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Abstract

Auto-annotation by ensemble of models is an efficient
method of learning on unlabeled data. Wrong or inaccu-
rate annotations generated by the ensemble may lead to
performance degradation of the trained model. To deal with
this problem we propose filtering the auto-labeled data us-
ing a trained model that predicts the quality of the annota-
tion from the degree of consensus between ensemble models.
Using semantic segmentation as an example, we show the
advantage of the proposed auto-annotation filtering over
training on data contaminated with inaccurate labels.

Moreover, our experimental results show that in the case
of semantic segmentation, the performance of a state-of-
the-art model can be achieved by training it with only a
fraction (30%) of the original manually labeled data set,
and replacing the rest with the auto-annotated, quality fil-
tered labels.

1. Introduction

Semi-supervised learning, using the combination of a
smaller set of labeled data and a larger set of unlabeled data,
is becoming increasingly important with the growing capac-
ity of trained models and their tasks complexity. Higher
capacity models require more training data, and complex
tasks make manual annotation more labor intensive. En-
sembles of models have been successfully used for auto-
matic annotation of unlabeled data [5, 43]. In self-training
scenarios, multiple instances of the target model trained on
the labeled data form an ensemble. The ensemble, which
is said to be more accurate than a single model, then labels
the unlabeled data. In model-compression scenarios, en-
sembles extract the knowledge from a set of more powerful
pre-trained models.

Using ensembles for unlabeled data annotation, however,
raises one issue that is often not properly addressed: the an-
notation quality. In general, the ensemble cannot guarantee
that the annotations it generates meet the quality bar. Using

wrong or inaccurate annotations for training may negatively
affect the target model.

In this work we propose a method for predicting the
quality of the annotations generated by an ensemble. The
approach uses a model trained to assess the quality of the
generated annotation from the degree of consensus between
ensemble models.

We propose to refine the auto-labeled data set by dis-
carding samples with low predicted annotation quality. We
show that training on a refined reduced set is advantageous
over using a lager set, contaminated with inaccurate data.

The main contributions of the paper are:

• We introduce an automatic filtering of auto-
annotations generated by ensembles, using a trained
model that predicts annotation quality from ensemble
models degree of consensus.

• We propose an auto-annotation quality control scheme
for semantic segmentation, which filters bad labels at
pixel level, yielding a refined partial image labeling.

• We demonstrate that training semantic segmentation
model with quality filtering is advantageous over train-
ing with no filtering.

• We show how the proposed method achieves the same
accuracy as a state-of-the-art model, while manually
annotating of only a fraction (30%) of the training set.

2. Related work
Ever since is was demonstrated that ensembles of mod-

els can boost the accuracy [18], and the reasons ensembles
outperform any single model they are composed of were
identified [13], they have been used extensively to achieve
state-of-the-art performance. A large body of work exists
on the subject, reviewed in [37, 32, 21].

According to the taxonomy developed in [37, 25], the en-
semble approaches are divided into non-generative - using
a fixed set of pre-designed models, and generative - gen-
erating models by acting on the base learning algorithm or
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on the structure of the training set. While the approach we
propose can be generally applied to both types, in the ex-
periments presented here we used ensemble generation by
bagging [3] the same model trained with different permu-
tations and augmentations of the training set. Other tech-
niques include bagging by varying parameter settings [6], a
low computational cost snapshot ensembles [26, 20, 7] and
many others.

Here we combine bagging with a complimentary ap-
proach to accuracy boosting - ensembling by input transfor-
mations. Variants of it were used in various computer vision
tasks including object detection [40, 14], image classifica-
tion [23], recognition [36] and keypoints detection [31].

Using ensembles of models for self-training was pro-
posed in [5], where a knowledge distillation is performed on
unlabeled data by an ensemble trained on a smaller set of la-
beled data. The idea of self-labeling goes back to 1965 [35],
and since then was a subject of research in semi-supervised
learning [45]. The benefits of using ensembles for semi-
supervised learning are advocated in [44].

Here we propose a model distillation regime where the
quality of the labeling generated by an ensemble is esti-
mated by an additional, second-level model. This is closely
related to the stacked generalization [41] meta-learning
technique [15]. Unlike the method in [19] that uses soft la-
bels for knowledge distillation, we train a network to filter
out bad and unreliable labels.

Decontaminating noisy labels from training data was ex-
plored in [2, 4]. Those approaches assume no prior knowl-
edge about the training set labels, whereas in our case the
labels are generated for initially unlabeled data by an en-
semble. In this work we leverage the degree of consensus
between ensemble models as additional information to as-
sess labels quality.

We demonstrate the effectiveness of the proposed tech-
nique on the example of semantic segmentation [17]. Prior
work on not fully supervised semantic segmentation in-
clude weakly and partially supervised techniques [22, 30,
39], self-supervision [42] and ensemble knowledge trans-
fer [29]. To the best of our knowledge, this is the first work
that performs semi-supervised training of semantic segmen-
tation model on auto-annotated unlabeled data, generated
by ensembles with quality filtering.

3. Annotation quality prediction

Let f : X→ Y be the target model to be trained. We use
an ensemble of models e = (f1, . . . , fk), fj : X → Y, to
automatically label the unlabeled data for training the target
model f . Models in e are trained on a labeled data set S =
{(x(i), ȳ(i))}, x(i) ∈ X, ȳ(i) ∈ Y.

We use the ensemble to generate labels for the large un-
labeled set U = {x(i)} in the following way:

• Run e : X → Yk on U to generate vectors of labels
L = {(y(i)

1 , . . . , y
(i)
k )}.

• Apply a fusing function g : Yk → Y to combine the
ensemble labels into a single label: L̂ = {ŷ(i)} =
g(L) = (g ◦ e)(U)

The g function can be implemented by a plethora of ensem-
ble fusion methods [32]. It can either generate a novel la-
beling ŷ from ensemble outputs (y1, . . . , yk) , or select one
of them, i.e. ŷ = g(y1, . . . , yk) = yj , j ∈ {1, 2, . . . , k}.

We can then train the target model on the generated la-
beled set T = {U, L̂} = {(x(i), ŷ(i))}. In a general case,
some of the automatically generated labels in L̂ are ex-
pected to be wrong. Therefore, a supposedly better ap-
proach would be to remove the corresponding data samples
from T.

To filter out bad labels, one can use an ad-hoc method.
For instance, if ensemble models reports a confidence level
associated with the output, it can be used to filter out the low
quality annotations. Such filtering is quite simple in some
scenarios, e.g. for object/image classification tasks, while
in others, e.g. object detection, it is becoming less trivial.
The confidence associated with each detected object does
not provide any information on the likelihood of missing an
object. For example, to deal with this issue in keypoint and
object detections, [31] filter out false positives by thresh-
olding the confidence score to get the average number of
annotated instances per unlabeled image roughly equal to
the average number of instances per labeled image.

In a more principled way, we propose to train a function
q, that predicts the quality of the labeling generated by an
ensemble, based on the degree of consensus between en-
semble models. Function q : Yk → {0, 1} receives the
ensemble output (y1, . . . , yk) and generates a quality score
in {0, 1}. This is similar to Wolpert’s ensemble stacking
approach [41], but instead of merging ensemble outputs to
generate a fused labeling, the q function predicts the label-
ing quality for a fixed fusor g. The function q is trained
using a labeled data set Q = {(x(i), ȳ(i))}. For a data sam-
ple (x, ȳ) ∈ Q, the input for the q model is the ensemble
output e(x) and the ground truth is the indicator function
1(g◦e)(x)=ȳ .

We then use q to filter the auto-annotated set T by dis-
carding data samples with low predicted annotation qual-
ity to yield a refined labeled data set T∗ = {(x, ŷ) ∈ T |
q(e(x)) = 1}

4. Training with auto-annotations and the EM
algorithm

In this section, we step back to perform a more princi-
pled analysis of the auto-annotation procedure, providing
a mathematical justification to the benefit of using auto-



annotated data from an optimization process point of view.
We extend our approach by viewing the auto-annotation
procedure as an iterative process, in which the following
steps are repeated several times.

1. Start from a manually labeled data set S.

2. Train an ensemble of models on the available data set.

3. Using the ensemble, obtain auto-annotations on an un-
labeled data set.

4. Apply quality filtering to remove poorly anno-
tated data, thus improving the quality of the auto-
annotations.

5. Add the auto-annotations to the available data set.

6. Repeat steps 2-5 several times to improve model’s per-
formance, until performance is stabilized.

In this paper, we consider a special case of this process,
analyzing the model’s improvement after one iteration of
the steps above. To make the discussion in this section more
concrete, we concentrate on a classification problem.

We perform our analysis under a semi-supervised frame-
work. This is similar, in concept, to the analysis in [1]. In
this scheme, using the notations of the previous section, we
are given a set of labeled samples S = {(x(i), ȳ(i))} and a
set of unlabeled samples U = {x(t)}. Our goal is to fit a
model pθ(x, y) to the data, characterized by a set of param-
eters θ. In order to do that, we would like to optimize the
log likelihood function `(θ), defined via∑

(x(i),ȳ(i))∈S

log p
(
x(i), ȳ(i);θ

)
+
∑

x(t)∈U

log p
(
x(t);θ

)
.

(1)
If all our data was labeled, we could have approached this
optimization problem using methods such as gradient de-
scent. However, part of our data is unlabeled, resulting in
two types of parameters we need to fit: The parameters θ
and the missing labels for the data in U. Since in this dis-
cussion we focus on a classification problem, we can view
these missing labels as class probability vectors, associated
with each x ∈ U. Thus, we would like to find both θ and
the mentioned probability vectors.

In order to do that, we can utilize a well-known like-
lihood maximization method: Expectation Maximization
(EM) algorithm [12], which is an iterative approach that
converges to a local maximum. We first obtain an initial
estimation for θ, by fitting the model (in our case, training
the network) using only the labeled data. Afterwards, each
iteration of EM consists of two steps:

• In the E-step, the posterior probabilities of each class
1 ≤ c ≤ C (whereC is the total number of classes) are

estimated for each sample x(t) ∈ U, using the model
and its parameters. The posterior probability vector is
of the form(
p
(
ŷ(t) = 1

∣∣∣x(t);θ
)
, . . . , p

(
ŷ(t) = C

∣∣∣x(t);θ
))

.

(2)
This step is performed by activating the model on a
sample and inferring the probabilities of each class.

• In the M-step, we optimize a lower bound of the like-
lihood function w.r.t. the parameters of the model (this
is a well known lower bound. See, for example, sec-
tion 2 in [27]). Thus, θ equals to argmax (over θ) of

∑
x(m)

C∑
c=1

p
(
y = c

∣∣∣x(m);θ
)

log p
(
x(m), y = c;θ

)
.

(3)
In the summation above, x(m) is summed over all the
elements in U and the first coordinate of the elements
in S. For the latter case, y is chosen to be ȳ(m). For the
former case, y enumerates over all possible classes.

This step corresponds to training the model on the in-
ferred posterior probabilities. In the case where the
model is a neural network, applying the maximization
step is equivalent to training the network, using the
cross-entropy loss.

In our method, we add an additional intermediate classi-
fication phase (C-step) to the EM algorithm, which we re-
fer to as auto-annotation. After the expectation phase, a
per-class probability exists for each sample. We leverage
these probabilities by modifying the posteriors via taking
the most probable class, i.e. p

(
y = c

∣∣x(m);θ
)

= 1 if c is
the class with the largest posterior probability, and other-
wise it equals 0.

To conclude, we first train a model on the labeled sam-
ples, leading to an initial set of parameters θ. Then, we
apply the first two steps of our revised EM algorithm. We
apply the trained model on unlabeled samples (E-step), and
then we classify them to produce auto-annotations for the
unlabeled data (C-step). Finally, the M-step consists of re-
training the model, this time using labeled samples along
with newly auto-annotated ones. Note that, while we use the
auto-annotated labels for the unlabeled samples, we keep
the original annotations for the labeled ones.

Clearly, a satisfying convergence of the described ap-
proach relies on the accuracy of the auto-annotations them-
selves. When the auto-annotations are too noisy, the model
is not expected to improve its generalization [16].

To reduce the noise caused by false auto-annotations,
and improve the convergence, we propose to use two means.
The first is to strengthen the model itself by averaging an



ensemble of models, as suggested in [34, 28]. Furthermore,
as described in the previous section, we train an additional
classifier q aimed to predict false auto-annotations and elim-
inate them from the retraining process.

5. Semi-supervised semantic segmentation
with auto-annotation quality prediction

To demonstrate the proposed approach, we implement a
semi-supervised training of a semantic segmentation model
using auto-annotation with ensemble of models and quality
filtering. We chose the task of semantic segmentation since
creating manual annotations for this task is extremely labor
intensive, resulting in a relatively limited amount of such
annotations. Therefore, highly accurate auto-annotations
could be especially useful for this task.

To populate the ensemble we use both multiple mod-
els and data augmentation, following the data distillation
method presented in [31]. First, we train the same model
multiple (three) times using different parameters initializa-
tion and training samples reshuffling. In addition, each
model is fed six augmented versions of the input image:
two horizontal flips × three scales (x0.5, x1.0, and x1.5) .
This effectively corresponds to an ensemble of size 18.

In the experiments described in the next section we
merge ensemble results into a single label using a simple
softmax averaging [34, 38, 24, 28]. We refer to a collection
of such labels as unfiltered auto annotations. The fusing
function g is defined as

g(σ1, . . . , σk) = argmax
i∈[1,...,C]

k∑
j=1

σj , (4)

where C is the number of classes in the semantic segmen-
tation model, and σj ∈ RC is a softmax class probability
vector generated by the j-th model of an ensemble of size
k.

Interestingly, since semantic segmentation models can
be trained on a partially labeled image, we do not necessar-
ily need to accept or discard the image labeling as a whole.
Instead, we can do it selectively, by making a decision per
pixel. Pixels with unreliable labeling are marked as a spe-
cial ”ignore” class in the labels mask and do not contribute
to the gradient back-propagation during the training.

In addition, if the segmentation model generates not only
the class labels, but also class probabilities, we can use
those as inputs to the quality filter q. Here we implement
q using a convolutional neural network (CNN) that receives
k × C input channels - (σ1, . . . , σk) and outputs a quality
mask in {0, 1}.

The network has four hidden conv-ReLU layers. The
first layer has 40 output channels while the rest of them have
20. This is followed by the output conv-sigmoid layer with
one output channel.

6. Experiments
In this section we demonstrate the strength of the pro-

posed quality prediction approach. We show that a model
trained on a combination of manually labeled data and qual-
ity filtered auto-annotations achieves better performance
than a model trained on a combination of manually la-
beled data and unfiltered auto annotations. In fact, we show
that quality filtering allows replacing significant amount
of manually-annotated images by auto-annotated images,
without any degradation in accuracy.

6.1. Training procedure

The experiments are performed with DeepLab network
1 [9], a state of the art network for semantic segmentation.
The training protocols involve 90000 iterations, batch size
of 12, learning rate of 0.01, output stride of 16, and decoder
output stride of 4. We follow the same cropping conven-
tion as recommended in [8], and use crop size of 769 dur-
ing training. Finally, we use Xception65 [10] pretrained on
ImageNet [33] as a backbone. The evaluation results, both
on the validation and the test sets are obtained using single
scale and output stride of 16.

6.2. Data set

We evaluate our approach on the pixel-level semantic la-
beling task of Cityscapes data set [11]. This data set has 19
semantic labels (and additional void labels that are not used
for evaluation), and consists of 5000 images, which are split
into training, validation and test sets of sizes 2975, 500, and
1525 respectively. We report mIoU (mean IOU) scores and
also IoU scores of each one of the 19 classes following the
Cityscapes definitions. Results are reported on the valida-
tion and the test sets.

Our experiments involve several splits of data. In all the
splits below, all the 19 classes are represented.

• Cityscapes full training set - 2975 labeled images that
form the Cityscapes training data.

• Cityscapes extra set - 3600 images sampled from the
20000 coarsely annotated Cityscapes data set. We do
not use any available labels from this data set, only the
images themselves.

• Cityscapes small training set - 30% of the labeled
images in the Cityscapes training set.

• Cityscapes tiny training set - 15% of the labeled im-
ages in the Cityscapes training set.

As the 19 classes are unbalanced by nature, when choosing
subsets of data sets (training or unlabeled), it is important
to ensure that smaller classes are well represented. To this

1https://github.com/tensorflow/models/tree/master/research/deeplab



Figure 1. Rows - top to bottom: (1) Original image, (2) unfiltered auto-annotations, (3) quality filtered auto-annotations, (4) ground truth
annotation. Columns: three different examples. Black pixels in the fourth row represent void classes that are not counted as part of the 19
classes and do not contribute to the mIoU score. Black pixels in the third row represent pixels that are masked out by the quality filter.

end we utilize the following automatic approach: For the la-
beled data set, we choose subsets (30% and 15%, in our ex-
periments) based on automatic filtering of the manual labels
(choosing only images in which the number of labeled pix-
els of certain classes is high enough). For the unlabeled set,
we first generate auto-annotations via ensemble of models,
and then apply the same selection logic as for the labeled
set, using auto-annotations instead of manual labels.

6.3. Training with and without quality prediction

In this experiment we show that a model trained on man-
ually labeled data + quality filtered auto-annotations outper-
forms a model trained on manually labeled data + unfiltered
auto annotations. The former model surpasses the latter by
0.8% in mIoU.

The experiment, whose results are summarized in ta-
ble 1, consists of the following steps: We first train the net-
work on the Cityscapes tiny training set 3 times, and eval-
uate the network’s performance (the best accuracy among
the 3 is indicated in the first column in the table). We then
produce unfiltered auto-annotations for the Cityscapes extra

set by fusing ensemble results following equation (4). The
ensemble consists of the 3 trained models together with 6
augmentations associated with each model, effectively cor-
responds to an ensemble of size 18 as described in the pre-
vious section.

We proceed by performing two additional trainings:
first, we train the network on a data set which consists
of the Cityscapes tiny training set and the unfiltered auto-
annotations described above. The network’s performance is
indicated in the second column of the table. Next, we refine
the auto-annotations by applying the quality filter, described
in section 3. The quality filter is trained on the Cityscapes
tiny training set. Finally, we train the network on a data
set which consists of the Cityscapes tiny training set and
the quality filtered auto-annotations. The network’s perfor-
mance is indicated in the third column of the table.

As shown in the table, adding unfiltered auto-annotated
data improves the trained model accuracy by 1.5%. Adding
quality filtering improves the performance by additional
0.8%, which leads to overall improvement of 2.3%.

We chose the tiny training set for this experiment, as in



Manual
annotations

only

Manual +
unfiltered

auto-annotations

Manual + quality
filtered

auto-annotations
74.0% 75.5% 76.3%

Table 1. mIoU on the validation set of the experiment depicted in
section 6.3.

this scenario the auto-annotated data forms large portion of
the training data. In fact, the auto-annotated data forms
roughly 90% of the training data used for the training pro-
cedures depicted in the second and third columns of table 1.
This mimics the real world scenario in which available unla-
beled data sets are much larger than their manually-labeled
counterparts. Our approach shows that such data sets can
be utilized effectively to improve network’s performance.

6.4. Training with and without quality prediction –
per class examination

The experiment from the previous section shows a clear
improvement in performance when filtered auto-annotated
data is added to the training data. In this section, we perform
a class-wise IoU examination, obtained via the experiment
above. Based on the results presented in table 2, we arrive
to the following conclusions:

1. A model trained on manually labeled data + quality
filtered auto-annotations outperforms a model trained
on manually labeled data + unfiltered auto annotations
on each one of the 19 classes.

2. A model trained on manually labeled data + quality fil-
tered auto-annotations performs significantly better on
underrepresented classes, compared to a model trained
on manually labeled data only, adding up to ∼20% to
the IoU in such classes.

For the first conclusion, one can see that for each class in
table 2, the values in the fifth column surpass the values in
the fourth column. This is a strong demonstration of the
benefit of the quality filter. The largest gain is demonstrated
for the rarest classes (lower rows), with 4% gain to the most
rare class (train).

The second conclusion is achieved by comparing the
third and the fifth columns in table 2. Classes in which the
performance of the model trained on manual annotations +
quality filtered auto-annotations surpasses the performance
of the model trained on manual annotations only are high-
lighted in green. Those that perform the same are high-
lighted in yellow. One can see that in 14 out of 19 classes,
the performance of the former model was at least as good
as the latter. In 11 out of these classes, the performance
improved. The most significant improvement is obtained in
under-represented classes like train (19.7% improvement),
bus (7.8% improvement), truck (9.6% improvement) and

fence (4.9% improvement). One can also see an improve-
ment in the rarest 7 classes.

6.5. Training with quality prediction on additional
data splits

Following the observed accuracy gain depicted in sec-
tion 6.3, we experiment with manually-labeled training sets
of various sizes. We show that adding quality filtered
auto-annotated data improves the model performance in all
cases, with the largest improvement achieved for the small-
est manually-labeled training set.

Following the same procedure as in section 6.3, we train
the model first on manually labeled data only, and then on
manually labeled data + quality filtered auto-annotated data.
We repeat the experiment 3 times by reducing the manually
labeled training set from 100%, to 30% and, finally, to 15%.

Our results on the validation set are summarized in ta-
ble 3. In table 4 we also present the accuracy measured
on the test set for the models trained on the full manually-
labeled training set. As can be seen in the table, we obtain
an improvement of 0.6% when adding auto-annotated data
to the Cityscapes full training set. The improvement in-
creases even further, when the auto-annotated data is added
to the small training set and the tiny training set, in which
cases we get improvements of 2% and 2.3% respectively.

Moreover, the accuracy of the network trained on the
Cityscapes small training set+auto-annotated data is 77%,
which is identical to the accuracy of the network trained on
Cityscapes full training set. This demonstrates that using
our approach, with only 30% of the available manual an-
notations, we achieve the same accuracy levels as training
with the entire manually annotated training set (saving 70%
of manual annotations).

6.6. Performance of the quality filtering

In this section, we shed some light on the performance
of the quality filter itself. In the beginning of the section,
we examine retention rate (percentage of pixels that were
not masked out by the filter) and auto-annotation precision
(both filtered and unfiltered). In the end of the section, we
visualize quality filtered auto-annotations.

Consider the results in table 5. The unfiltered and qual-
ity filtered auto-annotations of the Cityscapes validation set
are used to measure the unfiltered and quality filtered auto-
annotation precision respectively. Precision rates increase
for all classes when quality filter is applied, showing that
our filter indeed learns to identify wrong annotations and
to mask them out. The improvement in performance, mea-
sured in IoU, of a model trained on manually labeled data
+ quality filtered auto-annotations versus a model trained
on manually labeled data + unfiltered auto annotations is
reported in the fifth column. The improvement in IoU is
correlated with the improvement in precision (correlation



Class

Num of
ground truth
occurrences

Manual
annotations

only

Manual +
unfiltered

auto-annotations

Manual + quality
filtered

auto-annotations
building 500 91.7% 91.6% 91.7%
sidewalk 499 81.8% 82.4% 83.1%
pole 499 63.3% 61.2% 62.2%
road 498 97.7% 97.7% 97.8%
vegetation 493 92.1% 92.0% 92.1%
traffic sign 487 76.5% 76.0% 76.5%
car 486 94.7% 93.7% 94.0%
sky 473 94.5% 94.9% 94.9%
person 453 81.0% 79.3% 79.8%
fence 394 54.1% 57.8% 59.0%
bicycle 392 75.0% 74.0% 74.8%
traffic light 385 67.6% 65.5% 65.9%
terrain 351 61.4% 63.2% 63.3%
wall 339 49.1% 49.6% 49.8%
rider 303 59.8% 59.7% 60.3%
truck 187 70.6% 78.3% 80.2%
motorcycle 178 61.4% 60.8% 63.1%
bus 161 79.2% 85.8% 87.0%
train 95 55.2% 70.9% 74.9%

Table 2. IoU per class on the validation set, as measured in the experiments reported in table 1. The first column lists the 19 classes in the
Cityscapes data set. The second column indicates the number of images in the validation set (out of 500) that contain the specified class.
For example, train is the rarest class, available only in 95 of the images, while building is the most common class, available in all the 500
images. Classes are ordered from the most common (first row) to the most rare (last row). Classes in which the performance of the model
trained on manual annotations + quality filtered auto-annotations surpasses the performance of the model trained on manual annotations
only are highlighted in green. Those that perform the same are highlighted in yellow.

Size of the
manually labeled

training set

Manually
labeled

data only

Manual + quality
filtered

auto-annotations
Full set (100%) 77.0% 77.6%
Small set (30%) 75.0% 77.0%
Tiny set (15%) 74.0% 76.3%

Table 3. mIoUs on the validation set. The data sets in the left col-
umn are described in section 6.2. In the middle column, the mod-
els were trained on the corresponding manually labeled training
set only. In the right column, the models were trained on the cor-
responding manually labeled set+ quality filtered auto-annotated
images from the Cityscapes extra set.

Manually
labeled

training set

Manually
labeled

data only

Manual + quality
filtered

auto-annotations
Full set (100%) 76.83% 77.29%

Table 4. mIoUs on the test set.

coefficient of 0.48).
Retention rates are indicated in the right-most column in

the table. These are the percentage of pixels in non-void
locations (based on ground truth) that are retained after ap-
plying the quality filter. Overall, 96.2% of the pixels are

retained. These results, in combination with the results in
table 1, show that by applying our quality filter we can im-
prove model’s performance while retaining most of the pix-
els (only 3.8% of the pixels are masked out).

Let us visually inspect unfiltered ensemble annotations
and the auto-annotations obtained by applying our qual-
ity filter on them. The quality filter has been trained on
Cityscapes tiny training set using the models that corre-
spond to the bottom row in table 3.

Consider the examples in figure 1. The top row depicts
three images from the Cityscapes validation set. The corre-
sponding manual labeling (the ground truth) appear in the
bottom row. The second row depicts the unfiltered ensem-
ble labeling. Row number three contains the same figures,
after undergoing quality filtering. Pixels that are filtered out
by the quality filter appear in black.

One can see that the quality filter identified correctly a
substantial amount of errors. For example, a major part of
the car’s hood is masked out by the filter. The filter also cor-
rectly masked out the misclassified parts of the wall in the
left and middle examples – see the purple area (second row),
that is correctly filtered out (third row), as can be verified by
the ground truth (last row). In the right column example, the
misclassified area on the left car is correctly masked out by



Class Annotation precision Diff between IoU
of filtered

and unfiltered
retentionfiltered

auto-annotations
unfiltered

auto-annotations diff
building 97.0% 95.7% 1.3% 0.1% 97.5%
sidewalk 94.5% 89.9% 4.7% 0.7% 86.5%
pole 90.8% 81.3% 9.6% 1.0% 70.6%
road 99.7% 99.1% 0.5% 0.1% 97.9%
vegetation 96.5% 95.4% 1.1% 0.1% 97.5%
traffic sign 95.3% 92.4% 2.8% 0.5% 89.5%
car 98.0% 97.4% 0.6% 0.3% 97.7%
sky 98.1% 97.3% 0.8% 0.0% 98.1%
person 93.2% 90.2% 3.0% 0.5% 92.3%
fence 87.6% 81.9% 5.7% 1.2% 82.9%
bicycle 91.2% 85.4% 5.7% 0.8% 84.7%
traffic light 90.5% 86.7% 3.8% 0.4% 86.6%
terrain 88.0% 83.8% 4.2% 0.1% 89.0%
wall 85.8% 80.4% 5.4% 0.2% 90.4%
rider 84.3% 78.2% 6.0% 0.6% 83.7%
truck 96.3% 90.2% 6.1% 1.9% 90.8%
motorcycle 93.1% 86.3% 6.8% 2.3% 82.2%
bus 92.4% 90.4% 2.1% 1.2% 95.8%
train 96.2% 90.9% 5.3% 4.0% 86.9%

Table 5. Auto-annotation precision, improvement in IoU, and retention rates on the validation set. Columns: (1) 19 classes in the Cityscapes
data set. (2) Annotation precision of unfiltered auto-annotations on the cityscapes validation set (precision is relative to the ground truth).
(3) Annotation precision of quality filtered (according to section 6.3) auto-annotations on the validation set. (4) Differences in precision
values (filtered minus unfiltered). (5) Model IoU improvement - trained on manually labeled data + quality filtered auto-annotations vs. a
model trained on manually labeled data + unfiltered auto annotations - this is the difference between the last two columns from table 2).
(6) Filter retention rates - the percentage of pixels in non-void locations (based on ground truth) that are retained after applying the quality
filter. Overall, 96.2% of the pixels are retained.

the quality filter, as well as an area on the right wall. In
all three examples, additional more subtle masked out ar-
eas can be found in the vicinity of the trees and other small
objects. Overall, the filter managed to mask out consider-
able amount of misclassified pixels, creating more accurate
auto-annotated data, which in turn led to an improvement of
0.8% in the trained model accuracy, as shown in table 1.

7. Discussion

The accuracy gain due to the proposed quality filter-
ing is higher for ”less experienced” teacher ensembles: the
more mistakes the teacher makes, the more errors the qual-
ity filter can fix. There is a trade-off between the requested
auto-annotation quality and the amount of generated train-
ing data. While in the conducted experiments we used a
fixed quality threshold, we would like to explore the influ-
ence of the quality-quantity trade-off on the trained model
accuracy.

We can further enhance the training process by iterating
over the ”train the teachers ensemble”, ”auto-annotate the
unlabeled data”, and ”train the target model” steps, as dis-
cussed in section 4.

Another interesting research direction is using ensemble
stacking (instead of softmax averaging) for the fusing func-
tion g and building a joint multi-task model for g and q to-
gether.

8. Conclusions

We propose a generic method for quality prediction of
automatic annotations generated by an ensemble of mod-
els. We adapt the proposed approach to semantic segmen-
tation by doing label quality filtering at pixel level. We
show that refining the auto-annotated training set by dis-
carding data samples with low predicted label quality im-
proves the trained model accuracy. We demonstrate that the
performance of the state-of-the-art model can be achieved
by training it with only a fraction (30%) of the original
manually labeled data set, and replacing the rest with the
auto-annotated, quality filtered labels.
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