preprint arXiv:1905.05897,
2019.

[39] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V. Le. Learning transferable architectures for
scalable image recognition. CoRR, abs/1707.07012,
2017.

	1 . Introduction
	2 . Experiment Matrix
	2.1 . Dataset
	2.2 . Model Architectures
	2.3 . Regularization Techniques
	2.4 . Trigger Patterns
	2.5 . Poisoned Samples

	3 . Experimental Setup
	4 . Experimental Results and Analysis
	4.1 . Effect of Trigger Pattern and Model
	4.2 . Effect of Retraining on Persistence
	4.3 . Effect of Regularization
	4.4 . Effect of Trigger Pattern Transparency
	4.5 . Effect of Poison-rate
	4.6 . One-to-one vs Many-to-one

	5 . Conclusions and Future Work

