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Abstract

The task of referring relationships is to localize sub-
ject and object entities in an image satisfying a relation-
ship query, which is given in the form of <subject,
predicate, object>. This requires simultaneous lo-
calization of the subject and object entities in a specified
relationship. We introduce a simple yet effective proposal-
based method for referring relationships. Different from
the existing methods such as SSAS, our method can gen-
erate a high-resolution result while reducing its complexity
and ambiguity. Our method is composed of two modules:
a category-based proposal generation module to select the
proposals related to the entities and a predicate analysis
module to score the compatibility of pairs of selected pro-
posals. We show state-of-the-art performance on the refer-
ring relationship task on two public datasets: Visual Rela-
tionship Detection and Visual Genome.

1. Introduction

Localizing the entity in an image that is specified by a
textual query, which can refer to both a single noun and its
properties, such as “a large, red sedan”, has been an active
area of research over the last few years [4, 14, 31]. There
has been recent work [16] in including relationships be-
tween two objects in the queries, which have been called re-
ferring relationships. Such relationships are useful for var-
ious applications including image retrieval and visual ques-
tion answering. Fig. | shows examples where queries, “per-
son with phone” and “bag next to person”, help in differen-
tiating a person and a bag from others in the same scene.

We consider a query to be in the form of <subject,
predicate, object>. The problem of grounding en-
tities in a relationship is more challenging than noun phrase
grounding, as it subsumes the task of single object ground-
ing and imposes the requirement of satisfying a relationship
between a pair of objects. Modeling predicates is difficult
due to the imprecise definition of relations. For example, in
“next to” and “near”, the expectations of distances between
entities may depend on the types of entities involved; dis-

, Next to, Person>

Figure 1. In a complex scene, referring relationships helps to local-
ize target entities by their relationships with others. When query-
ing for “person” and “bag”, (a) and (b) give multiple instances of
the same entity. If we want to localize a specific target, such as the
person making a phone call, or the bag close to that person, query-
ing with the relationship triplets <person, with, phone>in
(c) and <bag, next to, person> in(d)helps by localizing
both the subject and object entities.

tances are not the same in <bag, next to, person>
and <car, next to, building>. Different from
the tasks such as visual relationship detection [25, 42] and
scene graph generation [37], which also explore the de-
tection of <subject, predicate, object> triples,
the task of referring relationships focuses on the relation-
ship between the specific subject and object pairs given in
the query. Methods in visual relationship detection and
scene graph generation attempt to find all relationships in
an image; so, presumably, the queried triples will also be
in the output set, but it may possibly be discarded due to
the potential large number of relationships. The detection
model may also focus on more common relationships such
as “person standing” than ones with lower frequency due to
the imbalance of relationships in the training set. An exist-
ing state-of-the-art method, SSAS [16], aims to avoid the



difficulty of variations in the appearance of subject-object
pairs by generating two attention maps to influence each
other by shifts, but the accuracy of the inferred bounding
boxes suffers due to the low resolution of attention maps.
In this paper, we introduce a proposal-based method
which is composed of two steps: first using a category-
based proposal generating module to localize and select re-
lated candidate proposals based on their categories for sub-
ject and object entities and then applying a predicate analy-
sis module to identify proposal pairs satisfying the queried
predicate. By decoupling the proposal generation with the
predicate analysis, the network can first pick out highly re-
lated entities to reduce both the complexity and ambigu-
ity for predicate prediction and then analyze the relation-
ships between selected proposals. We call our complete
system as CPARR for “Category-based Proposal Analysis
for Referring Relationships”. With category-based propos-
als for related candidates and specified predicate analysis,
we show state-of-the-art performance on the public datasets
for referring relationships with different evaluation metrics.
In summary, our contributions are two-fold: 1) a
category-based proposal generator to select related candi-
dates and tackle the challenge of accurate localization; 2)
a predicate analysis network trained with selected propos-
als to model the role of the predicate in disambiguating ob-
ject pairs. In the following, we first introduce related work
in Sec. 2, then we provide details of CPARR in Sec. 3.
Lastly, we present the evaluation and comparison with base-
line methods in Sec. 4, followed by conclusions in Sec. 5.

2. Related Work

There has been limited work directly on the referring re-
lationships task. However, the tasks of scene graph genera-
tion, visual relationship detection, human-object interaction
and phrase grounding have some relations; we briefly sum-
marize them in the following.

Scene Graph Generation: To find the relationship
pairs, some researchers generate scene graphs [5, 20, 21, 37,

, 43] for the dense relationships reconstruction in the im-
age. A scene graph represents entities and all the relation-
ships in a graph where the nodes represent entities and the
edges represent the relationship between the nodes. Xu et
al. [37] provides an end-to-end solution built with standard
RNNs and iterative message passing for prediction refine-
ments. Neural Motif [43] observes statistics of relationships
labels and utilizes motifs, regularly appearing substructures
in scene graphs. Factorizable Net [20] replaces numerous
relationship representations of the scene graph with fewer
subgraphs and object features to reduce the computation.

Visual Relationship Detection: Finding all the ex-
isting triplet relationships <subject, predicate,
object> in a scene is also explored in the Visual Re-
lationship Detection (VRD) task [7, 19, 23, 25, 27, 42,

]. Yu et al. [42] leverages external datasets and dis-
tills knowledge for triplet training and inference. Shuffle-
then-Assemble [39] applies unsupervised domain transfer
to learn an object-agnostic relationship feature. Zoom-Net
[40] proposes spatially and contextually pooling operations
to improve feature interaction between proposals. Differ-
ent from referring relationships, it is not easy to find out the
subject and object entities in VRD due to the exponential
number and its long-tailed distribution of entity types and
their combinations, which might also result in the required
entities being discarded due to the low interest.

Human Object Interaction: Human Object Interaction
focuses on detecting and recognizing how human in the im-
age interacts with the surrounding objects [1, 10, 11, 22,

, 34, 36]. ICAN [10] uses the appearance of an entity to
learn the highlight informative regions. Xu ef al. [36] im-
plements knowledge graphs for modeling the dependencies
of the verbs and objects. Compared with referring relation-
ships, HOI only has one subject class, while both subjects
and objects in referring relationships tasks can be human or
objects. Also, compared with HOI, relationships described
in referring relationships are much more varied.

Phrase Grounding and Referring Expression: Phrase
grounding and referring expression apply the visual and lan-
guage modalities to solve the problem of localizing entities
for specific queries [2, 3, 4, 9, 14, 16, 18, 24, 28, 31, 32,

, 411. SSAS [16] uses attention maps for localization.
However, due to the low resolution of the generated atten-
tion map (14 x 14), the inferred bounding boxes are less
accurate. Chen et al. [4] introduces the regression mech-
anism and reinforcement learning techniques to improve
the grounding performance. MAttNet [41] uses modular
components including subject, location and relationships, to
adaptively process the expression contents. Compositional
Modular Network [13] decomposes the task into modular
networks handling language parsing, localization and pair-
wise relationships. Compared with phrase grounding and
referring expression, the referring relationships task focuses
on finding the correct entities based on the relationship,
where strong hints such as location do not exist.

3. Method

Our goal is to infer the location of the queried subject
and object when given an image I and a relationship query
g=<S, P, 0>, whereS, P and O represent the categories
of the subject, predicate and object. In this section, we will
first formulate the problem and then introduce the category-
based proposal generating and predicate analysis module re-
spectively, followed by the implementation details.

3.1. Problem Formulation

We take an image, I, and a triplet query g=<S, P, O>
as the input of the network with parameter 6;. To obtain
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Figure 2. The framework of CPARR. The category-based proposal generating module tackles the case when the input query only indicates
one entity, i.e., the subject or the object entity with its phrase embedding result. The predicate analysis module considers the whole
relationship phrase and disambiguates subjects and objects proposed by the category-based proposal generating module in this relationship.

the location of the subject, y5, and object, y,, conditioned
on the given query g respectively, we express this inference
task as a probabilistic problem which is shown as follows:

P(ys, yol(S, P,0)) = argmaxP(ys[(S)) - P(y,(0))-

YsrYo,Om

P(P|(ys,Yo))
(1)

3.2. CPARR

Our method solves the localization precision challenge
in two main steps: first, it finds related candidates for sub-
jects and objects by selecting them independently using
their descriptions in the query and then pick out pairs that
best satisfy the given predicate. Fig. 2 provides an overview
of our proposed framework. Object proposals and their fea-
tures are generated from an image and then passed to two
category-based proposal generating modules, one for the
subject and one for the object. These two modules have an
identical architecture but do not share weights. After pro-
posals are ranked, the predicate analysis module takes pairs
from the top-ranking outputs of the two category-based pro-
posal generating modules and evaluates them for consis-
tency with the given predicate which results in the selection
of subject and object entities and their locations. In this sub-
section, we first introduce the category-based proposal and
predicate analysis and then describe how these two separate
parts are combined to make the final inference.

3.2.1 Category-based Proposals

To generate category-based proposals, an entity is localized
by a bounding box with a noun phrase from the query re-
gardless of its relationship with other entities. We use two
independent category-based proposal generating modules
M, and My to regress and predict probability scores for
subject and object entities respectively.

We extract a set of N candidate proposals {B;}}Y
from the image I by using a Region Proposal Network

[30] as initial bounding boxes and extract feature vec-
tors {f;}~, corresponding to each region. We rep-
resent the 5-dimension spatial feature of B;, which is

[Imin Ymin Tmaz Ymaz ATeaBi

pr iy i iy i v |, as s;. The full represen-
tation of a proposal, v;, is the concatenation of visual fea-
ture f; and spatial feature s;. The input of the network to
generate category-based proposals is the concatenation of
visual features and phrase embedding vectors of the pro-
posals. The network first transforms the visual feature f;
and the embedding vector of the subject or object phrase,
e, into a multimodal space following

m; = ¢(Wn(villey) + bm) 2)

where the multimodal feature m; € R'2® aims to align
the visual appearance and the semantics so that the pre-
dicted probabilities are conditioned on both the proposal’s
visual appearance and the subject/object category. W,,, €
R%*128 i5 the projection weight and b,,, € R28 is the bias.
|| represents the concatenation operator and ¢(.) is the non-
linear activation function. After a multi-layer perceptron
layer network, M,;, and M,y; give the multimodal embed-
ding of each candidate, m;, a confidence score ¢; and pro-
vide regression offsets ¢; to refine the initial bounding box.
The calculation of 4D regression parameters ¢; is defined
a5 [(2 = 2a) /0as (4 — Ya)/has Log(w/wa), log(h/h,)], fol-
lowing [30], where x and z, are for the predicted box and
anchor box respectively.

M. and M5 have two objective functions, 1) L, for
predicting the confidence of B; being the phrase embed-
ding of the queried entity e, and 2) £,., showed in Eq. 3
for regression offsets that adjust the initial boundaries of B;
conditioned on the input query. We assume there can be
more than one candidate overlapping with the groundtruth
with an Intersection Over Union (IoU) larger than a thresh-
old 7 and consider all these candidates to be positive. The
loss of classification objective function is measured by the
sigmoid cross-entropy loss. The regression offsets calculate
L1-smoothness regression loss between the positive candi-



dates t € R* and the groundtruth t! € R*, where f(.) is
the smooth L1 loss function. N is the number of positive
candidates ¢x after regression offsets.

N 3
1
Lyeg (8], 1)) = T\]ZZ FAEH =HEID - @
1=1 5=0

We rank the candidates by confidence c; to perform off-
set regression on the best proposals and feed the top-Kup
and top-K;; proposals to the next module.

3.2.2 Predicate Analysis

The category-based proposals are to localize entities across
different categories, while the disambiguation of subject
and object entities depends on inter-object relationships, in
particular, the predicate connecting a subject and an object.
The predicate analysis module selects subject and object en-
tities that participate in the same relationship query by eval-
uating the predicate category between a pair of proposals.

Following the category-based proposal generation, the
input to the predicate analysis module is a pair of propos-
als, B; and B;. The module M,,.q(B;, Bj) outputs pred-
icate confidence scores of {B;, B;} under P + 1 predicate
categories, with P being the total number of predicate cat-
egories plus one for the background class where the pair
does not have any of the enumerated relationships. The net-
work first concatenates visual features of B; and Bj, then
compresses the dimension by a convolutional neural net-
work, and finally outputs a score for verification. We take
the score corresponding to the predicate type in g = <S,
P, 0> as the probability of Prob(P|B;, B;), representing
B; and Bj forming the queried relationship P.

To recognize the relationship between two regions of the
image, their appearance similarity, spatial connection, in-
teraction with other regions all contribute to the recogni-
tion results. Therefore, there is a demand for effective pro-
posal feature interaction to comprehensively exploit use-
ful appearance, spatial and semantic interaction between
the proposal pairs. In our method, instead of using one-
dimensional feature vectors, we concatenate two W x H x
D spatial feature maps that come from ROI pooling [30]
depth-wise to form a W x H x (D x 2) dimension in-
put tensor. The consideration is that the multi-dimensional
feature maps incorporate spatial information and contextual
visual features. The subject candidate B; and object can-
didate B;, which form the pair {B;, B; }, come from Mg,
and M,,; respectively. When constructing pairs, we take
K5 subject proposal candidates and K ; object proposal
candidates, forming K., X Kop; pairs for each query q.

The correct classification should only identify pairs with
the positive subject and object candidate pairs as the known

<predicate> category. The role of this module, clas-
sifying the presence of a predicate, requires constructing a
training set with positive examples and two types of nega-
tive examples: i) B; or B; is not a correct proposal for the
subject or object entity, and ii) B; and B; do not form any
relationships in the P given categories.

3.2.3 Combined Inference

The model combines probabilities from the category-based
proposals and predicate analysis for final inference follow-
ing Eq. 1, and the candidate object and subject proposals
for one query are selected as the ones which yield the high-
est probability. With the final K,; x K,; predicate clas-
sification scores, we select candidates with high weighted
confidence on the category-based proposals and predicate
verification as correct prediction. Note that if the predicate
confidence is under a threshold 7,4, we set the weight of
predicate confidence as 0 and solely use the category-based
proposal score, because its predicate confidence could be
low due to the inaccurate pairing candidates, which result
in errors accumulated by the category-based proposals.

3.3. Implementation Details

In this subsection, we present the implementation details
of our method. We first introduce how the proposals and
features for the two stages are generated, then show our net-
work structure for category-based proposal generation and
predicate analysis modules separately, and finally, we show
our detailed information on training and testing.

Proposal Generation: We use a pretrained RPN [30] to
generate initial candidate proposals. The RPN is initialized
with the VGG16 [33] pre-trained on ImageNet [8] and then
trained on the datasets in the experiments. We set Non-
Maximum Suppression (NMS) in RPN as 0.6 and generate
N = 300 proposals for each image after RPN to feed it into
the category-based proposal generating network.

Visual Features Extraction: After the proposals are
generated, we use a ResNet-50 [12] pre-trained on Ima-
geNet [8] followed by an average pooling layer [6] to extract
proposal features from bounding boxes. In the category-
based proposal generation, proposal features are feature
vectors from an average pooling layer. In the predicate anal-
ysis module, the feature maps from the ROI pooling layer
are directly used as the input of visual features.

Phrase Embedding Generation: For the subject and
object phrases, we use the GloVe embedding algorithm [26]
to map a phrase to the 300-dim phrase embedding vector,
which is then concatenated with the visual feature before
sent for category-based proposals selecting.

Network Architecture: The category-based proposal
generating network is a five-layer Multi-Layer Perceptron
(MLP), where the first layer maps the concatenated visual



and textual feature into a 128-D multimodal vector, fol-
lowed by three 128-dim hidden layers and finally projects
the vector to the 5-D output ¢;||t;. The predicate analysis
module consists of 3 convolution layers with 3 x 3 kernels
and one convolutional layer with 1 x 1 kernels. All nonlin-
ear layers use ReLU activations.

Training and Testing: During training, We first train the
RPN, then the two category-based proposal generating net-
works and finally the predicate analysis module. The out-
puts from the previous stages are used to train the next stage.
We use the Adam optimizer [15] with an initial learning rate
of 0.0001. The maximum iteration is set to be 20000 on
the category-based proposal generating module and 10000
on the predicate analysis module. We adopt a multi-label
training scheme in the category-based proposal generating
module, so there could be multiple possible targets for clas-
sification. 7pyeq is set to be 0.5. K5 and Kop; are both set
to be 5. For the predicate analysis module, the numbers of
positive and negative examples are kept to be the same. We
select positive and negative boxes from category-based pro-
posals and train them with the Sigmoid cross-entropy loss.
The predicate classification target of positive pairs { B;, B; }
is the predicate <P>, while target labels for negative pairs
is the background predicate type P + 1. For testing, we first
apply an NMS on all proposals and then select the subject
and object candidates with top-K confidence, where K is
also set to be 5 empirically. The rate used for NMS is 0.5
in our experiments. The top K confident subject and object
proposals are selected as candidates for predicate analysis.

4. Experiments

In this section, we provide results on benchmark datasets
to show the performance of our model. For quantitative
results, we compare with the four existing state-of-the-art
methods on IoU score and recalls respectively. For qualita-
tive results, we show some visualization results for subjects
and objects entities with CPARR on the public datasets.

4.1. Datasets

We evaluate our results on two popular visual relation-
ship detection datasets with real scenes: VRD dataset [25]
and Visual Genome [17].

VRD Dataset [25]: The VRD dataset consists of 100
object types, 70 predicate types and 5000 images. In all, it
contains 37,993 relationship annotations with 6,672 unique
relationship types and 24.25 relations per entity category.
60.3% of these relationships refer to ambiguous entities.
Predicates are mainly from spatial, preposition, compara-
tive, action, and verb types. We use the same dataset splits
as in SSAS [16] which consist of 4000 training samples and
1000 testing samples.

Visual Genome [17]: Visual Genome is a dataset com-
monly used in scene graph generation and referring rela-

tionships evaluations. Following [16], we develop our re-
sults on version 1.4, which focuses on the top-100 frequent
object categories and top-70 frequent predicate categories.
We adopt the same subset of Visual Genome as used in
SSAS [16], with 8560 images for the test set, 77257 images
for the training and validation set.

4.2. Evaluation Metrics

For appropriate comparison with baseline methods, we
first evaluate our results on the Mean IoU score. To compare
with methods generating attention maps, we compute the
IoU of heatmap and groundtruth following SSAS [16]

S I(Att; > 7) N GT)
S (I(Att; > 1) UGT))

where Att; and GT; denote the prediction and
groundtruth for the ith cell in the heatmap. I converts pre-
diction with IoU above the threshold 7 as activated cells. To
convert bounding boxes into heatmap masks, we first trans-
formed the scale of bounding box coordinates down to the
L x L heatmap size. The binary masks are obtained by set-
ting regions within the bounding box as 1 and the outside as
0. To properly compare with previous methods [16, 25], L
is set as 14. Note that our output bounding box is based on
the original image size, we down-sample it to L x L for a
fair comparison with SSAS [16].

To assess the precision of bounding boxes, we also eval-
uate the referring relationships using object detection met-
rics. In Visual Genome and VRD datasets, objects and rela-
tionship queries are not labeled exhaustively. Therefore we
adopt Recall of bounding boxes as a metric for localization
evaluation. We directly apply the original results from VRD
[25] for bounding boxes generation and directly use the
code provided by SSAS [16] to transform the heatmap into
bounding boxes by first rescaling the heatmap to its origi-
nal input image size, 224 x 224 and obtaining the bounding
boxes by thresholding activations over 7.

ToU(Att,GT) =

4.3. Baselines

We compare our method with four different baseline
methods: CO [9], SS [18], VRD [13, 25] and SSAS [16].
SSAS [16] is the present state-of-the-art method in referring
relationships by using the attention map to iterate until the
result converges, while SS [18] does not iterate. VRD [25]
is the state-of-the-art method on the visual relationship de-
tection problem by maximizing the similarity based on the
embeddings for entities, which is the same as CO [9], and
finding extra relationship embeddings for classification.

4.4. Discussion

We compare our method with VRD [25] and SSAS [16],
and highlight the differences and advantages of our method.



VRD Dataset Visual Genome
Method Subject Object | Subject Object
CO [9] 0.347 0389 | 0414  0.490
SS[18] 0.320 0.371 0.399  0.469

VRD [25] | 0345 0387 | 0471  0.480

SSAS[16] | 0369 0410 | 0.421 0.482
CPARR 0.482 0.510 0.469  0.517

Table 1. Mean IoU results on VRD dataset and Visual Genome
dataset for subject and object entities.

Differences with VRD [25]: VRD finds all triplet re-
lationships in one image. It uses all proposal candidates
from the detector and ranks all possible combinations in
the image with their confidence. Due to a large number
of possibilities, only a certain number of top-scoring rela-
tionships are retained according to the evaluation. When
applied to referring relationships, it is possible that queried
relationships may not appear in the set of preserved rela-
tionships. In our method, the predicate analysis module in-
teracts with the information only with the selected top-K
candidates generated by the category-based proposal gener-
ation, which greatly reduces the complexity for the predi-
cate analysis module by avoiding analysis on the likely ir-
relevant candidate proposals.

Differences with SSAS: SSAS generates iterative atten-
tion maps to solve the problem of the referring relation-
ships. It takes the whole image into consideration with high
complexity, resulting in the final attention map to be low
resolution. We decouple the task into two steps by generat-
ing category-based proposals first followed by relationship
analysis to distinguish among a small set of the candidate.
This both reduces the complexity and preserves the original
resolution of the image.

4.5. Method Variations

To evaluate the contributions of modules of CPARR, we
define three variations: CPARR, CPARR-cp and CPARR-
pa. CPARR is the complete system. CPARR-cp finds the
result with the highest score obtained with the category-
based proposals applied to subject and object entities in-
dependently; CPARR-pa finds the pair producing the high-
est predicate classification score for prediction, where the
pairs are composed of top-scoring subject and object en-
tities. Different from CPARR-pa, CPARR multiplies the
predicate classification scores with the probabilities of the
subject and object entities, while CPARR-pa only applies
the predicate scores for final confidence prediction.

4.6. Quantitative Results

We first compare CPARR with the baseline methods for
IoU score, which is commonly used in referring relation-
ships, and then compare CPARR with the state-of-the-art

subject object
Method r@1 r@5s r@50 | r@1 r@5 r@50
SSAS [16] | 0.215 - - 0.242 - -
VRD [25] | 0315 0.388 0.391 | 0.349 0.403 0.404
CPARR-cp | 0450 0.663 0.864 | 0.496 0.666 0.842
CPARR-pa | 0.384 0.586 0.864 | 0.401 0.609 0.842
CPARR 0.498 0.694 0.864 | 0.524 0.702 0.842

Table 2. Recall on the VRD dataset. The results of subject and
object localization are evaluated separately. CPARR-cp shows re-
sults of category-based proposal generating modules, where predi-
cate is not involved. CPARR-pa shows localization with predicate
classification scores. CPARR is the final result which combines
CPARR-cp and CPARR-pa.

subject object
Method r@l r@5 r@50 | r@1 r@5 r@50
SSAS [16] | 0.230 - - 0.291 - -
CPARR-cp | 0.355 0.512 0.716 | 0.445 0.596 0.776
CPARR-pa | 0.300 0472 0.716 | 0.378 0.553 0.776
CPARR 0.375 0.527 0.716 | 0.464 0.613 0.776

Table 3. Subject and Object Recall on the Visual Genome dataset.

methods on the recall metric since it can better reflect how
good the methods are in finding correct subject and object
entities. Lastly, we compare the performance of using top-K
proposals and groundtruth, and show the result for finding
the best proposal feature interaction.

Mean IoU Score For proper comparison with the ex-
isting baseline methods, we first show our mean IoU re-
sult on the Visual Relationship Detection dataset and Vi-
sual Genome dataset in Table 1. Among the four baseline
methods, the two existing state-of-the-art methods, VRD
and SSAS, outperform the other two baseline methods, CO
and SS. On the VRD dataset, CPARR shows significant im-
provements over the other four baseline methods for both
the subject and object localizations, and for Visual Genome
dataset, it has nearly the same accuracy on subjects and
much better IoU result on objects.

Recall Based on the IoU results, we select VRD and
SSAS for object detection evaluation baselines method us-
ing the metric recall. We get corresponding bounding boxes
using the additional code' provided by the authors for ap-
plying the bounding boxes for SSAS directly. Recall at top
5 and top 50 is not applicable since only one bounding box
for subject and object can be obtained from the heatmap.
Results for VRD? are based on the detection results pro-
vided by the authors [25]. Table 2 and 3 show our results
for the recall on two datasets respectively. Numbers in the
table show recall of subject and object entities that have

https://github.com/StanfordvL/
ReferringRelationships/blob/master/utils/
visualization_utils.py

2https://github.com/Prof-Lu-Cewu/
Visual-Relationship-Detection/blob/master/results


https://github.com/StanfordVL/ReferringRelationships/blob/master/utils/visualization_utils.py
https://github.com/StanfordVL/ReferringRelationships/blob/master/utils/visualization_utils.py
https://github.com/StanfordVL/ReferringRelationships/blob/master/utils/visualization_utils.py
https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection/blob/master/results
https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection/blob/master/results

localization

.......................

<person, in front of, box>

subject

object

subject

object

i <helmet, on, motorcycle>

_______________________________________________________________________________________

<bench, beneath, person>

....................................

<person, ride, horse>

___________________________________

Figure 3. Examples of CPARR results on VRD and Visual Genome dataset. The top rows are from VRD and the bottom ones are from
Visual Genome. We visualize the groundtruth bounding box in blue and CPARR top-1 prediction in green. The captions above images are
the <subject, predicate, object> triplet query. The top rows are localization results on subject. The bottom rows present

object localization.

IoU with groundtruth of larger than 0.5 at three different
ranks. Our method has superior performance over the two
other baseline methods. Results also show that best results
are obtained by combining detection and predicate scores
(i.e. by CPARR). Note that VRD outperforming SSAS may
be due to the inaccurate proposal results on the attention
map with low resolution for SSAS. Better result compar-
ing CPARR-cp with VRD may due to the category-based
proposals being powerful enough to reduce the ambiguity
compared with using all proposals. This is also reflected in

the result that CPARR-pa is not better than CPARR-cp, in-
dicating that the prediction probabilities of the subject and
object entities also play a significant role in the predicate
analysis between subject and object pairs.

Top-K Proposals Analysis: For further analysis of the
performance of using top-K proposals for predicate analy-
sis, we compare these results with those using groundtruth
proposals in Table 4. The predicate analysis module using
GT proposals takes groundtruth subject and object locations
as input, which demonstrates the performance of predicate




Method r@1 r@5s
GT proposals 0.7889  0.9609
Top-K proposals  0.7365 0.9168

Table 4. Evaluation of predicate analysis on the VRD dataset using
groundtruth proposals and top-K proposals.

analysis without the limitation of subject and object local-
ization. The predicate analysis module using top-K pro-
posals takes top-K proposals generated from the previous
stage for training the classifier. K is set to be 5 in the ex-
periment to show the final recall of predicate on the VRD
dataset. The number of predicate categories is 70. Re-
sults show that when training the predicate analysis module
on Top-K proposals, the result is comparable to the model
trained on groundtruth bounding boxes. When K is set to
5, the overall recall is comparably acceptable to provide the
candidates including the correct proposals for training the
predicate analysis. Instead of using all proposals, relation-
ships generated from Top-K proposals can greatly reduce
the complexity while still being sufficient to train a good
predicate analysis model.

Proposal Feature Interaction: We compare different
ways of proposal feature interaction and analyze their in-
fluence for predicate analysis and referring relationships on
the VRD dataset in Table 5. In the table, Vis Map represents
the ROI pooling feature, <S, O> represents phrase embed-
ding e,, of subject and object categories, Vec represents the
visual feature vector f; of the proposal, and Spatial repre-
sents the 5D spatial feature s; of the proposal. The four
rows in the table represent predicate analysis module in-
put settings as follows: 1) ROI-pooling feature as feature
maps, 2) the concatenation of feature vectors, SD location
vector(spatial feature), and phrase embedding feature <S,
0>, 3) a variant of case 2 but without phrase embedding
features and 4) variant of case 2 but without spatial features
as input. We evaluate both the predicate classification ac-
curacy and the recall result on object entities on the VRD
dataset for CPARR-pa to show how it performs with differ-
ent combinations of visual and location features. From the
results in Table 5, we make the following observations:

1) For predicate verification, the ROI pooling feature
maps, which preserve the multiple channel feature as
well as its location, have the best performance over
feature vectors representation and its variants.

2) In all variants of feature vector-based pair representa-
tion, the concatenation with textual input of <S, 0>
and bounding box spatial information serve as effec-
tive hints for entity inference.

3) Predicate classification score is higher with phrase em-
bedding and spatial relation features, showing that spa-

predicate CPARR-pa
Feature Input r@l r@l r@5s
Vis Map 0.7365 0.4012  0.6091
Vec + Spatial + <S,0> | 0.6680 0.3862 0.5918
Vec + Spatial 0.6854 0.3335 0.5532
Vec + <S,0> 0.6489 0.3742  0.6024

Table 5. Recall of proposal visual and semantic feature combi-
nation on predicate classification for object entities on the VRD
dataset. In PARR-pa, the r@50 results for all variants are 0.8642.

tial information and prior knowledge on subject and
object combinations can provide useful content for
predicting the predicate.

4.7. Qualitative Results

Besides quantitative comparison with existing baseline
methods, we also visualize some examples from the VRD
and visual genome datasets in Fig. 3, where the detection re-
sults for subject and object entities are given separately. To
focus on one example, in the <person, wear, hat>
query, there are multiple “person” entities given the query.
In CPARR-cp, the top-5 “hat” proposals result from all dis-
tribute around the hat on top of the second man to the right,
giving strong hints to the person proposal which enclose the
hat proposal at the top portion of the box, and correct the er-
ror of using the man left to the groundtruth as the result of
“person”, which actually has a higher score in CPARR-cp.

5. Conclusion

We introduce a proposal-based method with a category-
based proposal generating module to pick out related candi-
dates for subjects and objects separately to reduce the con-
fusion and complexity of predicate prediction, and a pred-
icate analysis module to further disambiguate subject and
object entities to decide whether a subject-object pair be-
longs to a known predicate category. Our method has sig-
nificantly higher accuracy than previous methods on mul-
tiple evaluation metrics on public datasets with real scenes
for referring relationships.
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