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Abstract

Group activity detection in soccer can be done by us-
ing either video data or player and ball trajectory data.
In current soccer activity datasets, activities are labelled
as atomic events without a duration. Given that the state-
of-the-art activity detection methods are not well-defined
for atomic actions, these methods cannot be used. In this
work, we evaluated the effectiveness of activity recognition
models for detecting such events, by using an intuitive non-
maximum suppression process and evaluation metrics. We
also considered the problem of explicitly modeling interac-
tions between players and ball. For this, we propose self-
attention models to learn and extract relevant information
from a group of soccer players for activity detection from
both trajectory and video data. We conducted an extensive
study on the use of visual features and trajectory data for
group activity detection in sports using a large scale soccer
dataset provided by Sportlogiq. Our results show that most
events can be detected using either vision or trajectory-
based approaches with a temporal resolution of less than
0.5 seconds, and that each approach has unique challenges.

1. Introduction

Group activity recognition aims to understand the action
of each individual and how they interact with each other in
a group setting [39, 15, 26, 1, 33, 16]. The best examples
of group activities are sports games, where a group of indi-
viduals are interacting with each other along with an object
(e.g. 22 people in a soccer game or 12 people in a volley-
ball game). Detecting group activity in sports has several
practical applications, such as assessing team strategy and
players performance as well as providing relevant content
to media [27, 28, 17].

While visual data, such as videos and images, have been
extensively used in the past for group activity recognition in
sports [32, 8, 2, 25], several sports have player and ball/puck
location data available. These are obtained from non-vision

∗Equal contribution.

Figure 1. Pass, shot and reception detection in a soccer game: Top-
Left: a frame from broadcast video. Top-Right: ball and play-
ers location rendered on a soccer pitch template. Bottom: model
output probabilities per frame associated with passes, receptions
and shots in blue, orange and green, respectively. The dots il-
lustrate detected events after applying the event-specific threshold
and non-maximum suppression process.

sensors, such as RFID transmitters, GPS trackers on players
or extracted from video data. In this paper, we analyzed
the use of both video and trajectory data for group activity
detection in sports.

The majority of previous work for activity detection con-
sider actions that have a duration [4, 40, 30, 24, 12]. How-
ever, in the context of sport data it is difficult to obtain a
large dataset that has labels for the actions and group activ-
ities along with their duration. In almost all available sport
datasets, the actions and group activities are only marked
at one single moment in time - when the action has hap-
pened and there is no notion of the duration of the activity.
For example, a shot in soccer is identified at the frame (or
timestamp) that the player kicks the ball. This type of an-
notation was designed to reduce ambiguity. Moreover, it is
useful for sport analytics as it allows for simple metrics to
be computed (e.g. counting the number of occurrences of
each event), as well as more advanced metrics that encap-
sulate the context of play at the moment an event occurs
(e.g. proximity of opposing players at the time of the shot).
The lack of duration for the activities presents challenges
both for training and evaluating activity detection models
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because losses and metrics, such as temporal intersection-
over-union (temporal IOU), [4], and insertions and dele-
tions [37] cannot be used. Figure 1 illustrates the tasks we
considered in this paper.

While a few studies have investigated activity recog-
nition on sports videos [32, 8, 2, 25], they either con-
sidered classification of clips or detected temporal activ-
ities while localizing the start and end frames, which is
not well-defined for detecting atomic events with no du-
ration. Similarly, the existing body of research on utiliz-
ing trajectory data to recognize individual or group activi-
ties for team sports, such as basketball, soccer, and hockey
[18, 20, 21, 35], has mainly been concerned with the player
performance evaluation, not activity detection. We investi-
gate the use of those models for group activity detection by
conducting extensive experiments on a large-scale soccer
dataset.

Recently, inspired by natural language processing (NLP)
tasks [34], researchers have used transformers to implicitly
model interactions between actors for action recognition
[11]. The transformer model relies on a self-attention mech-
anism to model complex interactions across different com-
ponents (e.g. words in for NLP tasks or players in sports),
which may be useful for predicting group activity. This ap-
proach was extended to group activity recognition by Gavri-
lyuk et al. [10], where the self-attention mechanism learns
dynamic relationships between actors that are most impor-
tant for predicting group activity, without the need to explic-
itly define a graph structure. This approach achieved state-
of-the-art results on the volleyball [15] and collective activ-
ity dataset [38]. However, these datasets do not share the
same challenges that commonly occur in soccer or hockey
games, that is, the actors are relatively static in their location
and there is minimal transition between events.

In this work, we investigated the benefit of employing
self-attention on the spatio-temporal embeddings extracted
from ball and players trajectories as well as bounding boxes
around the players to detect group activity in soccer games.
To capture long-term temporal dependencies between the
people for group activity detection, the trajectory-based
models employ transformers on deep features learned by
dilated 1D temporal convolutional network (TCN), similar
to the WaveNet [23] network. The vision-based approach
utilized an inflated 3D convolution (I3D) model to capture
spatio-temporal features followed by a transformer to learn
interactions across players.

More specifically, the contributions of this work are: i)
conducting a comprehensive analysis on the use of visual
features and trajectory data for group activity detection in
sports; ii) investigation on the use of action recognition
methods and extend them for group activity detection with
atomic events; and iii) introducing the use of transformers
for group activity detection from trajectory data. In ad-

dition, we perform extensive experiments on a large-scale
soccer dataset provided by Sportlogiq from the English Pre-
mier League. The dataset contains broadcast video feeds
along with group activity labels for each frame and 2D tra-
jectories of the ball and players on real-world coordinates.

2. Related Work

2.1. Trajectory-based activity recognition

As the most widely available source of data in sports,
trajectory data serves as an intermediate, sparse represen-
tation of the scene. Despite the availability of the trajec-
tory data, there are very few research works that tried to
exploit them for recognizing and detecting group activities
[18, 20, 21, 35]. In the context of sport trajectory data,
the focus has been mostly to model the trajectories to ei-
ther generate metrics for player and team evaluation, or to
make predictions and generate trajectories for game sim-
ulations [41, 9]. In the early work, Lucey et al. used a
compact representation of the trajectories by reducing the
sport player trajectories into player roles to identify team
formation and plays [19]. In [35], the trajectory data was
converted to a binary image representing the location of
the players on a template of a basketball court and then a
Convolutional Neural Network (CNN) and Recurrent Neu-
ral Network (RNN) were applied to classify NBA offensive
patterns. Converting the trajectories into an image represen-
tation makes the use of 2D CNN straightforward. However,
the temporal aspect of the trajectory data was ignored. In
[21], a two stream process was introduced to leverage both
tracking and visual data. A temporal convolutional network
was applied on the trajectory data to encode trajectories into
an spatio-temporal embedding followed by pooling layers
to aggregate the temporal dimension. Similarly, TCNs were
used to learn an embedding for trajectories of the players
and the ball in football to predict the outcome of a play
[14]. In [42], hierarchical LSTMs were used for tempo-
ral encoding of the extracted features from the video frames
and trajectory data followed by temporal point processes to
model temporal distribution of the players in a sport game
for predicting when the next activity will occur. In [9], con-
ditional variational autoencoders were used to generate tra-
jectory embeddings in basketball to characterize players be-
haviour by conditioning on players and team identities and
using heuristics to assign players to roles. In most of the
previous approaches, an ordering between the players and
the ball is fixed, either by enforcing relative distance to the
ball or applying players roles in the game [19, 9]. Here, in-
stead of imposing any pre-defined structure on the relation-
ship between the players in the scene, we use transformers
and leverage self-attention to fully capture the scene con-
text.
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Figure 2. The trajectory-based models that are compared in this paper: the input is segments of T frames including N object trajectories
(ball and players) for all the models. The bottom architecture extracts D-dimensional feature vector applied to the transformer model.

2.2. Vision-based activity recognition

Vision-based action and group activity recognition has
been the subject of several studies in the literature [5, 39,
15, 26, 1, 33, 16, 31]. It is commonly formulated as a classi-
fication problem over a short video segment, of one or a few
seconds. Early approaches used features extracted from 2D
CNNs on individual frames, followed by temporal informa-
tion modeling [7, 22, 29, 6, 15]. More recently, 3D CNNs,
such as C3D and I3D models have been applied to the video
segments directly to learn spatio-temporal filters [16, 33].
This approach has the advantage of extracting features from
the whole scene that could be useful for predicting group ac-
tivity. However, given that actions in sports videos consume
a small portion of the entire frame, the extracted features
may be dominated by features related to the background
[15]. To overcome this limitation, recent works have begun
modeling the relationship between the players in the video
as this can serve as an important feature to infer group activ-
ity. Typically, this involves detecting and tracking persons
in the video and pass the bounding boxes through a feature
extractor. To model the relationship between the bounding
boxes, many approaches have been proposed, ranging from
simple heuristics, such as maximum activation over bound-
ing boxes [42, 32] and temporal information modeling with
LSTMs [15]. More sophisticated approaches, such as us-
ing Graph Convolutional Neural Networks (GCN), have
been introduced to model interactions between actors in a
scene[39, 36]. One of the major difficulties in using graphs
for group activities in sports is the requirement of explic-
itly defining a graph structure. To overcome this limitation,
Gavrilyuk et al. [10] leveraged the self-attention mechanism
in transformers to model the dynamic relationships between
the actors. While this approach achieved state-of-the-art re-

sults the volleyball [15] and collective activity dataset [38],
we were interested in whether this approach would improve
performance in a more dynamic setting, such as soccer.

Most methods proposed for activity detection [4, 40, 30,
24] are focused on temporal localization of non-atomic ac-
tions, i.e. actions that are defined in time and have a dura-
tion such as walking and sitting [12]. Using temporal du-
ration for actions makes it possible to use temporal losses
such as temporal IOU [4]. However, since atomic actions
do not have a duration, these evaluation metrics cannot be
used. For instance, spatio-temporal localization tasks of-
ten use 3D IOU which can only be defined for actions that
span across several time steps, such as the ones in the AVA
dataset [12]. Ward et al. [37] proposed to break down er-
rors for activity recognition into more categories: inser-
tions, deletions, fragmentation and merging. We note that
these definitions are also only valid for activities that span
multiple time steps. Another aspect that must be considered
is that the number of predicted instances is important, as
the end goal is to use the automatically detected actions and
group activities for sport analytics purposes. For instance,
predicting a pass in two consecutive frames (when a single
pass is present) is an important issue for the applications
of these metrics. As an example, if they are used to com-
pute the “number of passes under pressure for player X”,
the number of predicted instances is important.

3. Methods

3.1. Trajectory-based approaches

To investigate the effect of self-attention in group activ-
ity detection, we train three sets of models: i) a Wavenet-
based [23] dilated 1D TCN; ii) a transformer on the raw tra-
jectory data; and iii) a TCN followed by a transformer, as



shown in Figure 2. These are followed by a fully-connected
layer to predict the activity. For all three models, we use
the ball and the players trajectories on a real-world coordi-
nate system. Let (xb(t), yb(t)) and {(xpi(t), ypi(t))}N−1

i=1

denote the location of the ball and the players at the time
step t. Inputs are created by concatenating the location of
the ball and the players within a temporal window of T to
form 2× T ×N feature vectors. During pre-processing, all
the trajectories are normalized to the length and width of the
corresponding stadium. We zero-pad the trajectories to deal
with mis-detection and to ensure that all the inputs are of
the length of T . Since the target activities are all on-the-ball
actions, we ran our experiments using only the ball trajec-
tory, and also a ball-centric representation that uses the ball
and the K-nearest players trajectories. For the latter case,
we identify the closest players using their average distance
to the ball inside the temporal window.

3.2. Vision-based approaches

All the vision-based models studied in this paper use an
Inflated 3D CNN as the backbone [3]. Inputs to the net-
work are short clips of size 3× T ×H ×W , consisting of
T frames of size H ×W , and 3 color channels. In partic-
ular, we use an inflated Resnet-18 [13] backbone that uses
3D convolutional layers with residual connections, which
outputs a 512-dimensional feature vector. Figure 3 illus-
trates the vision-based approaches evaluated in this paper:
the model on the top processes full frames, and the models
on the bottom first processes tubelets from each player, and
then aggregates the results.

For the I3D model used on the full frames, we consider
inputs of size 3×T ×360×640, and add a fully-connected
layer to predict the activity. For the models that process
tubelets, we consider a collection of N tracks for the play-
ers that are visible in the middle frame of the clip. We ex-
tract bounding boxes for each player in the T frames of the
clip, resize to a standard size of 112 × 112 (preserving as-
pect ratio), and creating one tubelet per player: a tensor
of size 3 × T × 112 × 112. Tracks that are shorter than
T (e.g. a player entering the camera’s field of view) are
zero-padded. We aggregate the information from different
tubeletes in three approaches: the first considers, for each
class, the maximum prediction over tubelets. The second
approach uses a GCN, where a graph is explicitly defined
based on the distance between the players in pixel space
[39]. The final approach uses a transformer that follows a
similar formulation to [10] by considering the set of features
for all N players as the sequence to be encoded. After this
step, a fully-connected layer outputs a single prediction for
the clip.

4. Experiments
4.1. Dataset

We conducted experiments on a dataset of 74 soccer
games from the 2018-2019 English Premier League pro-
vided by Sportlogiq. The dataset includes 30FPS broadcast
camera feeds at 720P resolution, the ball and all players tra-
jectories obtained from an alternate vision-based tracking
system using multiple cameras, and an event label (one of
background, pass, reception and shot) at each frame. The
average number of events per game are: 912 passes, 1131
receptions and 22 shots (imbalance ratio: 41:51:1). The
average number of players visible in the broadcast feed is
13 (±3.7). A total of 64 games were used for training the
models, 5 for validation and 5 for test. To have a better es-
timation of our model generalization capability on unseen
teams and stadiums, there is no overlap between the train-
ing, validation and test teams.

4.2. Experimental protocol

The vision-based models were trained on short clips of
25 frames, centered on the event frame (with ±2 frames
for data augmentation). The trajectory-based models were
trained on short segments of 51 frames, centered on the
event frame. For training, we included a background class,
consisting of temporal windows where none of the events of
interest occur, with a ratio of 50% of samples being back-
ground. The remaining samples are one of the events of
interest. We trained the following models:

• Trajectory-based models

– TCN: ball and players trajectories are used to
train a sequence classifier consisting of a stack
of Wavenet-based 1D convolutional layers.

– Transformer: ball and players trajectories are
used to train a transformer-based sequence clas-
sifier.

– Transformer on top of TCN: ball and players
trajectories are fed to the TCN and the trans-
former is applied on the temporal features to clas-
sify the input sequence.

• Vision-based models

– I3D trained on the whole frame: For this
model, the frames are resized to a fixed size
(640× 360).

– I3D trained on bounding boxes: For the events
of interest, we train the model with a spatio-
temporal tubelet of the player that did the action,
that is, a sequence of images from a bounding
box around the player. For background events,
we select a random player for training.
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Figure 3. The vision-based methods compared on this paper. Top: 3D CNN applied to videos of the entire frame. Bottom: Tubelets are
created for each of the N tracked players, and a 3D CNN model is applied, resulting in a D-dimensional feature vector for each player.
We consider a simple aggregation (max over N ), a GCN and a transformer model.

– GCN on I3D trained on bounding boxes: For
this model, tubelets for all players in the broad-
cast field of view are used for training. The graph
is defined based on player proximity in pixel
space in the center frame.

– Transformer on I3D trained on bounding
boxes: Similar to the GCN model, tubelets for
all players in the broadcast field of view are used
for training.

4.3. Evaluation metrics

Considering the final objective of detection performance
(as opposed to classification on clips), we evaluate the mod-
els on a sliding window of a larger segment of the game.
During validation, we measured the detection performance
of the models on 500-frame segments. We report the perfor-
mance metrics on the test set using 15000-frame segments
(8 minutes) for each game.

To evaluate the models, we first gather the predicted
probabilities at each frame by centering a temporal window
around it to create the input sequence. For each class c, a
threshold τc is applied on the model probabilities to identify
an event. To eliminate multiple detections on a single event,
a non-maximum supression (NMS) procedure is applied,
with an event-specific window length WNMS. We compute
the true positives (TP), false positives (FP) and false nega-
tives (FN) for each event as follows. A positive prediction is
counted as a TP if and only if there exist a ground truth event
within a temporal distance ofWeval frames; otherwise it will
be a FP detection. If there are multiple ground truth events
exist within the temporal window, the positive prediction is
assigned to the nearest ground truth event. A ground truth

event is counted as a FN if there are no positive predictions
assigned to it. During our experiments, we set the evalu-
ation window length to 51 frames, which is less than one
second around an actual event.

We optimized the hyperparameters τc and WNMS to
achieve the maximum F-score on validation segments that
were randomly chosen from 5 games in our validation
dataset. We performed a grid search with values of τc rang-
ing from 0.3 to 0.98 with the step of 0.02, and WNMS rang-
ing from 3 to 59 frames with the step of 2 frames.

We evaluated the models on the test set in terms of preci-
sion, recall and F-score computed at τ∗c andW ∗

NMS. We also
measured the temporal distance (TD) error, as the time dif-
ference (in seconds) between the ground truth and the cor-
responding predicted frame, for all the true positive predic-
tions of each event. Their values at 0.5 and 0.95 percentiles
were used as the evaluation metrics. This evaluation pro-
cedure is designed to cope with the fact that the events of
interest are atomic (they are labelled for a single frame), but
there is an uncertainty in their labelling (annotation may be
incorrect by a few frames). It also does not penalize the
model if it predicts the event within a small window of the
actual frame. The precision of the prediction in time is cap-
tured by the TD metric.

5. Results and Discussion

All vision and trajectory-based models were trained and
tested for the same games. The models were initially trained
for action recognition and were evaluated to detect the same
events in time.



5.1. Trajectory-based models

Using the ball and the players trajectories, we trained the
three models in Section 3.1 on the training set. Since the
target activities are all on-the-ball actions, we ran our ex-
periments using the trajectories of the K-nearest players to
the ball. This helps all of the models attend to the region
around the ball, which is where the action is happening.
Table 1 shows the detection precision, recall, F-score, 0.5
and 0.95 percentiles of temporal distance error. Accord-
ing to the results, the combination of TCN and transformer
improves the activity detection performance for all of the
desired events. Moreover, the events are detected more ac-
curately in time (lower 0.5 and 0.95 percentiles of TD er-
rors), suggesting the usefulness of employing self-attention
mechanism on top of feature extractors.

We evaluated the best-performing model
(TCN+Transfomer) in a series of scenarios, that are
summarized in Table 2. First, we report the performance
of the model using the ball and all players trajectories.
The result suggests that the model does not benefit from
accessing the trajectories of all players and limiting the
input data to the region around the ball helps the detection
performance. Second, to further assess the impact of the
players trajectories, we re-trained the TCN+Transformer
model using only the ball trajectory. The model’s perfor-
mance suggests that the ball trajectory plays an important
role in detecting on-the-ball group activities. This also
highlights a shortcoming of the trajectory-based models,
which is detecting passes and shots that are blocked shortly
after the attempt has been made. In these situation, the
model cannot perceive any ball movements and is unable to
detect and identify the correct action.

Figure 4 illustrates how the model behaves differently
with and without having access to the players trajectories.
The figure shows the prediction probabilities for the desired
events, versus the ground-truth during a 15-second segment.
While both models were able to detect the majority of the
events, using the players trajectories helps increasing the
model’s temporal resolution in detecting consecutive ac-
tions. It is worth mentioning that without using the players
trajectories, the optimised NMS window lengths for passes,
receptions and shots are 3.7, 1.2 and 1.9 times higher.

Finally, we fine-tuned the pre-trained TCN+Transformer
model using partially observed tracking data obtained from
the broadcast feed. While having shorter tracks, the par-
tial broadcast trajectories are mostly available for the ball
and the area where the activities are occurring. The results
suggest that it is possible to achieve comparable detection
performance using trajectories obtained by tracking players
in broadcast videos.

Model Event Precision Recall F-Score TD @ 0.5 TD @ 0.95

TCN
Pass 0.60 0.50 0.55 0.28 0.86
Reception 0.51 0.62 0.56 0.38 0.87
Shot 0.51 0.62 0.56 0.38 0.87

Transformer
Pass 0.82 0.89 0.86 0.20 0.50
Reception 0.74 0.88 0.80 0.18 0.52
Shot 0.43 0.88 0.58 0.10 0.12

TCN +
Transformer

Pass 0.87 0.86 0.87 0.20 0.48
Reception 0.80 0.86 0.83 0.18 0.50
Shot 0.60 0.88 0.71 0.19 0.19

Table 1. Performance metrics computed for trajectory-based mod-
els applied on the test dataset using 2D positions of the ball and
5-closest players to the ball.

Model Event Precision Recall F-Score TD @ 0.5 TD @ 0.95

Complete Trajectories
Ball and All Players

Pass 0.71 0.92 0.8 0.28 0.66
Reception 0.82 0.79 0.8 0.24 0.56
Shot 0.71 0.63 0.67 0.18 0.18

Complete Trajectories
Ball only

Pass 0.81 0.77 0.78 0.28 0.5
Reception 0.79 0.79 0.79 0.22 0.52
Shot 0.54 0.88 0.67 0.18 0.21

Partial Broadcast Trajectories
Ball and 5-closest Players

Pass 0.80 0.88 0.84 0.27 0.62
Reception 0.86 0.73 0.79 0.24 0.56
Shot 0.83 0.63 0.71 0.08 0.08

Table 2. Ablation analysis of the trajectory-based models. We used
the TCN+Transformer model for all the experiments.
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Figure 4. How TCN with transformer behaves in detecting our de-
sired events using Top: only ball trajectory data, Bottom: ball and
5-closest players data. Model output probabilities per frame as-
sociated with pass, reception and shot in blue, orange and green,
respectively. The dots indicate ground truth events.

5.2. Vision-based models

Table 3 reports the results for the vision-based models.
The I3D model trained on full-frame information performed
best for all three actions evaluated in this paper. We also
observed that the Transformer model improved results over
I3D trained on bounding boxes for passes and receptions,
but obtained worse results for shots. Surprisingly, the model
using GCN to capture the interactions between players per-
formed worse. One of the reason can be the way the graph
is defined which is based on players’ location proximity to
the center of the frame.

Overall, we noticed that all models had errors in situa-
tions where a player receives the ball and takes a long pe-



Figure 5. Example of a common error scenario for all models in-
vestigated in this work. We show 12 frames before and after a
predicted event (indicated with a red border). Without any further
context, it appears that player with jersey number 5 is making a
pass, while he is actually taking possession of the ball.

Model Event Precision Recall F-Score TD @ 0.5 TD @ 0.95

I3D Frame
Pass 0.78 0.91 0.84 0.03 0.18
Reception 0.74 0.81 0.77 0.04 0.41
Shot 0.83 0.63 0.71 0.13 0.13

I3D BBoxes
Pass 0.79 0.82 0.81 0.15 0.38
Reception 0.69 0.50 0.73 0.02 0.02
Shot 0.40 0.50 0.44 0.09 0.45

I3D BBoxes +
GCN

Pass 0.80 0.62 0.70 0.09 0.43
Reception 0.64 0.47 0.54 0.08 0.47
Shot 0.01 0.38 0.01 0.36 0.36

I3D BBoxes +
Transformer

Pass 0.79 0.89 0.83 0.09 0.29
Reception 0.70 0.78 0.74 0.07 0.44
Shot 0.29 0.63 0.40 0.01 0.01

Table 3. Performance metrics computed for vision-based models
applied on the test dataset.

riod of time to control it. This is illustrated in Figure 5: over
this segment (12 future frames), it appears that the player is
making a pass, while by observing 2 more seconds in future
we observe that the same player took possession of the ball.
This is a limitation given by the short length of the segments
used for training/testing.

Comparing the I3D frame and I3D BBoxes + Trans-
former models more closely, we see that their detection
performance for pass and reception was reasonably close,
while for shots, the model trained on bounding boxes per-
formed much worse due to its very low precision. A visual
analysis of the errors showed that this model struggles to
distinguish between passes and shots made close to the goal
area - since only visual information around players is used,
the model has no access to the trajectory of the ball.

Given results obtained from both the trajectory and vi-
sion based models, we observe that most events can be
detected using either vision or trajectory-based approaches
with a temporal resolution of less than 0.5 seconds. We note
that the trajectory-based model performs better in detecting

certain events that depend on the physical location in the
pitch (e.g. for shots the model need to infer that the ball is
moving toward the goal). We also note that fusion between
the trajectory and visual streams can be considered as one
of the potential extension of the current work.

6. Conclusion

In this paper, we conducted a comprehensive analysis on
the use of vision- and trajectory-based methods for group
activity detection on a large-scale soccer dataset, and intro-
duced the use of transformers applied on temporal feature
representations for group activity detection. We focused
on detecting pass, shot and reception in soccer games, and
showed that models trained for activity recognition on clips
can perform well for the detection task, although with some
limitations, such as not recognizing sequences that require a
longer temporal context (e.g. as shown in Figure 5). Train-
ing models for activity detection is a promising way to ad-
dress this issue, but requires new models that are well de-
fined for actions without a duration.

We also observed that the I3D models trained on the
whole frame captured by the broadcast camera performed
better than directly modeling player interactions using
transformers or GCNs. However, we hypothesize that this
needs deeper investigation for static camera setups, since a
large fraction of a frame is background for which an atten-
tion mechanism might be required to mitigate this issue.
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