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Abstract

We tackle here a specific, still not widely addressed as-
pect, of AI robustness, which consists of seeking invari-
ance / insensitivity of model performance to hidden factors
of variations in the data. Towards this end, we employ a
two step strategy that a) does unsupervised discovery, via
generative models, of sensitive factors that cause models
to under-perform, and b) intervenes models to make their
performance invariant to these sensitive factors’ influence.
We consider 3 separate interventions for robustness, includ-
ing: data augmentation, semantic consistency, and adver-
sarial alignment. We evaluate our method using metrics
that measure trade offs between invariance (insensitivity)
and overall performance (utility) and show the benefits of
our method for 3 settings (unsupervised, semi-supervised
and generalization).

1. Introduction
Motivation Model robustness and AI assurance encom-

pass many facets, including resilience to adversarial at-
tacks [5], domain adaptation [2], and have extended re-
cently to broader problems such as fairness [18], or pri-
vacy [23]. This paper explores an empirical approach to
probing robustness, which is understood here as invari-
ance/insensitivity of the model performance to innate and
possibly unknown variations in the data. This work relates
to domain adaptation and generalization, as those may ar-
guably be enhanced by desensitizing the model to hidden
factors of variation. In a sense, this works also generalizes
robustness as addressed in fairness studies, which - in con-
trast to our setting – probes invariance and equality of per-
formance with regard to protected factors that are known
a-priori (e.g. gender in face images).

Indeed, our motivation here is real-life scenarios where

incomplete a-priori knowledge exists about important fac-
tors of variation that may cause models to fail (e.g. for
pedestrian or traffic sign detection, or face recognition).
This leads us to consider various settings (unsupervised,
semi-supervised, generalization) that correspond to differ-
ent degrees of prior knowledge or available labels about
these factors.

Indeed, two challenges exist: one is related to the cost
of collecting/curating more more annotated data to evalu-
ate and mitigate this type of invariance to factors of vari-
ation; and the other lies in the possible lack of knowledge
regarding which factors of variation actually impact perfor-
mance, and the fact that often, not all factors are known,
or, if some factors are known, labels may be unavailable
or scarce. These limitations motivate the need to consider
various unsupervised or generalization settings herein.

Approach: Our response to those issues is to develop
a general purpose, dual-pronged approach that: 1) lever-
ages generative models that can both generate synthetic data
and discover in an unsupervised fashion sensitive factors of
variation, and 2) intervenes models vis-a-vis those factors.
Specifically our approach is as follows (see Figure 1): we
first learn factors {Ci} that correlate (in the mutual infor-
mation sense) to variations in the data. Those Ci are direc-
tions in latent space of InfoStyleGAN [19]. We then eval-
uate sensitivity/invariance, i.e., how influential each Ci is
on task performance. We then enhance robustness by inter-
vening directly on the task model sensitivity for each Ci.
We compare individually three interventions: data augmen-
tation, semantic consistency, and adversarial alignment.

2. Prior Work
Taking a broad, conceptual view of robustness, our ap-

proach is most related to approaches in robustness con-
cerned about domain adaptation, (in particular methods us-

1

ar
X

iv
:2

20
3.

01
86

4v
1 

 [
cs

.L
G

] 
 3

 M
ar

 2
02

2



ing adversarial alignment and style transfer), and robustness
methods concerned with fairness.

Generative Methods: those methods, when used for ro-
bustness taken in the sense of adaptation, alter training data
to facilitate pseudo-labeling, or for source-to-target domain
translation. They use techniques such as variational au-
toencoders (VAEs) [13, 16, 17]; GANs [9, 12, 29]; or Cy-
cleGAN [30], StarGAN [6] or pix2pix [11, 20]. Generative
methods when applied to robustness in the sense of fair-
ness, include [10, 21, 22], and are used for augmentation to
address data imbalance (a situation akin to prior shift for do-
main generalization). Our aims here are to seek generative
methods that are able to discover (for analysis) and con-
trol (for synthesis) factors of variation in data, where the
aforementioned techniques are not appropriate, in that they
fail to allow fine control and disentanglement of factors of
variations; Or are only applicable when factors are known
a-priori. Instead, we leverage a type of generative model
recently developed (InfoStyleGAN [19]) that address both
such needs for analysis and synthesis, by discovering, de-
novo, and then controling for, unknown factors of variation
within data that may affect robustness, understood here as
invariance / insensitivity of the performance of models vis-
a-vis the variation in such factors.

Adversarial Approaches these are used to intervene on
models to achieve source / target domain feature alignment
in domain adaptation [8]. Related methods have been ap-
plied to fairness where alignment is done vis as vis pro-
tected factors [1, 3, 24, 26, 28].

Compared to prior work, our novel contributions are:

1. Achieving Model Invariance With Regard to Unknown
Sensitive Factors of Variation We expand the scope of
domain adaptation and fairness, to more general set-
tings of arbitrary factors, and importantly, we consider
these factors are not known a-priori and use generative
models to discover them.

2. Unsupervised / Generalization / Semi-Supervised Set-
tings We consider different settings corresponding to
different degrees of knowledge available about these
sensitive factors. We address novel settings with no
knowledge (unsupervised), some knowledge (semi-
supervised) and ask the question how discovered fac-
tors may generalize from source to target factors,
which is a specific type of domain generalization.

3. Interventions We evaluate the efficacy of achieving
robustness and invariance vis-a-vis those factors, by
comparing three types of interventions including aug-
mentation, semantic consistency and adversarial in-
terventions. And, in semi-supervised settings, we
propose a hyperparameter selection method to select
which combination of factors to intervene, and which

interventions to apply, to achieve optimal outcomes,
via leveraging validation data.

3. Methods
Our overall pipeline is a two-pronged approach, first to

discover factors of variation, then to perform interventions,
and is summarized in Figure 1.

Discovery of Factors of Variation: In this work, we
proceed by positing the existence of yet unknown factors
{Ai} present in images X that could influence the behav-
ior of a model/predictor. Consequently, our goal is to re-
cover {Ai} via a generative model’s latent variables {Ci},
and then evaluate the invariance of each Ci. One caveat
is that relating some unknown Ai with a Ci is difficult if
not impossible without strong inductive biases [15]. To ad-
dress this problem, and in order to recover {Ai} in vari-
ables {Ci}, we follow the approach in [19]. This technique
builds on [29] by augmenting the latent codes {Ci} used in
conjunction with a StyleGAN architecture. Consequently,
each individual Ci can now influence the image generation
at multiple scales, via maximizing mutual information be-
tween latent factors and generated images, thereby also al-
lowing for better control over potential attributes in the syn-
thetic image. In practice, in order to ensure Ci aligns with
potential factors of variation Ai in images, we require that
Ci be reconstructed from the image, via an auxiliary net-
work Q that predicts Ci from the generated image [19]. We
take Q to share weights with the discriminator D, where Q
takes as input an intermediate representation from D. To
dissociate Ci and Y influence on the generation of images,
we also make the generator conditional on Y . This loss
function is used:

Lin = EX̂∼G(Z,C,Y )(CE(C,Q(X̂))− log p(C)) (1)

is then added to the loss function for G and Q, where E(·)
denotes expectation and CE(·; ·) the cross entropy.

Consequently, the full scheme for the GAN is:

min
G,Q

max
D

EX logD(X) + EX̂(log(1−D(X̂)) + Lin (2)

Characterizing Invariance and Mitigating Sensitivities:
Once Ci have been discovered, we can then easily evaluate
invariance, by estimating how much changes in Ci impact
changes in task performance. And mitigate any sensitiv-
ity to variations in these factors using interventions on the
training data or the task prediction model, including aug-
menting the training data to better reflect variations entailed
by changing these factors; or using semantic consistency to
variations in these factors; or adversarial alignment to make
prediction independent of these factors.

Interventions to Achieve Invariance to Factors of
Variation: We next present three methods for mitigating
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Figure 1. Overall Approach: 1) We use a generative model to discover and control factors of variation in the data. This uses mutual
information to find latent space variables aligned with factors of variations, similar to PCA. 2) For those factors found to influence most
the end task performance, we use three types of interventions on the end-task training data and model, to promote performance invariance
/ robustness, vis a vis those most influential factors, including: data augmentation (sampling more data along the latent directions of
variation); semantic consistency; and adversarial alignment.

sensitivities/achieving invariance. These interventions are
used and evaluated independently in this work, and their
joint combination is left for future work.

Data Augmentation (DA): The idea here is to augment
the training data with more data sampled in latent space
along the direction corresponding to the factor of varia-
tion we want to become invariant against. We sample an
additional fixed size dataset from the generator, and use
these data as supervised examples augmenting the original
dataset. To achieve invariance for a specific factor Ci, we
sample Ci from a uniform distribution from -2 to 2 to en-
sure equal coverage across the learnt hidden factor with the
aim of not impacting image realism, akin to the truncation
trick in [4]. An alternative not used herein is to sample from
heavy tailed distributions to probe long tail/edge case exem-
plars corresponding to these factors of variation.

Adversarial Alignment (AA): We intervene directly the
task model here, to make it “blind” to the knowledge of
the sensitive factor label, hoping therefore to make the task
prediction invariant to the sensitive factor, by employing an
adversary to predict the sensitive factor from an embedded
representation of the image we want to render “blind”, as is
done in other works such as [8, 28]. The adversary is given
the target label (as each label may have different levels of
invariance to the sensitive factor) and the embedding taken
after the global average pooling layer. The adversary and
classifier are trained in a alternating optimization scheme.

Semantic Consistency (SC): As an alternative to the
model intervention that actively defends against an adver-
sary predicting the sensitive factor, we can instead take as
inductive bias the view that the classifier should remain
semantically consistent no matter the variation in sensi-
tive factors, i.e., output the same probabilities regardless of

these factors’ values. For the sake of argument and taking as
an example where the learnt factor were to correspond to a
known factor, say “presence of glasses”, for a face verifica-
tion task, then changing this factor from true to false ought
not change the predictions of the classifier doing face recog-
nition. Taking inspiration from [27] and [7], we enforce this
semantic consistency constraint by adding a KL divergence
between the same image with two different values for the
protected factor. Note that X̂Ci←c′i denotes taking the (Z,C,
Y) that produced X̂ , setting Ci to c′i and generating the cor-
responding image. Thus, the full loss term for the classifier
F becomes:

LSC(F ) = EZ,C,YKL(Ŷ (X̂Ci←ci)||Ŷ (X̂Ci←c′i))) (3)

4. Settings

We consider three settings for evaluating outcomes:

1. Unsupervised Factor Invariance: this is the native
setting of this work where we only assume we have
images and labels for the end task, but no knowledge
on the sensitive factors, forcing us to discover sensitive
factors and intervene on these.

2. Factor Generalization: this setting tests generaliza-
tion via evaluation on real factors, probing the ques-
tion: do interventions derived via unsupervised setting
1. achieve a more robust end-task model, and yield in-
variance, when applied and tested on real factors they
did not have access to originally?

3. Semi-supervised: In an extension of setting 2., we as-
sume here we have available some data examples with

3



labeled known factors, which we then use as valida-
tion data for selection of interventions. We perform au-
tomated selection of hyperparameters of interventions
found in setting 1., consisting of choosing which com-
bination of sensitive factor, and intervention method, is
best apt at desensitizing/robustifying some known vali-
dation factors. This setting a type of (semi-supervised)
adaptation from source/discovered unknown factors to
target/known factors. We refer to this last approach
as “ACAI” (for “data Augmentation, semantic Consis-
tency, and Adversarial alignment Intervention”).

5. Experiments
Datasets: We evaluate on two problem domains / image

datasets: One is traffic sign classification using the German
Traffic Sign Recognition Benchmark (GTSRB) [25]; and
face analytics using CelebA [14].

German Traffic Sign Recognition Benchmark is an im-
age dataset containing 43 different classes of traffic signs.
Common factors present in this dataset include the size of
the sign and the lighting condition, which can affect how
finer details appear in the image. The image size is 64 pix-
els by 64 pixels, and we use 45,322 images for training and
validation, and 10,112 images for testing. The synthetic
dataset, correspondingly, is 101,120 images. The ground
truth factors we use for this when testing the generalization
and semi-supervised settings are the sign area, which is the
area computed from the sign ROI normalized to be between
0 and 1, and the computed brightness, considered as the lu-
minance in CIELab space averaged over the image.

CelebA is a face image dataset consisting of celebrities,
with many different attributes labeled ranging from the gen-
der to the attractiveness of the person. We predict the age of
the person. The images are cropped to be 128 pixels by 128
pixels, and we use 162,121 images for training, and 39,201
images for testing. The ground truth factors we use for this
dataset for the generalization and semi-supervised setting,
are skin color, which is the ITA computed over the face as
in [18], and the computed brightness of image, computed as
in GTSRB above.

The factor variation“subpopulations” (i.e. subsets) for
all ground truth factors (except ITA for CelebA) are taken
by binning (10 bins), where Ai(j) or Ci(j) denotes the jth
bin for the ith true or discovered factor respectively. For
ITA, there are only two subpopulations that are split using a
threshold of 17, which was found in [18] to almost exclude
facial images that denoted as ’Pale Skin’.

Experiments: For each dataset, we first partition into a
training dataset and a test dataset. The training dataset is
used to both train InfoStyleGAN as well as the task classi-
fiers. The test dataset is used to evaluate the overall invari-
ance and utility metrics for every method, and is also used to
compute invariance metrics in the generalization and semi-

supervised settings where test labels for ground truth factors
are available.

We first train InfoStyleGAN on the dataset by dedicating
ten Ci variables, to discover sensitive factors innate in the
data. We train a baseline task classifier, which is a ResNet50
pre-trained on ImageNet, on the given task for the dataset.

For the unsupervised setting, we intervene on all sen-
sitive factors for the baseline and evaluate the resulting
change in utility and invariance metrics (defined in a later
section). We compare and evaluate four models (the base-
line model and the baseline intervened with the three miti-
gations we described in the methods section). This evalua-
tion is done on synthetic images as follows: we sample data
conditioned on the class labels from InfoStyleGAN where
each Ci is sampled uniformly from -2 to 2 for the same rea-
sons as the augmentation method. We partition the resulting
images according to the image’s Ci, where there are 10 bins
between -2 and 2, leading to 10 variations/subpopulations
for the same factor. This synthetic dataset has the same task
label distribution as the test set, and is sampled to be ten
times the size, so each partition is roughly equal size to the
original test set. We then compute the overall accuracy for
each image partition, and treat these individual partitions as
subpopulations to compute the invariance metrics.

For the generalization setting the high level goal is to
assess how well an intervention developed under the un-
supervised setting actually performs when generalized and
applied to a specific / real sensitive factor for which we now
have ground truth. Therefore testing is here done for a factor
that appears to align semantically with a discovered factor
of variation. For this setting we report the resulting perfor-
mance corresponding to the baseline model and to all three
types of interventions.

For the semi-supervised setting, we instead assume we
now have access to a validation dataset of data with labels
for the real sensitive factor used in the previous setting, and
that this data is now used to perform hyperparameter se-
lection dictating the combination of which intervention to
apply and which factor to intervene for optimal outcomes.
When we have the validation labels, we essentially do a grid
search for those hyperparameters; we intervene on every Ci
and use the validation labels to select the best pair of Ci and
intervention type. For nomenclature sake, we denote the
selected intervention as Intervention-i, e.g. DA-1 denotes
the data augmentation on C1. All results for all settings are
reported in the same tables for a given sensitive factor.

Utility/Invariance Metrics As interventions on the data
and model to achieve sensitive factor invariance may in-
evitably lead to reduced overall accuracy/utility for the end
classification task, we report metrics that characterize the
two end goals (utility and invariance). Overall accuracy is
used to characterize model utility. For evaluating invari-
ance, we compute the accuracy gap over the variations in
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Setting Interv. Acc Accgap Accmin CAI0.5 CAI0.75

Unsup.
Invari-

ance

Base 98.49 22.93 65.80 0.00 0.00
DA-1 98.66 4.12 79.31 9.49 14.17
AA-1 97.99 10.84 86.09 5.80 8.96
SC-1 96.31 34.85 48.50 -7.05 -9.52

Factor
General-
ization

Base 98.49 3.33 96.24 0.00 0.00
DA-1 98.66 2.83 96.82 0.34 0.42
AA-1 97.99 2.83 96.49 0.00 0.25
SC-1 96.31 5.56 92.76 -2.20 -2.22

Semisup.
Invari-

ance

ACAI
(DA-4) 99.12 1.42 98.15 1.27 1.59

Table 1. GTSRB Image transitions and results for the most in-
fluential discovered factor (found as sensitive Factor 1, out of 10
sensitive factors found) which visually appears to correspond to
“Sign Size”. Invariance metrics for the unsupervised setting are
computed with respect to this, and invariance metrics for the gen-
eralization and semisupervised setting are therefor computed with
respect to the “true sign area” factor.

the factor A or Ci to be the maximum overall accuracy over
the variations in this factor, minus the minimum overall ac-
curacy:

Accgap(Ŷ ) = max
j

Acc(Ŷ (X̂Ci(j)))

−min
j

Acc(Ŷ (X̂Ci(j))) (4)

for a classifier Ŷ where X̂Ci(j) denotes the synthetic im-
agery corresponding with the jth bin of Ci. XAi(j) is used
for evaluation on real imagery. We also compute the min-
imum accuracy over the subpopulations, which aligns well
with observing the worst case performance.

As an important question is characterizing jointly the
trade-off in invariance and utility, we also compute a com-
pound accuracy improvement metric we call CAIλ(Ŷ ) as
in [18], which is the weighted sum of the improvement in

Setting Interv. Acc Accgap Accmin CAI0.5 CAI0.75

Unsup.
Invari-

ance

Base 98.49 18.46 69.37 0.00 0.00
DA-7 99.06 2.81 95.82 8.09 11.87
AA-7 98.01 4.45 92.00 6.74 10.38
SC-7 95.96 15.65 65.30 0.10 1.46

Factor
General-
ization

Base 98.49 2.10 97.37 0.00 0.00
DA-7 99.06 3.32 96.50 -0.33 -0.78
AA-7 98.01 3.13 95.98 -0.75 -0.89
SC-7 95.96 3.81 94.09 -2.12 -1.91

Semisup.
Invari-

ance

ACAI
(DA-9) 98.93 1.67 97.81 0.44 0.43

Table 2. GTSRB Image transitions and results for discovered sen-
sitive Factor 7 (out of 10) which visually appears to correspond to
actual factor “lighting”.

utility (as measured via the difference in accuracy between
the intervened model for classifying Ŷ and the baseline
model), and the improvement in invariance (as measured
via the decrease in accuracy gap from the intervened and
the baseline model for classifying Ŷ ).

CAIλ(Ŷ ) =λ(Accgap(baseline)− Accgap(Ŷ ))+

(1− λ)(Acc(Ŷ )− Acc(baseline)) (5)

Results: We show the results of intervening on the two most
sensitive factors for the baseline in the unsupervised setting
for both the CelebA and the traffic sign experiment herein.

We show those results in tables 1, 2, 3, and 4. Each table
has a companion figure above it which corresponds to alter-
ations of the image resulting from varying the factor value
in latent space, with variations shown along the rows of the
figure, and where each column of the figure corresponds to
an different image taken. For the table itself, each numerical
column corresponds to a specific metric used, where the in-
variance metrics for unsupervised invariance are computed
over Ci and the invariance metrics for the other two set-
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Setting Interv. Acc Accgap Accmin CAI0.5 CAI0.75

Unsup.
Invari-

ance

Base 81.34 8.77 69.80 0.00 0.00
DA-5 79.45 1.02 86.34 2.93 5.30
AA-5 74.11 1.36 84.37 0.15 3.79
SC-5 80.38 7.86 67.94 0.02 0.47

Factor
General-
ization

Base 81.34 6.07 78.20 0.00 0.00
DA-5 79.45 6.86 79.93 -1.34 -1.06
AA-5 74.11 10.41 67.96 -5.78 -5.06
SC-5 80.38 4.64 78.08 0.23 0.83

Semisup.
Invari-

ance

ACAI
(DA-2) 82.53 5.41 79.46 0.92 0.79

Table 3. CelebA Image transitions and results for sensitive factor 5
(most sensitive) which visually appears to correspond to lighting.
Invariance metrics for the unsupervised setting is computed with
respect to factor 5, and invariance metrics for the other two settings
are computed with respect to the true lighting factor.

tings are over actual factor A the discovered factor appears
to correspond to.

6. Discussion

Unsupervised Invariance: For this setting, we see that
the initial high sensitivity to the factor (high accuracy gaps)
for the model with no intervention are mitigated signifi-
cantly by intervening on that sensitive factor. Typically, in-
tervening also slightly improved the overall accuracy on real
factors, except for Table 3 for lighting, where the highest ac-
curacy over the interventions is 80.38% for CR-5. Due to
this, the methods that the CAI metrics were highest at, were
also the ones that had the lowest accuracy gap.

Data Augmentation was the best performing intervention
for all metrics except for Table 4 where the SC method has a
better overall accuracy and CAI0.5. For the GTSRB dataset,
the AA method came in second compared to DA and still
improved over the baseline. SC is worse than the other two

Setting Interv. Acc Accgap Accmin CAI0.5 CAI0.75

Unsup.
Invari-

ance

Base 81.34 7.20 70.09 0.00 0.00
DA-4 82.53 1.05 86.19 3.72 4.92
AA-4 80.12 3.99 81.59 0.99 2.10
SC-4 81.48 2.12 69.48 2.58 3.83

Factor
General-
ization

Base 81.34 5.27 76.83 0.00 0.00
DA-4 82.53 5.32 77.96 0.57 0.26
AA-4 80.12 2.86 77.67 0.59 1.50
SC-4 81.48 3.96 78.09 0.72 1.02

Semisup.
Invari-

ance

ACAI
(SC-1) 81.94 3.07 79.31 1.40 1.80

Table 4. CelebA Image transitions and results Sensitive Factor 4
(second most influential out of 10 discovered factors) which alsp
visually appears to correspond to skin color.

interventions, and worse than the baseline when addressing
sign size. For CelebA, AA exhibited worse overall accu-
racies compared to SC. SC had the second best accuracy
gap for skin color, and the second best accuracy and second
worst accuracy gap for lighting.

Factor Generalization: For GTSRB, we see that the
DA and AA interventions improve upon the base classifier
for sign area in terms of both the accuracy gap as well as
the minimum accuracy. However, no intervention is best in
terms of invariance for lighting in this setting. Of the in-
terventions, data augmentation performed best in terms of
CAI0.5. For CelebA, SC had the best CAI0.5, having the
best accuracy gap for lighting and best overall accuracy for
skin color. Only SC improved upon the original model for
lighting, but all three interventions improved in either over-
all accuracy or the accuracy gap for skin color.

Semi-supervised Invariance: Due to intervening over
any factor and approach, the intervention methods have the
highest CAI0.5 over all interventions evaluated on real fac-
tors. For GTSRB, ACAI primarily improved the accuracy
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gap, whereas for CelebA ACAI has a slight decrease in the
accuracy gap and an increase in the overall accuracy.

Limitations: The model we use, and most approaches
for discovering factors, focus on more ’global’ factors that
affect the image completely, as we see in the factors our In-
foStyleGAN models capture. More complex scenes such as
those found in autonomous driving or aerial imagery have
’local’ factors that affect only single entities in scenes, such
as vehicles or people. To the best of our knowledge, captur-
ing local factors has not been researched extensively.

7. Conclusions
We demonstrate the benefits of a new approach for ro-

bustness that uses a two prong discover and intervene strat-
egy, for factors of variations in the data that seem to most
influence variations in performance for the end-task.
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Figure 2. Main idea: We learn variables such as Ci or Cj in latent
space that corresponds to a) factors of variations such as lighting
(blue) or sign size (red) and b) to probe or address how sensitive
task performance (low performance is purple versus high perfor-
mance is yellow-green) is to these factors.

Appendix
The figure 2 depicts our overall approach in a succinct

graphic.

7.1. Unsupervised Invariance

Tables 5 and 6 show mor extensive view of our results
from evaluating the sensitivity and intervening with respect
to each one of the ten learnt factors of variation to make
the end task invariant to these factors. The results in the
main text for the unsupervised invariance were taken from
these tables corresponding to the column for the stated fac-
tor. Note that after the first three factors for GTSRB and
the first two factors for CelebA, the accuracy gap drops sig-
nificantly (from 13.47 to 1.34 for GTSRB and 7.20 to 3.62
for CelebA). These factors were the ones deemed most sen-
sitive and reported in the main text, with the exception of
factor 5 for GTSRB which appeared to control similar as-
pects as factor 7. Thus we only evaluate factor 7 over 5 as
it is more sensitive.
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Sorted Sensitive Factors 1 7 5 9 6 8 10 3 4 2

Baseline Accuracy 98.49 98.49 98.49 98.49 98.49 98.49 98.49 98.49 98.49 98.49
Accuracy Gap 22.93 18.46 13.47 1.34 1.17 1.13 0.95 0.91 0.87 0.71
Min Accuracy 65.80 69.37 72.19 81.93 81.85 81.91 81.81 82.12 81.93 82.09

Semantic
Augmenta-

tion

Accuracy 98.49 99.06 98.89 98.90 98.65 98.69 98.55 98.86 99.09 99.11
Accuracy Gap 4.12 2.81 2.89 0.52 0.44 0.63 0.47 0.45 0.60 0.23
Min Accuracy 94.29 95.82 95.39 97.49 97.39 95.29 96.87 97.42 97.43 97.67

CAI(0.5) 9.46 8.09 5.49 0.62 0.45 -0.35 0.27 0.42 0.44 0.55
CAI(0.75) 14.14 11.87 8.03 0.72 0.59 0.43 0.37 0.44 0.35 0.51

Adversarial

Accuracy 97.99 98.01 97.30 96.88 97.55 92.93 94.24 97.14 95.68 21.43
Accuracy Gap 10.84 4.45 5.87 0.70 0.80 1.14 0.52 0.65 0.96 1.05
Min Accuracy 86.09 92.00 90.04 90.79 92.87 82.67 86.72 93.93 92.09 12.71

CAI(0.5) 5.77 6.74 3.21 -0.48 -0.29 -2.78 -1.91 -0.54 -1.45 -38.70
CAI(0.75) 8.93 10.38 5.41 0.08 0.04 -1.39 -0.74 -0.14 -0.77 -19.52

Coherence
Regulariza-

tion

Accuracy 96.31 95.96 95.99 97.35 97.85 97.46 97.43 98.03 98.10 97.92
Accuracy Gap 34.85 15.65 10.86 1.41 1.43 1.11 1.00 0.96 0.78 1.23
Min Accuracy 48.50 65.30 64.18 81.57 81.42 81.22 81.02 80.36 81.27 79.96

CAI(0.5) -6.97 0.10 0.06 -0.60 -0.45 -0.50 -0.55 -0.25 -0.15 -0.54
CAI(0.75) -9.44 1.46 1.34 -0.33 -0.35 -0.24 -0.30 -0.15 -0.03 -0.53

Table 5. GTSRB Unsupervised Invariance Results. Numbers in bold denote which one of the three interventions performed the best and
improved over the baseline (for CAI, when it is non-negative).

Sorted Sensitive Factors 5 4 6 7 9 2 10 8 1 3

Baseline Accuracy 81.34 81.34 81.34 81.34 81.34 81.34 81.34 81.34 81.34 81.34
Accuracy Gap 8.77 7.20 3.62 3.59 3.38 2.15 1.87 1.67 1.57 1.06
Min Accuracy 69.80 70.09 72.00 71.60 72.28 72.76 72.81 73.03 73.03 73.20

Semantic
Augmenta-

tion

Accuracy 79.45 82.53 79.67 79.17 79.80 78.89 78.93 78.53 78.93 79.84
Accuracy Gap 1.02 1.05 1.44 1.07 1.38 0.61 1.39 0.96 0.90 1.70
Min Accuracy 86.34 86.19 86.40 86.03 85.69 86.51 85.94 86.24 86.22 85.96

CAI(0.5) 2.89 1.85 0.31 0.23 0.28 -0.40 -0.91 -1.00 -0.82 -1.02
CAI(0.75) 5.32 4.00 1.25 1.38 1.14 0.57 -0.22 -0.15 -0.07 -0.83

Adversarial

Accuracy 74.11 80.12 67.65 50.03 70.42 65.46 63.71 76.16 62.48 59.89
Accuracy Gap 1.36 3.99 4.70 1.56 2.66 1.55 5.17 2.46 3.49 5.92
Min Accuracy 84.37 81.59 56.78 57.66 79.62 74.50 61.56 71.12 70.16 68.19

CAI(0.5) 0.14 0.99 -7.33 -14.59 -5.05 -7.59 -10.41 -2.94 -10.34 -13.10
CAI(0.75) 3.78 2.10 -4.20 -6.28 -2.16 -3.50 -6.85 -1.87 -6.13 -8.98

Coherence
Regulariza-

tion

Accuracy 80.38 81.48 80.79 81.38 79.79 78.24 81.26 81.83 81.11 80.81
Accuracy Gap 7.86 2.12 2.66 0.91 0.97 2.85 1.63 1.75 0.96 3.10
Min Accuracy 67.94 69.48 68.58 71.50 65.50 64.59 70.20 71.09 73.52 70.77

CAI(0.5) -0.02 2.58 0.26 1.41 0.48 -1.85 0.13 0.25 0.25 -1.23
CAI(0.75) 0.45 3.83 0.61 2.05 1.44 -1.28 0.18 0.08 0.43 -1.64

Table 6. CelebA Unsupervised Invariance Results. Numbers in bold denote which one of the three interventions performed the best and
improved over the baseline (for CAI, when it is non-negative).
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