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Abstract

Efficient and easy segmentation of images and volumes is
of great practical importance. Segmentation problems that
motivate our approach originate from microscopy imaging
commonly used in materials science, medicine, and biol-
ogy. We formulate image segmentation as a probabilistic
pixel classification problem, and we apply segmentation as
a step towards characterising image content. Our method
allows the user to define structures of interest by interac-
tively marking a subset of pixels. Thanks to the real-time
feedback, the user can place new markings strategically,
depending on the current outcome. The final pixel clas-
sification may be obtained from a very modest user input.
An important ingredient of our method is a graph that en-
codes image content. This graph is built in an unsupervised
manner during initialisation and is based on clustering of
image features. Since we combine a limited amount of user-
labelled data with the clustering information obtained from
the unlabelled parts of the image, our method fits in the
general framework of semi-supervised learning. We demon-
strate how this can be a very efficient approach to segmen-
tation through pixel classification.

1. Introduction

In this paper, we propose an interactive method for prob-
abilistic classification of pixels, which can be used for seg-
mentation of 2D and 3D images. Our approach is especially
advantageous for detecting patterns, a situation regularly
occurring in microscopy of materials and medical samples.
Such images often show a collection of objects which are
to be separated from the background. For example consider
segmenting individual facets of a bee eye shown in Fig 1.

When segmenting images showing a collection of simi-
lar objects, an established strategy involves extensive mod-
elling of the appearance of the objects, usually leading to
a highly specialised method. Another common strategy is

to learn the appearance of the objects from a large amount
of prelabelled data, often with high computational require-
ments during the training phase. Here we aim for a general
method that requires limited computation, as well as modest
user-labelling.

Our method fits into the framework of semi-supervised
learning, combining two ingredients: a model for image
content created in an unsupervised manner from the image
features, and a modest input from the user. When a user
marks a structure in the image as belonging to a class, our
method propagates the marks to similar structures in the rest
of the image. The output is a layered image which at ev-
ery pixel position contains the probabilities of belonging to
each of the defined classes. We call this output pixelwise
probabilities of belonging to segmentation classes. From
pixelwise probabilities, the segmentation is readily obtained
by selecting the most probable class for each pixel. The
method is highly flexible and captures the features which
are of interest to the user; an example with various im-
age features is shown in Fig. 2. Our approach allows easy
segmentation of complex structures, that would otherwise
require the development of algorithms targeted at specific
problems.

An important property of our model is real-time feed-
back, allowing the user to place new markings strategically,
depending on the current result. For this to work without
delay, the segmentation must be updated very fast. Our
method relies on an efficient update of the parameters used
for pixel classification, and an equally efficient update of
the classification results. With results shown promptly, the
user can continue adding marks until the desired outcome
is learned by the algorithm. Having learned the desired out-
come, the classification model can be applied to other im-
ages of the same type in an unsupervised manner, that is,
without additional user input.

Our prototype implementation, including a graphical
user interface, is in Matlab and C++. The code is available
at https://github.com/vedranaa/InSegt.
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Figure 1. Detecting individual facets of a bee eye using our inter-
active pattern-based segmentation method. On the left input image
and a very small subset of pixels manually marked as either being
close to a facet centre (cyan) or not being close to a facet centre
(magenta). On the right, the manual labelling has been propagated
to the whole image and the result is obtained by selecting the most
probable class for each pixel.

1.1. Related work

Benefits of user input with real-time feedback have been
recognised in image segmentation. A comprehensive sum-
mary of interactive approaches can be found in [3]. Here,
we review some important advances to place our method
in the existing framework, and to explain how our method
differs from the current trends in interactive segmentation.

Early interactive techniques for segmentation of highly
complex images include intelligent scissors [20] or live wire
[15], where the user cuts out an object by placing markers
along its boundary. These algorithms are computationally
cheap but require a lot of user effort to obtain a segmen-
tation. Less user input is required when using interactive
graph cuts [5, 4], which often give very impressive results
with only a few seeds provided by the user. In the GrabCut
method [23] the user provides a bounding rectangle, often
leading to very precise foreground-background separation.
Extensions of GrabCut include shape priors [22] and and
improvement to graph cut energy representation [27]. An
alternative to combinatorial graph-based solutions is the use
of a curve to represent the segmentation boundaries. Such
interactive active contours often minimise an energy func-
tional in a variational framework [28, 24].

Common to the described methods is the focus on seg-
menting relatively large foreground objects, which justifies
using regularisation on the length or the curvature of the
segmentation boundary. In some applications, it is, how-
ever, not possible to use a strong regulariser. For example,
when segmenting the bee eyes shown in Fig. 1, regularisa-
tion could remove or merge small regions.

The need for segmenting a number of small objects is
often seen in areas like microscopy for life science or ma-
terials science. The appearance of such images can vary
significantly, with texture as well as intensity carrying in-
formation that is useful for obtaining the desired segmen-

tation. A specialist would use such clues to distinguish
amongst structures, but automating the segmentation task
typically requires highly sophisticated and problem-adapted
methods. While there are situations that justify the develop-
ment of a specialised method, in many cases a reasonable
result with modest interactive effort would be preferred.

When segmenting small image structures, e.g. cells, a
well-suited approach is classification of pixels. This is the
basis for the ilastik segmentation tool [2, 26], which em-
ploys a random forest classifier [6] trained on image fea-
tures including colour, edges, orientation and texture. The
features are computed from the image before starting the
interactive labelling of image structures, while parameters
of the random forest classifier are learned from the manual
labelling. When a user updates the labels to improve the
segmentation, the parameters of the classifier need to be re-
learned, which is computationally costly and causes a no-
ticeable delay in the feedback. Another specialised tool for
segmentation of microscopy images is the trainable Weka
segmentation [1] (a part of the Fiji [25] distribution of Im-
ageJ) which utilises a data mining and machine learning
toolkit for solving pixel classification problems. A user can
choose from a variety of image features and interactively
re-train the classifier.

Frameworks using neural networks are increasingly pop-
ular in pixel classification, and often yield impressive re-
sults [18]. A neural network operates on features extracted
locally from the image. This input is fed through a se-
ries of multidimensional linear functions, with a non-linear
activation between them, ending up in a probabilistic out-
put. The weights of the linear functions need to be trained
by optimising the performance on the usually large set of
prelabelled data. This provides extreme flexibility to the
method and, provided adequate training, neural networks
may solve pixel classification problems as accurately as spe-
cialists. However, neural networks are dependent on large
training sets and require computationally costly training,
which makes them less convenient for the task of segment-
ing a small set of images.

Our approach shares some similarities with neural net-
works. We also feed the input through linear functions with
non-linear steps in between. However, we use the features
extracted from the image to construct the linear functions
in a preprocessing step. The functions are then kept fixed,
while they operate on the interactively provided user input,
resulting in a probabilistic output. Due to the fixed linear
functions, our method is not as adaptable as neural net-
works. For example, our approach is less fit for semantic
segmentation of photographs. Nevertheless, we achieve ex-
cellent results when segmenting patterned images, without
requiring a large set of labelled data and without performing
a costly optimisation during interactive update.

The foundation of our method is a linear operator en-



Figure 2. An example demonstrating the flexibility of our method. In the top row, different features of interest marked by the user in two
classes (cyan and magenta). The user input is propagated between image pixels using the same model for image content, but results in
different segmentations, shown in the bottom row.

coding image content using image–dictionary relationship.
Similar approach, without the interactive update, has been
used for evolving deformable models [8, 9, 10], quanti-
fying composite materials [12, 13] and measuring retinal
microvasculature [14]. In this work, we use the image–
dictionary relationship to propagate the brush strokes pro-
vided by the users.

2. Method
Our method combines two sources of information, the

structure in the image and the user-provided partial la-
belling. The structure in the image is captured in the pre-
processing step, namely clustering, which we describe in
2.1. After that, in 2.2, we explain how clustering is used for
transforming the user-provided partial labelling into pixel-
wise probabilities of belonging to each of the classes. The
interactive update, covered in 2.3, is obtained by immedi-
ately displaying the result of the transformation and allow-
ing the user to repeatedly improve the partial labelling.

Postprocessing choices, covered in 2.4, are concerned
with the outputs of the interactive update. The most obvious
output is a probability image. While probability image can
give the image segmentation, other postprocessing methods
may be utilised as well. For the second output, which we
call dictionary probabilities, the user-provided partial la-
bellings are propagated to the clusters constructed in the
preprocessing step. This encodes the learned information
about the structures in the image and can be used for subse-
quent automatic processing of similar images.

Our method comes in a range of flavours. In this section,
we explain only the simplest variant, the other possibilities
are covered in Sec. 3.

Notation. Throughout the paper we consider an image I

defined on an X-by-Y image grid with pixel values in ei-
ther grayscale or RGB colour space. During the interactive
part, the user will be placing marks in the image grid, to in-
dicate the pixels which belong to one of the C segmentation
classes. We chose to represent this user-provided informa-
tion with a layered label image L, where L(x, y, c) = 1 if
the user indicated that pixel (x, y) belongs to class c, and 0
otherwise.

2.1. Clustering image patches

The aim of preprocessing is to find the structures in the
image without considering the user-provided labels. In the
framework of semi-supervised learning, a cluster assump-
tion states that, if points are in the same cluster, they are
likely to be of the same class – which does not imply that
each class forms a single cluster [7]. For our purpose, we
assume that image features tend to form discrete clusters
and that image features in the same cluster are more likely
to share a class. However, we do not assume that each class
is represented by only one cluster, so we will need many
more clusters than classes. Therefore, we create a multi-
tude of clusters to capture the variety of features present in
the image.

In Sec. 3 we will explain the implementation details and
some more advanced ways of accomplishing clustering. In
this section, we outline the basic approach, which operates
on intensity patches. For this case, only two parameters
are required: the number of clusters K and the size of the
patches M . The number of clusters should be large, mea-
sured in hundreds or thousands, and is roughly reflecting
the variability in the image. The size of the patches should
reflect the scale of the distinctive image features and could,
for example, be 9 pixels. For simplicity, we always assume



that the size of the image patches M is odd and patches are
centred around the central pixel.

We extract patches of size M -by-M from the image I ,
treat each patch as a vector containing the pixel intensi-
ties and group those vectors into K clusters, e.g. using k-
means clustering based on Euclidean distance. The result-
ing collection of cluster centres represents the content of the
image. As these basic elements are inferred by grouping
features from the image, we call the collection of K clus-
ter centres an intensity dictionary, and each of its elements
(each cluster centre) is denoted dictionary patch. Every im-
age pixel (x, y) in the centre of an M -by-M image patch
is, by means of clustering, uniquely assigned to one clus-
ter. We represent this using an assignment image A. For
boundary pixels we define A(x, y) = 0.

2.2. Relation between image and dictionary

According to the cluster assumption, image patches as-
signed to the same dictionary patch are more likely to be-
long to the same class. Unique for our method is that we use
this assumption on a pixel level, and not on a patch level.
That is, if two image patches are assigned to the same dic-
tionary patch, their corresponding pixels (i.e. the pixels at
the same position in the patch) are more likely to belong to
the same class. In other words, for every dictionary patch,
there is a certain (unknown) classification of its individual
pixels, which all assigned patches are likely to share.

To exploit this assumption, we define a binary relation
between corresponding pixels assigned to the same dictio-
nary pixel. For example, a central pixel of an image patch
assigned to a certain dictionary patch relates to central pix-
els of all other patches assigned to the same dictionary
patch. Likewise, the pixel directly above the central pixel
relates to corresponding pixels in other patches, and a sim-
ilar relation extends to all positions in a patch. This results
in M2K cliques of pixels, one for every pixel in the inten-
sity dictionary. Due to the overlap between image patches,
every non-boundary pixel belongs to M2 different cliques.

The central part of our method is concerned with trans-
forming a user-provided partial labelling to pixelwise prob-
abilities. The transformation matrix we use has a very sim-
ple decomposition, which makes our method efficient and
allows for immediate feedback to the user. The construc-
tion of the transformation matrix is therefore fundamental
for our method. However, describing how this matrix is
constructed provides little intuition about our method, so
we start by motivating our approach.

As covered previously, the assignment image A, ob-
tained in an unsupervised manner, contains information on
clusters of structures in the image I . At the same time, im-
age I is accompanied by the user-provided partial labelling
L. To combine the two sources of information, we create a
dictionary of labels to accompany our intensity dictionary.

For each dictionary patch k ∈ {1, . . . ,K}we use A to iden-
tify the locations of all image patches assigned to it. At
those locations in the image grid we extract corresponding
patches but from the labelling image L. For the set of re-
lated labelling patches we compute a pixelwise average for
every layer. As a result, every M -by-M dictionary patch
now has a corresponding M -by-M labelling representation
consisting of C layers.

When the image is fully labelled, the label image L sums
to one in every pixel, as only one out of C classes has a la-
bel of 1. Consequently, the labelling representation of every
dictionary patch also sums to one in every pixel. However,
due to the pixelwise averaging, the values of this represen-
tation are not binary, they instead encode the normalised
frequency of a dictionary pixel being labelled as belonging
to class c in the current labelling image. For this reason, we
think of this labelling representation as of pixelwise proba-
bilities of belonging to class c, and we call them dictionary
probabilities.

Dictionary probabilities can now be pasted back into an
X-by-Y image grid, again using the location information
from A, and again averaged in every pixel. This results in an
X-by-Y probability image P consisting of C layers, where
P is a diffused version of L. In other words, we use the
self-similarity information encoded by A to propagate the
user-provided markings from L onto the rest of the image.

In light of this motivation, now we turn to explain the
construction of the transformation matrices used for ef-
ficient computation of dictionary probabilities and image
probabilities. Fundamental for this transformation is the
relation between the X-by-Y image grid and the M -by-
M -by-K dictionary grid. This relation will be encoded us-
ing an n-by-m biadjacency matrix B, where n = XY and
m = M2K. For this purpose, we need a linear (single)
index for the pixels in the image and the pixels in the dic-
tionary grid.

The linear index of an image pixel (x, y) is

i = x + (y − 1)X . (1)

As for the dictionary grid, we use (0, 0, k) for the cen-
tral pixel of the k-th dictionary element, and coordinates of
other pixels in the patch are defined in terms of within-patch
displacements ∆x and ∆y, both from {−s, . . . , 0, . . . , s}
with s = (M − 1)/2. A dictionary pixel at coordinates
(∆x,∆y, k) has a linear index

j = (∆x + s) + (∆y + s)M + (k − 1)M2 . (2)

Each assignment of an image patch centered around
(x, y) to a k-th dictionary patch centered around (0, 0, k)
induces a relation between the M2 image pixels and the
M2 dictionary pixels, see Fig. 3. Using ∼ for denoting a
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Figure 3. A subset of relations between a 9 × 6 image and a
3 × 3 × 4 dictionary caused by the framed patch centered around
the pixel shaded darker being assigned to the first dictionary patch.

relation between image pixels and dictionary pixels gives

A(x, y) = k ⇒ (x+∆x, y+∆y) ∼ (∆x,∆y, k),
for all ∆x and ∆y

. (3)

Since image patches are overlapping, every non-
boundary image pixel relates to M2 dictionary pixels. Im-
age pixels in a boundary relate to less than M2 dictionary
pixels, and the four corner pixels relate to only one dictio-
nary pixel. In total there are (X−2s)(Y −2s)M2 relations
between the image pixels and the dictionary pixels.

We represent the relations between n image pixels and
m dictionary pixels using an n-by-m biadjacency matrix
B, with elements

bij =

{
1 i ∼ j
0 otherwise

, (4)

where i and j are linear indices of an image pixel and a
dictionary pixel. The algorithm for constructing B is sum-
marised in Alg. 1.

Algorithm 1 Construction of B
1: Initiate B as an n-by-m matrix with bij = 0
2: for an non-boundary pixel (x, y) do
3: Retrieve pixel assignment k = A(x, y)
4: for within-patch displacement (∆x,∆y) do
5: compute i for (x + ∆x, y + ∆y) using Eq. (1)
6: compute j for (∆x,∆y, k) using Eq. (2)
7: assign bij = 1
8: end for
9: end for

The biadjacency matrix B defines the linear mapping
used to propagate the information from the image to the
dictionary and vice versa. Consider a quantity defined on
the image grid (e.g. user-provided markings indicating pix-
els which belong to class 1) arranged into a length n vector
v such that the i-th element contains the value of the i-th
image pixel. Propagating these values to the dictionary is
carried out by calculating a length m vector

d = diag(BT1n×1)−1BTv , (5)

where 1 denotes a column vector of ones, while diag(·) de-
notes a diagonal matrix with the diagonal defined by the
argument. The j-th element of d contains the value of the
j-th dictionary pixel computed by averaging the values of
the related image pixels. The summation is accomplished
by multiplying with BT while the diagonal matrix accom-
plishes the division with the total number of related pixels.

For this reason we define the m-by-n transformation ma-
trix for mapping from the image to the dictionary as

T1 = diag(BT1n×1)−1BT . (6)

Similarly, mapping from the dictionary to the image is given
by the n-by-m matrix

T2 = diag(B1m×1)−1B . (7)

Those two transformation matrices are fundamental for
our method. The propagation of user-provided markings (as
described in the motivational paragraphs) is computed as

P = T2T1L , (8)

where L is the user-provided labelling L arranged in a n-
by-C matrix, while the resulting n-by-C matrix P needs to
be arranged back into a layered image P .

2.3. Interactive update

When equipping our method with the user-provided in-
teractive update, we run into choices with regards to: i) how
we treat unlabelled pixels, ii) the number of applied dif-
fusion steps, and the way of treating intermediate results
between the steps, and iii) the possibility of changing the
number of segmentation classes. After testing many types
of interactive updates, we kept three main versions. In all
versions the number of classes C is chosen during initiali-
sation and kept fixed during the update.

How we handle pixels that have not been labelled by the
user is also common to all versions. Such pixels are initially
assigned equal probability of belonging to each class. As a
result, before the user places the first label, all probabilities
are equal and no segmentation is possible.

The user starts the interaction by choosing a pencil cor-
responding to one of the C classes applies markings to
some pixels. The partial labelling information is immedi-
ately transformed to the probability image and shown to the
user as an image segmentation, with every pixel placed in
the class with the highest probability. After the first pencil
stroke, only one class will have values larger than 1

C in the
label image L, and the same applies for the probability im-
age P computed using (8). Thus, at first, many pixels will
belong to the first marked class and no pixels will be as-
signed to the classes that have not been marked yet. As the
user adds markings for the other classes, those will appear
in probability image P .



Thanks to the real-time feedback, the user can quickly
improve the result by placing markings in misclassified re-
gions (the regions that have been incorrectly classified).
With many unlabelled pixels in L, the image P will typ-
ically have many values that only differ slightly from 1

C .
Those small deviations carry the information needed for in-
ferring the class of the unlabelled pixels.

As for the number of applied diffusion steps, we use ei-
ther one or two. When using two diffusion steps, instead of
continuing to diffuse the (already diffused) probability im-
age, we can apply additional non-linear operations between
the two diffusions. Very good results are obtained if we
apply binarisation of the labels between the two diffusion
steps. For binarisation, we identify the class of the high-
est probability for each pixel, and apply {0, 1} labelling.
If there are pixels with no clear probability maximum, we
let them retain their unresolved labels. Consequently, for
the second iteration of the diffusion, many pixels act as la-
belled, and this improves the quality of the result.

The options for the two-step diffusion and binarisation
are implemented in our segmentation tool, such that the user
can quickly switch between the variants of the method and
decide which one yields the best results for the data at hand.
Likewise, the user can quickly determine whether the qual-
ity of the results is sufficient or additional markings should
be placed.

The user can inspect the output of the classification dis-
played as a final segmentation based on the resulting proba-
bility image. Alternatively, there is an option for inspecting
the C probability images, which often gives a better insight
into the quality of the result.

2.4. Postprocessing

Our approach allows for various postprocessing options,
which may be grouped into two postprocessing strategies.
One strategy involves processing the probability image to
obtain the segmentation or detection of interesting fea-
tures from the probability image. These operations are
application-driven and examples are illustrated in Sec. 4.

The second strategy involves reusing the information
stored in the dictionary and the associated dictionary prob-
abilities. The linear transformation (8), which is core to our
method, first transforms the user-provided markings from L
to the dictionary space (using matrix T1) and then back to
the image space (using matrix T2). Consider only the first
product

D = T1L .

This is an m-by-C matrix containing the pixelwise proba-
bilities of the dictionary pixels (i.e. the dictionary probabili-
ties) which can be useful for processing a previously unseen
image similar to I .

Processing a new image Î requires extracting all M -by-
M patches for every pixel of Î and assigning those patches

to the existing dictionary, i.e. the dictionary created using
patches from I . Just like before, this assignment defines
an image-to-dictionary and we can compute the two asso-
ciated transformation matrices. Here we are interested in
the dictionary-to-image transformation T̂2. To compute the
probability image corresponding to the unlabelled image Î
we therefore need to compute

P̂ = T̂2D .

and rearrange the result into P̂ .
This way of using our method fits into the framework

of supervised learning. The original image I and the com-
puted labelling L can in this context be seen as a (labelled)
training set (ignoring the fact that the labelling is computed
in a semi-supervised way). Our method is then capable of
producing the probability image P̂ for the new, unlabelled
image Î . The approach will work as long as the initial clus-
tering captures the features present in Î , which holds for
similar images.

3. Implementation details
When developing our framework, we made a number of

implementational choices governed by the performance of
our method. First, our method is rather robust to the quality
of the clustering while preprocessing, so using an approx-
imate clustering will generally not deteriorate the output.
We therefore focus on efficiency when building the dictio-
nary and use a k-means tree [21], built from consecutive
k-means clusterings. In this implementation, the size of the
dictionary is defined in terms of the branching factor b and
the number of layers t. Since each node in the tree makes
up a dictionary element, the total number of dictionary ele-
ments is given by K = bt+1−1

b−1 .
Our experience is that good performance is obtained also

without running the k-means until convergence for each tree
layer, and therefore a fixed number of iterations is chosen,
e.g. 10 iterations. Furthermore, to limit the computational
burden and memory usage, we extract only a subset of M -
by-M patches from the image when building the dictionary.

As for producing A given the clustering represented by a
k-means tree, the patch vector is compared with the nodes
in the first layer to find the match. The patch vector is then
compared to the children of this node, and the most simi-
lar node is again chosen. This process is repeated until a
leaf node or an empty node is reached. The patch vector is
assigned to the most similar node along this path.

Second, the features used for clustering need to reflect
the distinction in the appearance of the classes we want to
separate. For many types of images, an intensity-based ap-
proach as sketched in Sec. 2 will perform well. However,
in challenging cases, more elaborate image features might
provide better results. Some of the results we show in Sec. 4



are based on SIFT [19], but other features can also be incor-
porated in our method. The approach is as follows.

Image features represented by vectors are extracted from
all pixel positions in the image and clustered in K clusters.
For speed, it often suffices to consider only a subset of pix-
els for clustering, as long as we capture the variability in the
image. Every position (x, y) from the image grid can now
be uniquely assigned to one of the k clusters – the cluster
that is closest to the feature vector extracted at (x, y). This
results in an assignment image A. The only additional infor-
mation we need for building the transformation matrices is a
value M , which earlier represented the size of the extracted
image patches. The value M now determines the size of
the overlap when linking the image to the dictionary. While
we now freely chose M , it is reasonable to use a value that
corresponds to the size of the extracted features.

4. Results
In Fig. 4 we show a three-class classification of a volu-

metric X-ray image of a peripheral nerve with myelinated
axons appearing as tubular structures. The data originates
from a larger study [11] which used our method as initial-
ization for mesh-based segmentation [16]. Using a purely
intensity-based approach to pixel classification, it would be
difficult to differentiate between the bright background and
the bright axons inside the dark myelin. Furthermore, a
significant bias field makes it difficult to choose a global
threshold. Our approach utilises a very limited user input in
just one slice of the volume to differentiate between three
classes: background, myelin, and axon. Based on the dic-
tionary probabilities learned from this one slice, our method
automatically classifies all other slices yielding a volumet-
ric segmentation.

Fig. 5 shows an example of segmenting a volumetric im-
age of a fibre composite into two classes: background class
and fibre centre class. Using our method, a huge number
of individual fibres can be segmented with modest user in-
put. The probability image of a fibre centre class precisely
indicates a region for each fibre centre, and can readily be
used in postprocessing for obtaining information about the
spatial distribution of fibres. In this example we also use
the result of single-slice segmentation for batch processing
of a whole volume stack, allowing quantification of larger
material sample [12, 13]. For comparison, we also show
a result obtained by thresholding the intensity image. This
nicely illustrates a challenge in segmenting densely packed
fibres, when the image resolution does not suffice to clearly
delineate the boundary of every individual fibre.

In Fig. 6 we show a three-class segmentation of onion
cells. Since cell walls and nuclei both appear dark, a
purely intensity-based method would not distinguish these
two classes – a task which our method successfully solves
with only modest user input.

Figure 4. Volumetric segmentation of a peripheral nerve. In the
top row, a slice from the volumetric data with overlayed limited
user input and the three-class segmentation dividing the pixels into
background (cyan), myelin (purple) and axon (magenta). The mid-
dle row shows two layers of probability images, corresponding to
the myelin class and the axon class. High intensity indicates a high
probability of belonging to the class. The bottom row shows the
3D visualization of the data obtained by processing a full volume
stack and assigning each voxel to the class of the highest probabil-
ity. This experiment was performed using M = 9, K = 4000 and
a clustering based on SIFT features.

In Fig. 7 we show the use of our method for counting
cells in a stained microscopy image, similar to [17]. Unlike
other examples, this is a colour (RGB) image. To utilise
colour information, the features extracted from every image
patch contain three colour channels concatenated into a sin-
gle feature vector. Since the final goal is to count and mea-
sure the cells, we postprocess the probability images. This
is done by computing the local maxima of the centre-class
probability image to obtain individual cell segmentation.



Figure 5. Volumetric segmentation of fibre composite. In the top
row a slice with manual input indicating fibre centres (magenta)
on a background (cyan) class, together with a resulting two-class
segmentation. The middle row shows a probability image corre-
sponding to the fibre centres class and the output of processing a
full volume stack. From the 3D visualisation it is evident that fi-
bres form clusters of different orientations. The bottom row shows
a zoom-in on the central part of the image slice, together with
the corresponding probability image and (for comparison) a seg-
mentation obtained by directly thresholding the image intensities.
Settings used in this experiment are M = 9 and K = 4000.

5. Conclusion

We propose a method for interactive labeling of image
pixels. Instrumental for our method are transformations
which propagate the information from the image grid to a
dictionary, and back to the image. The transformations are
constructed such that the propagation is strong between im-
age pixels with a similar appearance. We present an algo-
rithm for building a matrix representation of those trans-
formations, allowing real-time processing. We demonstrate
how the propagation of user-provided labelling can be used
for interactive image segmentation. Furthermore, a segmen-
tation of one image allows for subsequent automatic pro-
cessing of similar images. With only modest user input, our
method can yield good results when segmenting patterned

Figure 6. A three-class segmentation of onion cells. In the top row
an image with manual input and a segmentation into three classes:
background (cyan), nucleus (purple) and wall (magenta). In the
bottom row the probability images for the wall and the nucleus
class. Settings used are M = 9 and K = 4000.

Figure 7. A three-class segmentation of a histopathology image.
In the top left an original colour image. In the top right the ex-
tent of the manual input and a corresponding segmentation into
three classes, with a frame cropped to the central part of the im-
age. In the bottom left the probability images for the two classes
also shown on the central part. In the bottom right the final result
obtained through additional postprocessing to distinguish individ-
ual cells. Settings used are M = 5 and K = 4000.

images. We find this extremely useful for many tasks in
microscopy for materials and life sciences.
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