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Abstract

Digital art restoration has benefited from inpainting
models to correct the degradation or missing sections of a
painting. This work compares three current state-of-the art
models for inpainting of large missing regions. We provide
qualitative and quantitative comparison of the performance
by CoModGANs, LaMa and GLIDE in inpainting of blurry
and missing sections of images. We use Escher’s incomplete
painting Print Gallery as our test study since it presents
several of the challenges commonly present in restorative
inpainting.

1. Introduction

Artworks and images are part of our cultural heritage,
but have a tendency to deteriorate over time. Inpainting is
a restoration technique that has been applied traditionally
to restore or complete the missing or damaged sections in
a way that the restorative work passes unnoticed. In cases
where the missing region is of considerable size, this task
becomes delicate as the aim is to fill-in the area with content
that ensembles well with the painting, whilst also fitting the
painter’s style and historical period.

With the recent development of Machine Learning tech-
niques, new inpainting models are available to the Cultural
Heritage restorers. However, at present only few models
are developed specifically with artwork restoration in mind.
The training of these models requires dataset of images in
the counts of thousands, a laborious and resource-intensive
task per-se. The traditional solution is to fine-tune these
models and re-train them with images similar to the restored
piece; this is typically also a challenge, as it can be difficult
to provide large sets of examples of relevant artwork.

Some examples of inpainting models specifically devel-
oped for art reconstruction include the works of Guptal et
al. [10] and Amiri and Messinger [2], which both propose
models derived from computer vision inpainting and ex-
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tended to the art domain. Note that in both works domain
experts were used to evaluate model performance, as an
acknowledgment of the specific difficulty of evaluating in-
painting in the specific context of art.

Our work aims to extend the current literature and pro-
vide an evaluation on how current state-of-the-art inpainting
models can be used in an art restoration context. We offer a
qualitative and quantitative comparison of three models de-
veloped for the inpainting of large missing sections, namely
CoModGAN:Ss [21]], LaMa [19]] and GLIDE []1]. It is worth
noting how none of these models was developed specifi-
cally for art reconstruction; however, given their versatility
and simplicity, our aim is to show the context on which each
of them can be successfully used as a restorative tool.

In order to stress-test the models in a challenging terri-
tory, we selected M.C Escher’s lithography, Print Gallery,
as a test case. This work contains an entire missing region at
the center where different semantic contents blend, thus be-
ing an excellent test case for inpainting models. Addition-
ally, we compare the performance of each model in other
well-known artworks, like the Ecce Homo by Elias Gar-
cia Martinez and Escher’s "Bird-Fish” used to highlight the
weak and strengths of each model under different settings.

2. Inpainting Methods for Large Regions

The focus of our comparison is Computer Vision mod-
els developed specifically for the inpainting of large miss-
ing regions. In such contexts, the unmasked regions typi-
cally provide little information to guide the model towards
the right choice of content, thus presenting additional chal-
lenges. Additionally, the larger the output required from the
model, the more evident effects like pixelation and content
mismatches can be. The three models selected are currently
the state-of-the-art models for large-mask inpainting tasks.

CoModGAN. The model Large Scale Image Comple-
tion via Co-Modulated Generative Adversarial Networks
(CoModGANs), implements a modulation of the uncondi-
tional image vectors into the traditional Generative Adver-



sarial Networks to generate content consistent with the im-
age’s semantics. It is based on the StyleGAN family of
models [[14], which allows to control salient features or
styles of an image. To enhance performance on large-mask
inpainting tasks, the model was trained using randomized
large masks over the training datasets. A limitation of the
current model distribution is the relatively low resolution
required for input images: the model was trained on im-
ages of 512x512 size, requiring any other input image to
match such size (thus potentially lowering the resolution
of the overall output) when using the model. The model
was trained on Places?2 [22]], CelebA-HQ and COCO-
Stuff [3]] datasets, making it versatile for a wide type of ob-
jects.

LaMa. The model Resolution-robust Large Mask In-
painting with Fourier Convolutions was designed with large
regions in mind as well. It is a simple deterministic Pix2Pix-
like model with segmentation-based perceptual loss
and a ResNet-like architecture with fast Fourier convolu-
tions instead of the StyleGan logic. The strength of the
model is to target regular patterns in an image to repeat them
across the masked region. The results of the model largely
depend on the presence of regularities on the area surround-
ing the masked region. For example, in images with tiles,
bricks and windows surrounding the mask. As an advantage
over the others, this model is able to work with a higher res-
olution of 2048x2048. The model was trained only on two
datasets, Places2 and CelebA-HQ.

GLIDE. The model Guided Language-to-Image Diffu-
sion for Generation and Editing is a multimodal diffusion
model with text guidance. Diffusion models work similarly
to upsampling models: the generator net is trained by pro-
gressively adding noise to an image and the learning objec-
tive is to revert the noise process, generating a de-noised im-
age back. An additional component is the fext-guided mod-
ule, which allows the user to guide the image generation
process by inserting a text prompt that acts like an additional
constraint to the model. This prompt allows for virtually in-
finite possibilities in the number of outputs generated, while
also avoiding the inconvenience of fine-tuning large models,
as is the case of CoModGAN and LaMa. Additional model
parameters such as the guidance scale and temperature al-
low the user to control the mix of conditional and uncon-
ditional outputs. An ablation study of GLIDE’s parameters
is presented on the supplemental material. Resolution-wise,
the released version of GLIDE accepts image inputs as large
as 6Kx6K pixels; however, it then down-samples inputs to
64x64 for memory optimization and on the last stage it up-
samples them back to 256x256, which is its final output
resolution. The upsampling process, together with its train-
ing are the key to producing its claimed photorealistic qual-
ity. The model version released by OpenAl was trained on
a fil- tered dataset excluding human figures from the MS-

COCO dataset for images the and CLIP’s dataset for
text [7].

Model Type Input size ~ Output Size
CoModGANs StyleGan 512x512 512x512
LaMa Fourier Conv 2048x2048  2048x2048
GLIDE Text guided diff ~ 6000x6000 256x256

Table 1. Comparison of model type, input and output sizes across
models.

3. M.C. Escher’s Print Gallery

The artwork chosen for the present model testing exer-
cise is Print Gallery (original title: Prentententoonstelling),
made in 1956 by the Dutch artist M. C. Escher. Figure [I]
presents the original lithography, portraying a man that ob-
serves a painting in a gallery; the painting, in turn, portrays
a gallery in the waterfront of the Grand Harbour of Valletta
in Malta.

Figure 1. M.C. Escher’s lithography Print Gallery (Prententen-
toonstelling), 1956. Image from Wikipedia Commons.

Print Gallery is a peculiar work for several reasons:

e It features a so-called Droste effect (i.e. a roto-
homothecy): the man stands in a gallery which is even-
tually portrayed again in the painting he is observing,
creating a theoretical infinite loop;

e The painting is embedded in a spiral-like structure,
clearly evident in the twisting of buildings, columns
and other elements;



* Lastly, Escher did not complete the center of the paint-
ing, instead only adding his signature in the resulting
blank - to this day, there is no definitive explanation for
his choice.

The seemingly incomplete nature of the painting is ar-
guably the main reason for the notoriety of Print Gallery
among the artistic and mathematical community. Due to its
challenging nature, several mathematicians and artist have
attempted to complete it [5,[11]]. In [5], Lenstra and de
Smit present a class of exponential (conformal) complex
maps [4] that share a similar shape with the spiral-like struc-
ture in the original painting. Such maps provide a bridge
between a normal, undistorted space and the twisted space
of the painting. Their work provides the mathematical foun-
dation that we leverage upon in this present paper, together
with Machine Learning techniques, to complete the center
of the original Print Gallery. In particular, we show how
the conformal map formulation can be used to pave the way
for Computer Vision techniques - the performance of which
we aim to compare as the main objective of our work.

3.1. Unrolling From Warped to Straight

It is worth noting that any attempt to apply Computer
Vision/inpainting techniques directly on the blank of Print
Gallery is faced with two main complications:

1. The painting, as described in the previous section,
features a significant amount of twisting and rota-
tion - Machine Learning models are, in general, not
equipped to deal with extreme transformations in the
sample image, since they are not equivariant to rota-
tions, scaling and generally warping of images [9];

2. The size of objects to be completed in the center is very
small in relation to the rest of the painting, once again
creating challenges for any model trying to understand
the sample image context.

The exponential maps described in [5]] provides a solu-
tion, in that the twisted space in Print Gallery can be decon-
structed into eight straightened pictures in the Euclidean
space - each of which features an incomplete area in the
shape of a spiral. This set of eight pictures are individually
inpainted to complete the center.

The two equations below provide the mappings to first
translate Pirnt Gallery’s warped space into the Euclidean
space (obtaining the eight straight images) and then back
from Euclidean to warped. Let z = (x,y) be the coordi-
nates of RGB pixels in the complex plane, with (z, y) being
standard Cartesian coordinates, and 7'(z) : C — C be the
following complex exponential map:

T(Z) — exp(an(z) (1)

In the specific case of Print Gallery, a suitable value of
the constant is: o = %1%(256) [5]. Note that Equation
[[]maps the straight Euclidean space into an approximation
for the twisted space featured in the original Print Gallery.
In order to map the twisted space into the straight one, we

define the inverse map T~ ! as below:

T (2) = eapetn() 2)

Note that Equation |2 describes a one-to-many mapping,
as it is in fact periodic, with period 4* = 256. As a result of
the periodicity of the map, we obtain a set of eight straight
images from Print Gallery, (which are shown in Figure [2)),
each of which is in relation to the next one via a zoom factor
of 4.

The eight straight images obtained are used in the model
comparison exercise as follows. First apply Equation [2| to
Print Gallery, obtaining 8 straight sample images, second
apply the tested models on the straight sample images, aim-
ing to complete the spiral-shaped blank region, and lastly
evaluate the performance of the models on each of the eight
straight images. Summary metrics of our testings together
with qualitative examples are presented in the following
sections.

4. Model Comparison

Assessing the quality of an image depends very much
on its context and usage. In the case of digital art, while
the technical correctness of a restoration is important, there
is an increased importance on subjective qualities of the
restoration. We evaluated the three models using a group of
subjective criteria such as: artistic consonance with the rest
of the lithography;adherence to the painter’s style and ad-
herence of any new content to the historical period depicted
in the artwork. Additionally, we compared model outputs
using objective metrics traditionally used for no-reference
image quality assessment.

4.1. Qualitative Analysis

As mentioned in Section 3.1} we tested the three mod-
els on the inpainting of the straight images in Fig. 2| For
CoModGAN we used the demo provided| with the Places
2 dataset. For LaMa, we used the demo provided with
the high-quality setting || For GLIDE we used the Colab
demo with a Guidance Scale of 4 and the text prompt ”Print
Gallery” ﬂ

Fig. [3| shows an example output for each of the three
models. The top-left image shows the target masked image.
Note that the mask is placed in the left-most border of the

Uhttps://github.com/zsyzzsoft/co-mod-gan
Zhttps://cleanup.pictures/

3https://github.com/openai/glide-text2im/blob/main/notebooks/inpaint.ipynb



Figure 2. M.C. Escher’s lithography converted into eight straight
images. The blank center appears as a white spiral on each image.

image, requiring the model to do inpainting as well as out-
painting. This is an important observation, as CoModGAN
and LaMa are models not natively suited for outpainting.

We now outline findings of the qualitative analysis in the
form of conclusions.

Conclusion 1. The model output is significantly deter-
mined by the placement of the mask.

The three models evaluated are heavily dependant on the
pixels surrounding the masked region. GLIDE and Co-
ModGANs have a higher context awareness than LaMa.
Besides the context, GLIDE is highly influenced by the
prompt and other tunable parameters. An ablation study of
GLIDE’s parameters is presented on the Appendix and the
supplementary material.

Conclusion 2. GLIDE’s output is determined by the
prompt, the seed and the guidance scale parameter, which
determines the degree at which the prompt affects the out-
put. For LaMa and CoModGANs, the only way to improve
the output image is by performing costly fine-tuning.

Due to its multimodality, GLIDE can produce, in theory,
an infinite number of outputs for the same mask, solely by
changing the seed and the text prompt. This allows the user
to rank the outputs or handpick the best inpainting solution
for the context. The other models give a single output option
per masked region, and thus, are more sensitive to the mask
definition.

Conclusion 3. GLIDE is superior in outpainting (extrap-
olation) tasks when compared to LaMa and CoModGANs.

LaMa and CoModGANs are models developed for in-
painting, this is, their output is primarily based on the in-
formation content read from the surrounding pixels of the
mask. However, in outpainting, the mask extends beyond
the borders of the image which leads the model with no
surrounding information to work with. The images on the
bottom show that LaMa and CoModGANs under-perform
on outpainting tasks. This is in line with expectations, since
none of them were developed specifically for outpainting.

Conclusion 4. GLIDE has a higher output variance, of-
ten producing uncanny objects.

Different from GAN models, GLIDE was not trained us-
ing a discriminator net, which is used to avoid the produc-
tion of unrealistic artifacts. GLIDE on the other hand, is
mostly text-guided, and as result, it produces a wide vari-
ance of surrealistic objects. In the artistic arena this diver-
sity can be beneficial depending on the use case. The diver-
sity of GLIDE’s output will be further analyzed on Sec.[4.3]

4.2, Detailed analysis of each model

This section analyses the results from each individual
model in more detail. We present cases of both good per-
formance and failures of each, with the aim of showing the
aim is to show that each of these models specializes on dif-
ferent domains. To summarise, LaMa performs exception-
ally well on image colors with well-defined patterns, Co-
ModGANS is best suited for human faces and landscapes.
As for GLIDE, while seems to be an all-terrain model, even
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Figure 3. Example of model output for the same mask. The white
area on the upper left image is the masked region.

capable of performing outpainting, its public release was
filtered to not produce human figures. Additional compar-
ison is presented in the supplementary material, where fig-
ures comparing the same failure cases across models are
presented.

Fig. @] below shows two examples of CoModGANSs runs
with the masked region boxed in red. The left image shows
the limitations of the model on a simple outpainting task,
where the natural expectation would have been for it to fol-
low the color pattern. The image on the right shows instead
a setting where the model performs very well as the model
correctly learned to reproduce the buildings surrounding the
mask. While the content generated is correct from a visual
point of view, it is not in line with the painter’s style or
the historical period of the painting, as the CoModGANs
model has been trained on the modern (Places2) dataset.
The way to shift the generation into a more suitable content
is to fine-tune the net, which requires building a dataset of
related artworks in the count of thousands, which is usually
not available.

Fig. 5] below shows two examples of LaMa runs, again
masked regions are shown boxed in red. The image on the
left shows how the model fails on outpainting of images; in
this particular case, the sample image presents a high degree
of pixelation, making the recognition task harder. The out-
put on the right shows a correct output, where the model

Figure 4. Example outputs of CoOModGANs. The masked region is
boxed in red. Note the graffiti painting produced by CoModGANs
on the right image.

correctly identifies and mimics the pattern present in the
surroundings of the mask. While the produced content is
correct, the output still shows a certain degree of blurriness
and pixelation.

Figure 5. Example outputs from LaMa. Masked region boxed in
red.

Fig. |6 below shows two failure cases of GLIDE. On
the left image, the model tries to mimic the human figure
and fails, producing additional inconsistent details. This is
likely due to the fact that GLIDE’s training dataset does not
contain humans, as a design choice. The image on the right
shows a failure as a consequence of the model’s output vari-
ance which is further analysed on Sec.[d.3] We can see how
the model produces unrealistic objects, which have no re-
semblance with a particular object on its training set. This
could be explained by the fact that the model does not con-
tain a discriminator network, as the output is only guided by
the cosine similarity with the text prompt.

4.3. Analysis of GLIDE’s Qutput Diversity

As explained before, GLIDE’s distinctive feature is its
multimodality, it takes as input a masked image with a text
prompt and produces a (theoretically) infinite supply of in-
painting options. This creates the problem of image selec-
tion; it is not clear a priory, how many batches of images
are needed to find the best inpainting option and addition-
ally, there is no selection metric provided with the model.



Figure 6. Example outputs from GLIDE. Masked sections boxed
in red. Guiding Scale of 5

An example of the diversity of GLIDE’s output is shown
below. We generated samples for the same mask, prompt
and seed. We can see that the output is very dissimilar
among the images selected and in a sense uncanny with the
expectations for an Escher painting. Note that here we ana-
lyze dissimilarity over the content created, and not on image
quality.

Figure 7. Examples of inpainted images generated by GLIDE for
the caption “a gallery with arches wooden windows and arcades
and floors with tiles” and a Guiding Scale of 5. The white area in
the top-left image is the masked region.

To measure the diversity of the inpainted content created
in an objective way, we calculated the CLIP score over 250
random samples of the top-left image in [/} using the same
mask and prompt El The CLIP score measures the cosine
similarity between the text prompt and the output image [[7]],
a higher text prompt means the content created resembles
better the passed prompt. While the Coefficient of Varia-
tion of the CLIP score is only 3.62%, in visual terms, this
variation translates into very significantly distinctive con-
tent. Additional outputs are shown on the supplementary
material.

4The prompt used is ”A man looks at a painting of Malta behind the
windows of a gallery”

4.4. Analysis on Different Paintings

This section shows the performance of the models un-
der alternative settings other than the eight straight images
obtained from Print Gallery El The main conclusion is that
each of the analyzed models has been developed and trained
for a specific use-case and there is no model that outper-
forms the others across the board, when it comes to qualita-
tive assessment.

The Figure [§] shows a painting with clear color patterns
where LaMa’s performance is the strongest as expected for
a Fourier-based model. In fact, the only difference with the
original image is the detail of the reconstruction of the eyes.
GLIDE shows good results however, LaMa’s output is at
2048x2048 while GLIDE is only able to provide a quality
of 256x256[7]

CoModGANs

.

Figure 8. M.C. Escher’s Bird-Fish painting. 1938. Comparison
of performance of the three models over a regular painting. The
masked region is the entire square area delimited in red. Image
reproduced under WikiMedia Commons.

The image on Figure 9] shows the limitations of GANS-
based models on digital restoration. In particular Co-
ModGAN:Ss is trying to blend the masked region with the
neighboring colors, missing the context, as is a feature of
the localized convolution of GANs. While LaMa succeeds
on the face part, it fails on the lower part of the image.
GLIDE’s outputs varies with the Guidance Scale parame-
ter, however, none of the outputs is able to recognize the

5 Additional examples and a longer analysis is presented on the Supple-
mentary Material section.

SGLIDE’s prompt used is simply “pattern” and the Guidance scale is
five. A low guidance scale helps the model to favor the image’s semantics
over the text prompt



feature of a human face as its distributed version has been
restricted to not produce humans ﬂ

Masked Image I LaMa CoModGANs

Figure 9. Sample outputs from different models on the Ecce Homo
fresco by Elias Garcia Martinez. GLIDE’s outputs are presented
for Guidance Scales of two, three and six. Image reproduced under
WikiMedia Commons.

4.5. Quantitative Metrics

We used three different metrics to provide a quantita-
tive comparison of the models’ outputs as shown in Tab.
The selected metrics are commonly used in the field of
no-reference image quality assessment, where the quality
of an image is determined without using any target image
for comparison. In our case, each image was evaluated as
a stand-alone output. The model Konig produces a score
by comparing the input image against the largest dataset
of image quality up to date [12]. The model BRISQUE
reports a score using a Support Vector Regression trained
on an annotated image dataset with known distortions ;
such dataset is, however, biased towards landscape pictures.
Lastly, we used the DOM model which gives a score
based on the sharpness of gray images.

To obtain a diverse sample of images, we tested the mod-
els across the eight straight images in Figure 2] which con-
tain large regions of inpainting and outpainting challenges.
We created 50 different random masks on each model and
used the same mask across models. The use of 50 masks is
justified by an ANOVA test presented on the Appendix in
Sec.

Analysing Table 2] we can see that in all cases GLIDE
shows a superior performance, except for the DOM score,
which shows GLIDE almost matching with CoModGANs
on sharpness ﬂ The good performance of GLIDE on the

7GLIDE prompt used is “a man staring like Jesus with shirt red and
black stripes”.
8GLIDE was run with a Guidance Score of 5 and Upsample Tempera-

Koniq and BRISQUE scores are in line with the recent liter-
ature showing that, in general, diffusion models beat GANs
on image synthesis [6]. This result can be explained by
several factors. First the upsampling module present on
GLIDE’s acts similarly to a denoising feature creating a uni-
form density of pixels across an image.

Conclusion 5. GLIDE presents superior performance on
blurriness and deformation while not on image sharpness.
However its performance is dependent upon the parameter
tuning.

Method Koniq 1 Brisque | Dom 1

CoModGANs  36.12 43.37 1.05
LaMa 38.76 42.38 1.10
GLIDE 41.61 7.94 1.04

Table 2. Average values for each metric. A higher Koniq score
is better, a lower Brisque score is better and a higher DOM (edge
sharpness) score is better.

5. Print Gallery Inpainting Result

Figure[I0]below displays the result of Print Gallery com-
pleted by performing three steps. First we applied Eq. [2]
obtaining the eight straight images in Figure 2} second we
completed the missing region of each using GLIDE and
lastly we combined the eight straight images as in Eq. (I)) to
obtain back Print Gallery.

Figure[TT]displays a zoom-in of the completed center. It
is noticeable some mismatch between the boundaries of the
warped straight images, this is due to the difference in Es-
cher’s original lithography and the parametrized mappings
applied in Eq. (2) and Eq. (I). To correct for this, a future
direction is presented on Section[7} Note how the inpainted
region is very small and rotated for any inpainting model
to be used out of the box (i.e. without any fine tuning or
passing to the Euclidean planeﬂ Additionally, as a con-
sequence of the one-to-many mapping in Eq. (Z) the center
presents an homothecy of Print Gallery itself, rotated by 157
degrees.

6. Conclusions

We have provided a quantitative and qualitative analysis
of three of the current state-of-the-art models for inpainting
on large masks. By using a particularly challenging set-
ting, comprised of a mixture of inpainting and outpainting

ture of 0.997. The Supplemental material shows further analysis of GLIDE
on the relationship between its parameters and the DOM score

9The parameters used and additional details of the completion process
can be found on the supplementary material

10The supplementary material shows an alternative completions made
by hand by professional artists



Escher’s Print Gallery

Completion with GLIDE

Figure 10. Comparison between original Print Gallery and our
completion using GLIDE

Figure 11. Detail of the completed center using GLIDE. In the
center-bottom it shows the repetition of the original rotated by 157
degrees.

modalities over different images, we have obtained test-case
results for each model’s strengths and weaknesses. GLIDE
appears to be superior to LaMa and CoModGANs on out-
painting tasks and it is benefited from an upsampling mod-
ule obtaining photorealistic quality. Additionally, GLIDE
provides the user with alternative completions for a given
mask and prompt, which can be beneficial on artistic set-
tings and allows one to calibrate the output result without
the costly fine-tuning required by the other two methods.
However, GLIDE’s output diversity can also lead to unre-
alistic outputs and thus, requires human discretion to select
the best fit. We have shown how . According to expecta-
tions, LaMa was shown to be superior in pattern-replication
tasks, and it has the best resolution output across all models.
As for CoModGANS, similar to the family of StyleGANs
models, it shows best performance on big masks over hu-
man faces and landscapes, since it was specifically trained
on them, while GLIDE’s dataset filtered out human images.

7. Future Work

As mentioned in Section[3.1] the formulas in Eq. (2)) and
Eq. (T) have been used to translate the original Print Gallery
lithography into eight straight images. This is, however, an
imperfect process due to the natural differences between a
hand-made process and any attempt to parametrize it with
closed-form formulas. To address this difference, we pro-
pose to project Escher’s Print Gallery onto the conformal
map space, for example using Thin Plate Splines (TPS) [8]).

8. Appendix

To test for the statistical significance of the 50 means on
table[2] we performed a one-way ANOVA test summarized
below on Table[3] We can conclude that the average values
presented on table are statistically different across all met-
rics, notwithstanding DOM which presents similar results
for CoModGANs and GLIDE.

Method Fvalue Fcrit RHO

Koniq 9.23 3.05 yes
Brisque 2556 3.05 yes
DOM 74.17 3.05 yes

Table 3. Results of the ANOVA test performed over the mean
results of the image quality metrics
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10. Supplementary Material
10.1. Further Qualitative Results

The panels [12][13]]14] present additional comparison of
the ’failure’ cases across different models. It is clear that

LaMa and CoModGans are not suited for outpainting tasks.
GLIDE on the other hand, performs well across inpainting
and outpainting demands but suffers from having the worst
resolution output at only 256x256.

10.2. Additional Studies on GLIDE’s Parameters

The panel in |[15}f16}]17|shows the summary results of ab-
lation studies performed on GLIDE. We tested the effect of

changing the Guidance Scale (which controls the relation-
ship between the prompt and the generated image) and the



CoModGANs

Figure 12. Comparison of outpainting image across different mod-
els.GLIDE caption i s”window” and Guidance Scale of five.

Masked CoModGANs

Figure 13. Comparison of outpainting image across different mod-
els. GLIDE caption is "buildings” and Guidance Scale of five.

Upsampling Temperature (which controls the degree of up-
sampling) for the same image and same mask. The test was
performed over 50 samples for each ValueEl

Uprompt: “a gallery with arches wooden windows and arcades floors
with tiles”

CoModGANs
- 'n—[

Figure 14. Comparison of outpainting/inpainting image across dif-
ferent models. GLIDE caption is "buildings” and Guidance Scale
of five.

The results show a significant sensitivity of the model
outputs to the parameters. As expected, a higher degree
of upsampling improves results across all metrics. In fact,
the recommended Upsampling Temperature is 0.997. The
Guidance Scale controls the content, and thus, does not af-
fect the sharpness or blurriness. In the case of BRISQUE,
the sensitivity to the Guidance Scale might be explained by
the degree of black color on the image, since this metric is
sensitive to large black regions.

Next we analyse the effect of the prompt on the inpainted
content. As mentioned, GLIDE is a text-guided model
where the incidence of the text is controlled by the parame-
ter “Guidance Scale”. Under a low Guidance Scale, GLIDE
produces content in consonance with the surrounding ob-
jects, which is ideal for art inpatinting. On the contrary, a
higher Guidance Scale gives more weight to the text prompt
on the image generation. The effect of the Guidance Scale
over the text guidance is shown on Figure [I8] using a fixed
seed and an Upsampling Temperature of 0.997.

10.3. Detailed Analysis of Inpainted Print Gallery

The panel [T9] shows a side-by-side comparison of the
eight images composing the straight version of Print Gallery
with their inpainted counterparts. On each panel, the four
images on the right are the inpainted results of the the left
images.

On panels 21 we show a comparative analysis of
GLIDE’s output under different Guidance Scales, every-
thing else equal. Results indicate that a Guidance Scale
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Figure 15. Plot of BRISQUE values. The three categories repre-
sent the Upsampling Temperature and the horizontal axis represent
the Guidance Scale
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Figure 16. Plot of DOM values. The three categories represent
the Upsampling Temperature and the horizontal axis represent the
Guidance Scale
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Figure 17. Plot of KONIQ values. The three categories represent
the Upsampling Temperature and the horizontal axis represent the
Guidance Scale

value of five results in the best object creation EI The

2Images by artist @litevex reproduced with permission
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Inpainted image Prompt: “Flowers”

Guidance Scale = 10

Prompt: “Flowers”
Guidance Scale =1

Figure 18. GLIDE’s outputs for different Guidance Scales and
same prompt.

of i)

Figure 19. Inpainting of the first four images composing the blank
center. GLIDE with Guidance Scale of five and prompt “Escher”.

Figure 20. Inpainting of the second four images composing the
blank center. GLIDE with Guidance Scale of five and prompt “Es-
cher”.

prompt used is: “a photograph of a teddy bear using a lap-
top 1080p 4k.”

10.4. Analysis on Additional Paintings

This section provides further comparison of the model
performance under different scenarios. First in Fig. 22] we
provide a further analysis of the Ecce Homo by Elias Gar-
cia Martinez from the main text. This fresco is a challenge
since white patches from the degradation are visible all over
the surface. In the case of CoModGANS, the model con-
siders as a valid pattern the white areas appearing on the
image’s surface and tries to replicate them, resulting in a
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g [Py
Guidance Scale: 6 Guidance Scale: 7

Figure 21. Different guidance scale settings over the same
prompt. "a photograph of a teddy bear using a laptop 1080p 4k”.

poor inpainting performance. LaMa repeats this behaviour
but in a lesser degree, as noted, this model provides the best
output resolution among all. Additionally, it performs com-
paratively well on the face since it has been trained on the
faces database Celeb-H. GLIDE, as expected, it is not able
to recognize a human face by design. However, the upsam-
pling module produces a nitid result compared to others.

Qriginal GLIDE guidance 3 GLIDE guidance &

Masked Image

Figure 22. Different outputs for the Ecce Homo by Elias Garcia
Martinez. Image from Wiki Commons. Glide was used with a
Guidance Scale of three and six, where indicated.

10.4.1 Automatic Generation of Prompts

The Fig.[23]is a work by Torres-Garcia “Composicion con-
structiva” (1932) [20]. The piece was burnt at the Brazilian

11

Museum of Modern art in 1981 and presents the traces of
fire on the wood. This coloration creates a challenge for in-
painting models as they deem the burnt area as a valid pat-
tern to reproduce. We see that GLIDE is able to move away
from the burnt colorization, either by ramping the Guidance
Scale or by trimming the area with a clever prompt. For the
left-bottom image, the prompt was generated using a image-
to-text bot by the developers EleutherAl El, the generated
prompt is “’Paul Klee’s rectangular piece of wood is a rare
example of early Christian art.”. The images with Guidance
Scales two and 20 have used the simple prompt “’patterns”.

Masked Image CoModGANs LaMa

GLIDE guigance 7 GLIDE guidance 2 GLIDE guicance 20

Figure 23. Inpainting outputs for the work of Torres-Garcia. Com-
posicion constructiva (1932). GLIDE with different Guidance
Scales and prompts generated by image-to-text bots. Image from
Wiki Commons.

10.4.2 Crowd-sourcing of Prompts By Experts

The panels on [24] show Cezanne’s unfinished “Turning
Road” (1905), which has whole sections of the canvas bare.
The inpainting of this work is more open-ended given the
style of the painter. For this reason, all models present
equivalent performance, to the casual eye. To generate
GLIDE’s prompt we did a crowd-sourcing experiment and
relied on the expertise of ten visual artist from EleutherAl
who suggested by consensus “the fog of the valley painting
from last century”. The two GLIDE images on the bottom
were generated by using different seeds on the same prompt.
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