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Abstract

Human action recognition systems are typically focused

on identifying different actions, rather than fine grained

variations of the same action. This work explores strate-

gies to identify different pointing directions in order to build

a natural interaction system to guide autonomous systems

such as drones. Commanding a drone with hand-held pan-

els or tablets is common practice but intuitive user-drone

interfaces might have significant benefits. The system pro-

posed in this work just requires the user to provide oc-

casional high-level navigation commands by pointing the

drone towards the desired motion direction. Due to the lack

of data on these settings, we present a new benchmarking

video dataset to validate our framework and facilitate fu-

ture research on the area. Our results show good accuracy

for pointing direction recognition, while running at inter-

active rates and exhibiting robustness to variability in user

appearance, viewpoint, camera distance and scenery.

1. Introduction

Human-machine interaction, in particular intuitive user-

interface, is a critical aspect to be addressed before emer-

gent technologies can be massively adopted by the soci-

ety. Human action recognition systems typically classify

user gestures into different types of actions, e.g., pointing

vs. waving. Differently, our work focuses on fine grained

analysis of pointing gestures, to enable more natural inter-

actions to guide robots’ motion. Existing interfaces to con-

trol robotic platforms such as Unmanned Aerial Vehicles

(UAVs) remain largely unintuitive to date, often requiring

extensive training of expert pilots. Hand-held radio trans-

mitter panels or mobile phones are most commonly used

to pilot UAVs today, and both options occupy both hands

of the pilot constantly. Realizing this limitation, the most

prominent gesture-based command implemented in com-

mercial drones currently is one to capture selfies, avail-

able for instance on some DJI drones. More natural ways

of human-UAV interaction are needed for recent advance-

ments to be leveraged in reality and adopted by users.

Figure 1. Interaction by natural pointing. This work explores how

to command a drone with natural human gestures (by pointing to

the direction of the desired motion).

The goal of the presented human-UAV interaction sys-

tem is to command the UAV motion by processing a video

of the user pointing towards the desired motion direction,

as represented in Fig. 1. Our approach does not only pro-

vide an intuitive way of piloting an intelligent UAV, but also

promises to release both user hands, enabling the user to

continue with other tasks (e.g. search-and-rescue) instead of

constantly monitoring the drone’s trajectory. We build three

pointing direction recognition strategies based on the state-

of-the-art related to the three most common approaches for

people analysis: person segmentation, skeleton keypoints

detection, and specific body part detection, namely face and

hands. This work evaluates a broad set of variations, from

deep learning models to simpler heuristics and classifiers,

to decide the most suitable strategy for the presented goals.

Besides, to the best of our knowledge there is no ex-

isting benchmark for the nature of interactions targeted in

this work, so we have built and released a new dataset 1.

This dataset consists of videos of users facing the camera

giving motion directions by pointing, incorporating chal-

lenges such as increasing camera-user distance and large

user and scenario variability. The evaluation of the pro-

posed approach on this benchmarking dataset demonstrates

the promising performance of our proposal, exhibiting ro-

bustness to the user, scenario and camera variability, while

maintaining the capability to run at interactive rates. The

processing can be done on a laptop (Nvidia GTX 1070) as

base station at 4.5 fps or onboard the robot (Nvidia Jetson

AGX Xavier) at 0.61 fps.

1https://sites.google.com/a/unizar.es/

hri-drones/
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2. Related Work

The most relevant related topics for our work are human

detection and pose analysis and Human-Robot Interaction,

in particular interaction with drones.

2.1. Human detection and Pose/Gesture recognition

Visual human detection and pose and gesture classifica-

tion are all extensively explored problems but still with sig-

nificant challenges ahead. As in many other computer vi-

sion tasks, deep learning-based solutions have boosted the

performance of person detection algorithms. We find two

extensive groups of approaches. The first group consists of

target object detection (including people) approaches, that

provide a bounding box surrounding the objects, such as

the very efficient YOLO by Redmon et al. [18]. This is the

base of one of our strategies, which builds on hands and face

detection on video frames. The second group of approaches

is related to recent advances on semantic segmentation, and

assigns a class label to every pixel in the image (including

people as one of the most common classes), e.g., the well-

known He et al.’s Mask-RCNN [7]. This is the base for two

of our strategies as, in addition to its excellent performance,

it has a versatile architecture that can be used to segment

people but also to estimate human pose and skeleton detec-

tion. We will use both outputs in our approach.

There is extensive work in the literature about human

posture analysis. Several approaches use 2D estimations,

such as Insafutdinov et al. [8] or Cao et al. [2], and are

based on deep learning and the use of confidence for each

of the joints. Other works like Mehta et al. [11] create a 3D

pose estimation representation, extending the use of con-

fidence heat maps to 3D matrices. For the 3D case, we

also find prior work that directly includes depth informa-

tion for the posture or gesture analysis, like the work done

by Molchanov et al. [13]. Rather than focusing on the de-

tailed human pose, other works focus on recognizing spe-

cific human gestures, as a goal in and of itself, e.g. in deaf

gesture-recognition by Cui et al. [3], or as part of human-

robot interaction applications, e.g. in Azagra et al. [1]. Dif-

ferently from these works, ours does not target recogniz-

ing different gestures nor finding the object a user finger is

pointing, but using the common gesture of pointing to give

navigation commands.

2.2. Human­Robot interaction

There are plenty of strategies for human-robot interac-

tion, depending among others on the sensor modalities or

the specific interaction types. Strategies based on visual

gesture recognition and hands-free machine-human inter-

action have been widely explored since the emergence of

RGB-D cameras and its popularization, typically focus-

ing on ground robots. For example [14] is an early work

on pointing direction estimation for commanding ground

robots.

In the recent years and closer to our goals, since recently

smaller and cheaper drones are available to general public,

human-drone interaction has received more attention. We

can refer to works like Hansen et al. [6], where they use the

user’s gaze, recorded at a base station, to guide the drone, or

multimodal works like Fernandez et al. [4], that uses several

modalities (voice, gesture, QR codes or GUI) to guide the

drone. Other works like Knierim et al. [9] use a small drone

in a cage with which the user is able to interact tangibly.

[17] uses a classification scheme based on skeleton detec-

tion to command the robot up and down. However, it uses

a RGB-D camera, which limits the drone location. The ex-

perimental evaluation is also limited to a proof of concept.

[10] proposes the use of future regression networks for early

classification of distinctive human gestures into a set of dif-

ferent actions (take a selfie, move or stop). The work done

by MohaimenianPour et al. [12] is closer to our goals. Au-

thors apply visual gesture recognition to human-drone inter-

action. Its approach is based on a set of pre-defined config-

urations of the relative location of the hands and face rec-

ognized in the image, and each configuration corresponds

to a pre-defined action. However, the study done by Obaid

et al. [15] shows that users are more prone to do deictic in-

teractions with the drone, the type that we consider in our

approach, which are more natural and intuitive to the user

than pre-defined ad-hoc gestures.

The work most similar to ours [21] also presents an al-

gorithm to command a robot by pointing. We built a simi-

lar strategy, based on the detection of hands and faces, but

using a more recent detector, in addition to our two other

novel approaches based on skeleton detection and semantic

segmentation.

3. Drone Guidance by Natural Pointing

3.1. Overview

As summarized in Fig. 2, our pipeline for high-level

drone guidance through natural pointing interactions has the

following components:

1) Input. We consider two input setups, the camera is

placed on board the robot (to enable configurations where

the robot operates near the human user) or at a base station

(if the robot operates at scenarios not accessible for the hu-

man).

2) Pointing direction recognition. This is the core com-

ponent of our pipeline and consists of three stages.

Person detection and representation (per frame). We de-

tect the persons in every frame, exploring three alternatives

detailed in section 3.2.

Direction Classification (per frame). To estimate the di-

rection where the person detected is pointing, we discretize



Figure 2. Drone guidance by natural pointing. Our system re-

ceives the captured video as input, estimates the user pointing di-

rection seeking consensus across a window of frames and sends

the command to the drone using ROS.

Figure 3. Illustration of the 26 navigation directions recognized

by our system. In the experiments where only 8 directions are

named, we use the CENTER plane directions.

the space of possible navigation directions (see Fig. 3) and

formulate this step as a classification problem. The alterna-

tives explored are also detailed in section 3.2.

Consensus (over temporal window). The classification

of natural gestures addressed in this work is challenging due

to the high variability and limited training data. We apply

a voting scheme over several frames within a small slid-

ing window (5 frames in our experiments) as an effective

way to add robustness to our classification. This consen-

sus block receives, from the previous block, the estimated

pointing direction and a confidence value for each frame

within the window. It only accepts a command if 4 of the

(a) (b) (c)
Figure 4. Example of the three alternatives for person detec-

tion and representation. (a) Segmentation. (b) Skeleton. (c)

Hands&Faces

5 last images agree on the command. If the confidence on

the classification of a frame is below certain threshold (0.5

in our experiments), the vote of that frame is ignored.

3) Output (Drone command). Once there is consensus

on a certain direction, the corresponding command is sent

to the real or simulated UAV via network message. The

message contains the x, y and z coordinates of the relative

position where the drone has to move to.

3.2. Pointing direction recognition in RGB

This subsection details the recognition of the user point-

ing direction, the core component of our pipeline.

The first step is to detect the persons in the scene, to se-

lect the region of interest (ROI) and represent the data ade-

quately for the direction classification stage. Regarding this

final direction classification step, there are two main con-

straints to consider. First, due to the interactive application

targeted, the system needs to react to the user actions in ac-

ceptable rates for an interactive application (i.e., a few mil-

liseconds). Second, since the amount and heterogeneity of

the labelled data available is fairly small (see section 5 for

a detailed description of the data used), we need to consider

simple models or transfer learning techniques, rather than

training from scratch large models.

Following the three most common alternatives in the lit-

erature for people detection or segmentation in images, we

have built the three strategies detailed next (illustrated in

Fig. 4): Segmentation, Skeleton and Hands&Faces.

Segmentation. This strategy is based on a well known se-

mantic segmentation CNN, Mask R-CNN [7], to detect all

the people in the scene (we use the official implementation,

Detectron [5] pre-trained on the COCO dataset).In particu-

lar we use a publicly available model for scene segmenta-

tion2. This model labels every pixel in the image with one

of the target labels (i.e., semantic/instance segmentation),

one of them being person. From this output, we keep the

image segments with the person label.

The person segment with the largest area is designated

as the pilot. We select the minimum-size squared patch that

contains the pilot segment. We also mask out the pixels

2Set 12 2017 baselines, model e2e mask rcnn R-101-FPN 2x [5]



that do not belong to the person. With this we remove ir-

relevant background information that could have a negative

influence in next stages.

For the direction classification part, we have explored

several CNN architectures for image classification, offer-

ing MobileNetV2 [20] the best compromise between per-

formance and delay. MobileNet is a well known efficient

architecture very well suited for applications with execution

time restrictions.

Skeleton. This strategy is also based on Mask R-CNN [7],

but in this case we use a model pre-trained to estimate per-

son skeleton keypoints3. This model estimates the postural

information from all the people in the image. In particular

it provides a list of the coordinates of the following key-

points for each person found: {nose, left eye, right eye, left

ear, right ear, left shoulder, right shoulder, left elbow, right

elbow, left wrist, right wrist, left hip, right hip, left knee,

right knee, left ankle, right ankle}. These 17 keypoint co-

ordinates are used to represent a person. As in the previous

strategy, we designate the person of largest area as the pilot.

To recognize the pointing direction, we first calculate

the angle (θ) of the arm link between the elbow and the

wrist, using the corresponding skeleton keypoints pelbow
and pwrist coordinates:

θ = atan2

(

p
y
elbow − p

y
wrist

pxelbow − pxwrist

)

. (1)

θ is computed for both arms and the system chooses the arm

that is farther from the “resting” position as the “pointing”

arm. We have explored numerous options to classify θ into

one of the 8 possible pointing directions. The most relevant

are the following:

• Nearest Neighbour (NN). The median of the orienta-

tion of the arm link for each class in the training ex-

amples is computed. Given a new θ, it is assigned to

the class of the closest median. This is a fairly simple

process, which does not contemplate the possibility of

having an unknown class.

• SVM. Standard RBF-kernel SVM classifier [16]. Dif-

ferent kernel functions and configurations have been

evaluated and the RBF kernel obtained the best perfor-

mance.

• Decision-Tree. Standard Decision Tree classifier [16].

We also considered compound classifiers like Random

Forests, but they converged to a single tree because of

the simplicity of the input (a single number/angle).

3Set 12 2017 baselines, model e2e keypoint rcnn R-101-FPN 1x [5]

Table 1. Detection results of the Hands&Faces YOLOv3 model

on our dataset.
Result found DDIR-1 DDIR-2

No face 133 (7.95%) 720 (22.41%)

Only face 97 (5.80%) 75 (2.33%)

Face and one hand 698 (41.75%) 668 (20.8%)

Face and two hands 744 (44.50%) 1749 (54.45%)

Total 1672 3121

Hands&Faces. This third strategy is based on the detec-

tion of the person’s hands and face, rather than segmenting

the whole body. It is inspired by [12], where they fine-tuned

a YOLOv2 [18] model, with a new dataset they released, to

detect hands and faces. Using their released dataset, we

have fine-tuned a COCO-pretrained YOLOv3 [19] model.

This model outputs the position and size (i.e., bounding

box) of the hands and faces that appear in the image.

We evaluate the detector obtained on both challenges

presented by the hands and faces data authors [12], for

hands4 and faces5 detection respectively. We obtain an AP

of 87.7 and AR of 74.5 for the VIVA hand detection chal-

lenge and AP average of 0.36 in the WIDER face challenge.

These results show our model does not reach the top perfor-

mance in the face detection, however we should note that

the challenge poses very general and heterogeneous face

detection tasks, which are often far from the type of images

we expect in our system. Analyzing the detection results of

the obtained model in our data, shown in Table 1, we ob-

serve that it detects at least a hand and a face (enough for

our approach to work) in most of the images (75-80%).

Inspired by [12], the relative position of the hands and

face is computed in our algorithm to identify the pointing

direction. We approximate the chest position based on the

detected face and trace a ray to the center of the hand, as an

approximation to the arm pointing direction. This way the

pointing angle is computed similarly to previous approach:

θ = atan2

(

p
y
chest − p

y
hand

pxchest − pxhand

)

. (2)

θ is again computed for both hands and the one farthest

from the “resting” position is kept. Once the angle of

the link between a hand and the chest is computed, the

classification of the pointing direction is computed in an

identical manner to the previous approach.

There are significant differences between the three

strategies we have built. The biggest advantage in the seg-

mentation is that it works with the input image directly,

which means that our objective of making this a natural

pointing recognition system is easier since we do not have to

define the gestures with posture geometry. However, since

4http://cvrr.ucsd.edu/vivachallenge/index.php/

hands/hand-detection/
5http://mmlab.ie.cuhk.edu.hk/projects/

WIDERFace/WiderFace_Results.html



it is a more variant representation, the success of this strat-

egy depends greatly on the heterogeneity of the training

dataset to make sure it generalizes correctly. The skeleton

and Hands&Faces representations are far more abstract and

invariant to the person and their surroundings, and consist of

much smaller descriptors, which facilitate an efficient clas-

sification. As we mentioned, in these approaches the ges-

tures need to be defined with posture geometry and they

discard the visual information from the image, so any er-

ror in the skeleton information has much more effect on the

results.

3.3. Pointing direction recognition in RGB­D

As a more general extension to the 2D pointing direction

recognition task, we also explored how to make the system

recognize 3D pointing directions. The added value of this

extension is evident due to the increase in maneuverability.

We recorded and labeled the subset DDIR-5 which con-

tains RGB-D images of users performing 26 different 3D

pointing gestures (the 3D directions considered are repre-

sented in Fig. 3). We consider the same 8 pointing direc-

tions than the 2D case, but in three different depth planes:

center (aligned with the person), front (closest to the cam-

era) and back (furthest from the camera). We attempted to

classify all the 3D directions on an end-to-end similar to the

2D case, but as we detail later in the experiments, the best

option is to separate the 2D direction and the depth classifi-

cation problems. We solve this with an additional classifier

to identify the depth. We discretized the depth values into

three possible classes: back, center and front, correspond-

ing to the space in front of the user (front), at the same depth

that the user (center) or the plane behind the user (back).

The approach used for this additional module is based

on the skeleton approach. We detect the skeleton keypoints

using the skeleton detector and use the x, y and depth from

those points to calculate the x-, y- and z-angle of the vector

that goes from the centroid of the skeleton to each keypoint.

4. DDIR Dataset

As there is no prior published data on the problem we ad-

dress, we have built and release a new dataset6, Direction

Dataset for Interaction with Robots (DDIR), that we are

releasing to the community. The data is organized in five

subsets (DDIR 1 to 5) depending on different characteris-

tics. Fig. 6 shows sample frames of each of these five sets,

which are detailed next. The data has been labeled with the

corresponding 2D pointing direction out of a 8-bin repre-

sentation (except DDIR-5 which has 26 possible directions

in 3D) and an unknown class label. Fig. 5 shows representa-

tive examples of the dataset classes and Table 2 summarizes

the data technical specifications.

6https://sites.google.com/a/unizar.es/

hri-drones/

“up-right” “up” “up-left”

“right” “unknown” “left”

“down-right” “down” “down-left”

Figure 5. Example of each 2D direction class considered in our

data. The label of each class (right under each image) is the direc-

tion in which the person is pointing. The “unknown” class is the

most heterogeneous because it covers every image in which the

pointing direction is not clear (or the user is not pointing).

Table 2. Summary of the presented dataset.
DDIR-1 DDIR-2 DDIR-3 DDIR-4 DDIR-5

Image resolution VGA VGA VGA FWVGA FWVGA+

# users 5 3 6 5 7

# actions per user 8* 8* 48* 64* 52*

User distance (m) 5 2.5-5 2.5-10 5-10 2.5-5

# Indoor/Outdoor scenarios 1/0 3/1 2/1 0/2 4/3

# direction classes 8 8 8 8 26

# frames, direction classes 1393 3212 16430 11711 22628

# frames, unknown-class 2035 2093 6356 16520 4726

* Evenly distributed for each class. + RGB-d recording.

DDIR-1. This set was recorded at an indoor scenario (lo-

cation 1) with the camera plugged into the base station. It is

used for training and testing, splitting the data following a

cross-validation strategy. For each fold we always leave one

user data out of the training set (DDIR-1, train-fold: images

from 4 of the 5 users. DDIR-1val, validation-fold: images

of the remaining user used for the validation).

DDIR-2. This set was recorded at three indoor and one

outdoor scenarios (at location 2, a different location that

DDIR-1), also with the camera plugged into the base sta-

tion. This data is used to evaluate robustness to scene and

user changes. The domain change is challenging but allows

us to demonstrate how well the algorithms generalize.

DDIR-3. This set was recorded at three different scenar-

ios: two indoors and one outdoors (at location 2). The dif-

ferent users perform the pointing gestures 2.5, 5 or 10 me-

tres away of the camera. This dataset is used together with

the next one for testing the complete system.



”down-right” (User4) ”up-left” (User4) ”left” (User6) ”down-left” (User4) ”down-right” (User3)

”up” (User1) ”down” (User1) ”unknown” (User2) ”left” (User5) ”forward-up” (User7)

”right” (User5) ”up-right” (User3) ”down” (User2) ”down” (User2) ”backward-up-left” (User6)

”down” (User5) ”right” (User2) ”up” (User1) ”unknown” (User2) ”down” (User4)

DDIR-1 DDIR-2 DDIR-3 DDIR-4 DDIR-5
Figure 6. Examples of each of the five sets of the presented Directions Dataset for Interaction with Robots (DDIR). Each example is

described with the direction and the user performing the action

DDIR-4. This set was recorded in two different outdoor

scenarios (at location 1). In this case the camera is aboard

the drone, and the drone is hovering at 3 metres above the

ground. The different users perform the pointing gestures 5

and 10 metres away from the drone. In half of the footage

there are other people in the background while the user is

pointing. This data is essential to demonstrate robustness

to different image viewpoints due to the fact of having the

camera on the base station or attached to the drone.

DDIR-5. This set was recorded in seven different scenar-

ios: four indoors and three outdoors (at location 2). The

users perform gestures at approximately 5 metres from the

camera. The camera used in this set has infrared sensors that

let us also record depth information of the footage. This set

is used for expanding the system to 3D movement, so the

pointing directions cover all the 26 shown in Fig. 3. For this

set we split the data similarly to set DDIR-1: DDIR-5 is the

train-fold and DDIR-5val is validation-fold.

5. Experimental Results

We analyze the different alternatives of our approach

and then analyze the performance of our best system con-

figuration. All the experiments were run with an Intel R©

Table 3. Different representations trained on DDIR-1 train set and

evaluated on different scenarios.

Test on: DDIR-1val Test on: DDIR-2

8 classes 8 classes+ 8 classes 8 classes+

”unknown” ”unknown”

(a) Segmentation representation

MobileNetV2 90.1 (8.2) 68.3 (22.3) 86.5 (12.0) 71.9 (22.9)

MobileNetV2-D 93.0 (4.9) 76.2 (18.6) 90.6 (9.2) 78.8 (19.2)

(b) Skeleton representation

NN 93.0 (10.8) N/A 91.9 (6.5) N/A

SVM 95.3 (6.6) 76.5 (30.6) 90.4 (8.3) 76.2 (28.1)

Decision-Tree 95.5 (3.2) 57.8 (18.9) 89.6 (10.0) 57.2 (24.7)

(c) Hands&Faces representation

NN 54.4 (26.3) N/A 47.0 (24.5) N/A

SVM 60.3 (27.0) 46.6 (33.9) 50.9 (25.7) 42.9 (28.0)

Decision-Tree 61.5 (27.7) 40.9 (23.7) 51.6 (25.5) 32.4 (22.9)

Using only images with a detected face and at least one hand

NN 71.4 (17.6) N/A 71.2 (25.1) N/A

SVM 78.8 (15.4) 58.3 (33.6) 76.4 (24.1) 63.5 (31.4)

Decision-Tree 80.4 (16.0) 51.5 (21.4) 77.6 (23.6) 46.1 (22.4)

CoreTMi7-6700 CPU@3.40GHz×8, 32GB RAM and GPU

Geforce GTX 1070 8GB DDR5.

5.1. Analysis of design choices and alternatives

Per frame classification with different representations.

For all these experiments, the models were trained using

cross validation on the train-fold from DDIR-1 set, vali-



dated on the validation-fold from the same set, and tested

on the DDIR-2 set for additional verification. In order to

select the most promising configurations to continue with

the complete system evaluation, we computed the recall for

each variation, to understand the amount of frames that each

method was able to identify.

Table 3(a) corresponds to the segmentation representa-

tion results. Models were trained, as previously explained,

fine-tuning a MobileNetV2 model pretrained on ImageNet.

Fine-tuning was run during 100 epochs, with parameter

α = 1.0 and learning rate set to 10−4. A second ver-

sion (MobileNetV2-D) has been trained using additional

data augmentation to account for larger scale varieties, con-

sisting of random image re-sizes from 1:2 to 1:0.5, which

achieves better results. Table 3(b) shows the results ob-

tained with variations of the skeleton representation. All

the alternatives for this representation achieve comparable

results, slightly better for the NN, also the simplest to im-

plement.

Table 3(c) shows results for the pointing direction task

with our Hands&Faces representation strategy. The core

component of the Hands&Faces representation is the

hands and faces detector detailed in section 3.2. Under the

same conditions as the other approaches, the NN and the

Decision Tree results are very similar, and in both cases sig-

nificantly lower than the other strategies. As expected, part

of this is due to errors in the hands and face detection. If test

images where at least a hand and a face are detected are the

only ones considered, the results are significantly better but

still lower than the other approaches as shown in the same

table.

Discussion. We noticed that including an unknown class,

corresponding to images with non-pointing gesture, drops

the performance of our system significantly (around 10%

difference between the columns “8 classes” and “8 classes

+ unknown” in all configurations). Therefore, we opted for

training only for the 8 direction classes and a different strat-

egy to account for robustness to ambiguous actions (i.e., non

pointing). We included the described small temporal con-

sensus stage that filters the classification results in section

3.1.

The results from the Hands&Faces strategy are far from

the results from the other two strategies, regarding accu-

racy and robustness, so we discarded this option for further

analysis in the following experiments. Note that the skele-

ton representation is very compact, which is convenient for

efficiency but it may lose useful information such as the ap-

pearance. Both the Skeleton and Segmentation results (in

Table 3(a) and (b) val/test columns) show that when the test

data is from a domain further to the training one, the average

results remain almost intact demonstrating good generaliza-

tion of our models.

Figure 7. Example of a limitation of our system. For distances

larger than 6 meters, our pipeline fails to identify the direction due

to the low resolution of the user.

Table 4. Models trained on DDIR-3&4 and tested on DDIR-

3&4val which contain data acquired at different distances.

Skeleton-NN Test at 5m Test at 10m

Trained at 5m 83.3 (7.6) 70.8 (12.7)

Trained at 5m&10m 83.2 (7.8) 70.7 (12.8)

Segmentation-MobileNetV2-D

Trained at 5m 89.0 (4.7) 70.9 (6.1)

Trained at 5m&10m 88.4 (6.5) 70.6 (7.6)

Robustness to various camera distances. The two

best configurations (Skeleton-NN and Segmentation-

MobileNetV2-D) were further evaluated for robustness, on

a similar experiment that the one shown in Table 3 but this

time training on the DDIR-3&4 training sets and evaluated

on DDIR-3&4val, as shown in Table 4. This experiment

shows that our system performs best when the user is be-

tween 2 and 6 metres from the camera. At larger distances

the person is imaged at an extremely low resolution in the

cameras we used to record the datasets (see Fig. 7 for two

examples). The data augmentation done on the training sets

is enough for a model to reach the same accuracy at long

distances (more than 6 metres) than models trained directly

with data recorded at those distances, as shown in Table 4.

These results point that the segmentation approach is more

robust to scale changes due to different distances to the cam-

era, therefore it is the most suitable strategy for our system.

5.2. Video classification system

The following experiments evaluate in more detail the

best configuration of our system. The per frame classifi-

cation is combined with a more robust consensus strategy

for the final video classification and different aspects of in-

terest are discussed to demonstrate the applicability of this

approach.

Consensus strategy benefits. As expected, our whole ap-

proach including the consensus stage (“Consensus improve-

ment”) obtains better results than “Per frame” classifica-

tions. Table 5 shows the results of a more detailed eval-

uation in a more challenging setup than the preliminary

evaluations from previous subsection. Models were trained

on DDIR-1&2 data, recorded from a base-station camera,



Table 5. Segmentation strategy trained on DDIR-1&2 and evalu-

ated on DDIR-3 and DDIR-4. Precision-Recall running indepen-

dent Per frame classification (PF) vs applying Consensus (C).

Per Frame (+ Consensus improvement)

DDIR-3 DDIR-4

Class Precision Recall Precision Recall

up 63.2(+13.1) 56.1(+10.9) 89.1(+6.4) 34.6(+10.2)

up-right 82.3(+8.3) 65.2(+7.3) 85.7(+6.0) 83.4(+8.7)

right 85.8(+5.8) 63.5(+9.5) 93.0(+2.8) 69.4(+11.4)

down-right 81.7(+10.4) 70.9(+13.6) 69.4(+13.1) 88.6(+4.9)

down 45.3(+14.8) 87.6(+6.0) 68.7(+10.3) 77.8(+11.7)

down-left 83.4(+8.8) 78.6(+9.8) 76.4(+12.4) 87.4(+8.6)

left 79.9(+10.1) 72.7(+11.8) 66.7(+14.3) 76.5(+10.7)

up-left 67.5(+13.8) 70.9(+10.9) 66.6(+20.2) 76.2(+12.8)

Avg PF 73.6 70.7 77.0 74.2

Avg C 85.3 83.2 87.7 84.1

and evaluated on DDIR-3 and DDIR-4, where DDIR-4 was

recorded from an on-board drone camera. First note the

consensus improves around 12% for DDIR-3 and around

10% for the most challenging test of DDIR-4. This experi-

ment results also show that changes in perspective or cam-

era type do not affect the good performance of the system,

showing good generalization.

Robustness to user, scenario and camera variations.

Besides the robustness to changes in camera type and per-

spective, the system presents good invariance to all the rele-

vant changes considered with the presented dataset. Robust-

ness to user variations can be analyzed in all experiments

since different users appear in all datasets. Even multiple

users appearing on the background of several scenes is not

an issue for the system, as long as the user providing the

command is the closest to the camera (as assumed by the

system). It is also relevant to note that training in one en-

vironment (DDIR-1&2) and evaluating in a completely dif-

ferent one (DDIR-3 or DDIR-4) provides very good results,

see table 5. This demonstrates the good generalization of

the model learned to different scenarios.

System Performance. Our final implementation runs the

Mask R-CNN for Segmentation on the GPU, while si-

multaneously the Pointing direction classifier is run, using

MobileNetV2-D, on the CPU.

The processing time of one image, running our whole

system, is an average of 225ms (the detector takes more

than 90% of the time). This means that the proposed final

system can run at 4.5 fps. The best compromise between

usability and accuracy was found using a 5-frame window

for the consensus. Longer windows can improve the per-

formance but require the gesture to be performed for longer

and it becomes less natural for the user.

In hopes of exploring the use of this system in a drone

without a base station, we installed and measured the full

system working on a Jetson AGX Xavier. The system takes

1638ms on average to process one image, which means it

could run in it independently at 0.61 fps.

The most significant limitations of the current system are

the following. As the whole pipeline runs at 4.5 fps and

the consensus system requires 5 images to decide, the user

has to keep pointing for at least 1 second. While we find

it a reasonable time, it also means that quick gestures are

not recognized by our pipeline. Besides, the performance

decreases with distances larger than 10 meters of the user to

the camera. This means that the set up has two possibilities:

either the camera is on board the robot with the robot not

further than 10 meters from the pilot, or the camera should

be placed on a base station near the pilot.

6. Conclusions

Driven by the need for natural and intuitive human-robot

interaction, this work proposes a novel framework for pro-

viding navigation directions to a drone by a user pointing

towards the desired direction. Note that the system could be

easily adapted for interaction with any other type of robotic

platform. Our system is shown to work both with images

from a camera on board the drone or images from a central

station camera if drone would be in non-accessible location

for a human operator. The proposed approach exhibits both

accuracy and robustness to variations in the users, the sce-

narios and the viewpoints.

To the best of our knowledge, the gesture-based interac-

tion we propose focuses on the under-explored problem of

fine-grained analysis of user gestures (pointing in our case),

which can significantly help in natural human-robot interac-

tion systems. As part of this work, we release a new dataset

for fine-grained pointing recognition, consisting on five dif-

ferent sets imaging different users, scenes and viewpoints.

The last one of these sets also includes depth information.

There is no similar dataset in the literature, and hence we

believe this is a valuable contribution for the community.

For future work, we would like to increase the command-

ing capabilities by including additional natural gestures in

our system. Besides, with our promising experimentation

using embedded systems capable of running deep-learning

models, we will further investigate transferring all compu-

tation on board the drone for increased practicality.
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