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Abstract

We present an efficient method for the reconstruction
of multispectral information from RGB images, as part of
the NTIRE 2022 Spectral Reconstruction Challenge. Given
an input image, our method determines a global RGB-to-
spectral linear transformation matrix, based on a search
through optimal matrices from training images that share
low-level features with the input. The resulting spectral
signatures are then adjusted by a global scaling factor, de-
termined through a lightweight SqueezeNet-inspired neural
network. By combining the efficiency of linear transforma-
tion matrices with the data-driven effectiveness of convo-
lutional neural networks, we are able to achieve superior
performance than winners of the previous editions of the
challenge.

1. Introduction
Consumer digital imaging devices are typically charac-

terized by three types of sensor, covering three bands in the
spectrum of visible light that are mapped to what is referred
to as “red”, “green”, and “blue” (RGB). Higher-end devices
designed to capture finer bands within the light spectrum
fall under the term of hyperspectral and multispectral imag-
ing sensors. Acquiring this level of spectral detail produces
additional information that allows for better discrimination
of metamers, i.e. different spectral signatures that would
appear as equivalent stimuli under given conditions. This
discrimination capability, in turn, can facilitate and improve
the performance of a variety of computer vision tasks, such
as remote sensing, anomaly detection, and applications for
medical imaging [11]. One downside of spectral imaging is
the higher cost of the hardware involved, which is among
the motivations that lead to the rise of spectral reconstruc-
tion: the task of estimating a multispectral or hyperspectral
signature corresponding to a given input RGB triplet. By
definition, this is an ill-posed problem, as it involves an in-
crease in dimensionality. For this reason, methods for spec-

tral reconstruction must exploit additional priors and con-
textual information, such as pixel neighborhoods and cam-
era characteristics.

This paper describes our solution to the NTIRE 2022
Spectral Reconstruction Challenge [5], in which each par-
ticipant is provided with a set of RGB-spectral image pairs
for development, training, and tuning, and the final assess-
ment is conducted on a blind test set. As we will discuss
later on, existing methods for spectral reconstruction are
traditionally based on defining sparse-representation dictio-
naries to encode the transformation from RGB to spectral
domain. An intrinsic advantage of this type of solution is
its relative efficiency, as the final reconstruction can be ob-
tained through the application of one or more linear trans-
formation matrices applied to pixel values. More recent so-
lutions exploit deep convolutional neural networks (CNNs)
in order to learn rich dependencies of RGB information,
and to map them to the final spectral reconstruction. This
approach allowed for a significant improvement in the re-
construction performance, in line with many other applica-
tions of deep learning in the latest years [6, 9], at the cost
of higher computational complexity. Furthermore, image-
to-image methods based on CNNs are prone to introducing
artifacts, as we will show with a comparative analysis.

In this work we propose a hybrid solution to the problem
of spectral reconstruction from RGB images, called Fast-n-
Squeeze. Our approach is based on the definition of a global
RGB-to-spectral linear transformation matrix, which is au-
tomatically defined using low-level image features, and effi-
ciently applied. The output reconstruction is then corrected
by a global scaling factor, determined through a lightweight
convolutional neural network, whose computational com-
plexity can be constrained thanks to the simplified nature of
the task. Our overall solution is highly efficient (198.45 FPS
in GPU), easily implemented, and it produces results that
are comparable to the more computationally-demanding so-
lutions that won previous editions of the challenge, while at
the same time avoiding artifacts in the reconstruction pro-
cess.
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2. Related works
Aeschbacher et al. [1] introduced what is commonly re-

ferred to as A+, built upon the method by Arad et al. [3] and
the method by Timofte et al. [13]. This technique for spec-
tral reconstruction is based on sparse dictionary representa-
tion of the input RGB pixels into atoms, and on transferring
said representation to the corresponding higher-dimensional
spectral atoms for full spectrum reconstruction. During the
training phase, a set of hyperspectral atoms is generated
from the dataset and projected into the corresponding RGB
using color matching functions. The neighbors of training
signatures for each dictionary atom are used to compute
RGB-to-spectral matrices, which are then exploited at re-
construction to process each RGB image pixel. In line with
this work, we introduce a solution based on the application
of RGB-to-spectral matrices to reconstruct the hyperspec-
tral version of the input image in a highly efficient fashion.
Furthermore, by using global as opposed to local matrices,
we prevent the introduction of spatial reconstruction arti-
facts.

The NTIRE 2020 Spectral Reconstruction Challenge [4]
collected a number of highly effective solutions, mostly
based on the application of properly-designed Convolu-
tional Neural Networks (CNNs). In the following, we de-
scribe the most effective solutions that participated to the
2020 edition of the challenge.

Li et al. [10] proposed an Adaptive Weighted Attention
Network (AWAN). Their solution is a neural architecture
implementing a number of novel weight attention mecha-
nisms, combined with a prior on the known camera spectral
sensitivity. More specifically, the backbone architecture is
a sequence of dual residual attention blocks, characterized
by interleaved long and short skip connections, and by a
novel adaptive weighted channel attention module that ex-
ploits interdependencies among intermediate features. A fi-
nal patch-level second-order non-local attention module is
then used to capture long-range spatial contextual informa-
tion at the end of the neural process. The overall loss is
obtained as a weighted average between the direct effect
on spectral reconstruction, and the indirect effect on RGB
reconstruction, computed by applying the camera spectral
sensitivity function.

Zhao et al. [15] proposed a Hierarchical Regression Net-
work (HRNet). Their solution is a neural network com-
posed of four parallel branches that process and combine the
input RGB image at different levels of resolution. Specif-
ically, each level is obtained by applying a non-learnable
PixelUnShuffle layer, which redistributes the existing pix-
els by halving spatial resolution in each direction, and con-
sequently increasing the channel dimension. Every neural
branch performs a first inter-level integration step, where
the output of the lower branch is upscaled via learnable Pix-
elShuffle, concatenated, and reprocessed via convolution.

Figure 1. Schematic diagram of the method proposed: Fast-n-
Squeeze.

Then, a sequence of residual dense blocks is applied for
artifact reduction, followed by a residual global block that
implements an attention mechanism through a multi-layer
perceptron. The network is only trained via L1 loss.

3. The proposed method: Fast-n-Squeeze

A schematic representation of the proposed method is re-
ported in Figure 1. From the diagram reported it is possible
to see the two parts of which Fast-n-Squeeze is composed:
the first part, Fast, estimates the best RGB-to-spectral lin-
ear transformation matrix to be used on the input image; the
second part, Squeeze, refines the reconstruction provided by
the transformation matrix by a global scaling factor. In the
following we describe in details the two parts.

3.1. Fast

The first part of the proposed method allows to estimate
the best RGB-to-spectral linear transformation matrix to be
applied to the input RGB image. A Moore-Penrose pseudo-
inverse matrix [12] is computed for each training image to-
gether with a feature vector representing the average, max-
imum and standard deviation of each color channel:

feati = [avg(RGBi)max(RGBi) std(RGBi)]
α (1)

which is then elevated to the power α = 0.9. Given a test
image, its feature vector is computed as in Equation 1, and
then it is compared with all the vectors in the training set
with the Chebychev distance. The images having a Cheby-
chev distance lower than 1.05× the minimum distance are
identified, the corresponding pseudo-inverse matrices are
selected, and their element-wise median is computed.
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3.2. Squeeze

The second part of the proposed method uses a CNN
model to predict a single global scaling factor to be used
on the spectral image, recovered using the matrix computed
by the first step. This part is named after the CNN model
used, i.e. Squeezenet-v1.1 [8]. The model is modified by
removing the Dropout layer and replacing the softmax clas-
sification layer with a fully-connected layer that estimates
one single output. In order to allow for fast inference, the
input image is resized to 256×256 pixels.

The parameters of the SqueezeNet-v1.1 model are fine-
tuned using the Mean Absolute Error (MAE) as loss func-
tion. The choice of this loss is driven by two considerations:
i) we experimentally found that the competition target met-
ric, i.e. Mean Relative Absolute Error (MRAE) was not able
to drive the optimization, and ii) MAE shows a good corre-
lation with angular error metrics [2]. We train the model for
a total of 30 epochs by using Adam optimizer with starting
learning rate of 1 × 10−4 which decays by a factor of 0.5
every 10 epochs, a batch-size equal to 16, and exponential
decay rates β1 and β2 equal to 0.9 and 0.999. Each RGB
image fed to the model is normalized by its global maxi-
mum value and then resized to 256 × 256 pixel resolution
using bilinear interpolation. We randomly apply horizontal
and vertical flip, and rotation by an angle between 0 and 360
degrees. At the end of each epoch, the MRAE is estimated
on the validation set. The model that achieves the lowest
MRAE is chosen as best model.

We implement the proposed method in Python 3.8 us-
ing the PyTorch package with CUDA-v11.6 as back-end.
The proposed model is trained on a workstation equipped
with an Intel i7-4770 CPU @3.40GHz, 16GB DDR4 RAM
2400MHz, NVIDIA GeForce GTX 1080 GPU with 2560
CUDA cores. The training process of the proposed solution
lasts about 30 minutes.

4. Experiments
4.1. Datasets

We train and evaluate our Fast-n-Squeeze on the
Arad 1K Hyperspectral Database provided by NTIRE 2022
challenge [5]. This dataset consists of 1000 RGB-
HyperSpectral (HS) pairs divided into 900 training, 50 vali-
dation and 50 testing samples. Each spectral image is char-
acterized by 31 bands in the 400 nm to 700 nm range, with
a spatial resolution of 482 × 512 pixels. To generate the
RGB image corresponding to the HS tensor, there is a fixed
camera response function CRF applied to HS bands. The
rendering process can be defined as:

RGB = HS × CRF. (2)

The Poisson noise is added to the RGB and then the nor-
malized by 0.18

mean(RGB) . Two samples from the database are

shown in Figure 2.

4.2. Evaluation metrics

The proposed Fast-n-Squeeze is objectively evaluated
and compared with other methods by using the following
metrics:

• Root Mean Squared Error (RMSE). It computes the
root mean square error between the generated spectral
images and the corresponding ground-truths. It is de-
fined as:

RMSE =

√√√√ 1

N

N∑
i=1

∥G(x)i − yi∥2, (3)

where N denotes the total number of pixels in the spec-
tral image, G(x) and y are respectively the generated
spectral image and the corresponding ground-truth.

• Mean Relative Absolute Error (MRAE). It estimates
the pixel-wise disparity (mean absolute value) between
all bands of generated spectral image and ground-truth.
It is computed as follows:

MRAE =
1

N

N∑
i=1

|G(x)i − yi|
yi

. (4)

• Back Projection MRAE (BPMRAE). It evaluates the
colorimetric accuracy of the reconstructed RGB by ap-
plying a fixed camera response function to the gener-
ated and ground-truth spectral images. It is defined by
the following equation:

BPMRAE =
1

N

N∑
i=1

|(CRF ×G(x)i)− (CRF × yi)|
(CRF × yi)

,

(5)
where CRF is the camera response function.

• Weighted accuracy. As indicated in [4], it evaluates
the reconstruction error taking into account which ma-
terial the pixels belong to. It is estimated by firstly
grouping similar spectra into 1000 clusters, then by in-
dividually calculating the mean MRAE of each group.

4.3. Ensemble strategy

The Squeeze part of our solution can be boosted by en-
sambling multiple training iterations. Specifically, the cor-
responding entry in the NTIRE 2022 challenge is computed
as a weighted average:

Squeeze =
1

3
Squeeze(1) +

2

3
Squeeze(2) (6)

where the weights were empirically set.
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Figure 2. Samples from the NTIRE 2022 Arad 1K Hyperspectral Database. Each row displays the RGB image and 5 different bands of
the corresponding HS image.

Method MRAE RMSE

Fast 0.3381 0.0517
Fast (oracle glob. scaling factor) 0.2040 0.0289
Squeeze(1) 0.3344 0.0567
Squeeze(2) 0.3398 0.0612
Squeeze 0.3331 0.0579
Fast-n-Squeeze 0.3164 0.0516
Fast-n-Squeeze (oracle select.) 0.2753 0.0452

Table 1. Quantitative comparison results of the different parts of
the proposed solution on the NTIRE 2022 validation set.

Our final solution, Fast-n-Squeeze, combines both the
Fast and the Squeeze component, exploiting the uncorre-
lated nature of the underlying techniques to improve upon
the spectral reconstruction of both:

Fast-n-Squeeze =
1

2
Fast +

1

2
Squeeze (7)

The weights were also empirically set.
We also consider an hypothetical lower bound: for each

test image, the best solution between Fast and Squeeze is
selected assuming the availability of an oracle.

4.4. Testing result on NTIRE 2022 challenge

Official results on the validation and test set of the
NTIRE 2022 challenge are reported, respectively, in Table 1
and Table 2.

The validation performance allows us to investigate in
detail our solution. The Fast part, in particular, achieves
0.3381 MRAE. If, however, we assume the availability of
an oracle that determines an optimal global scaling factor,
this error decreases to 0.2040 MRAE. This behavior is il-
lustrated visually in Figure 3.

Method MRAE RMSE

Fast 0.4629 0.0691
Squeeze 0.4160 0.0895
Fast-n-Squeeze 0.3647 0.0641
Fast-n-Squeeze (oracle select.) 0.2915 0.0541

Table 2. Quantitative comparison results of the different parts of
the proposed solution on the NTIRE 2022 test set.

Figure 3. Effect of the application of the oracle scaling global fac-
tor to Fast. Groundtruth (green lines) and predicted spectra (black
lines). First row corresponds to ARAD 1K 0901, and MRAE goes
from 0.1993 (left) to 0.0939 (right); second row corresponds to
ARAD 1K 0946, and MRAE goes from 0.7617 (left) to 0.0849
(right).

The definitive test set performance reported in Table 2
clearly highlights the individual contributions of each com-
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ponent. The Fast-n-Squeeze solution, with 0.3647 MRAE,
allows for a relative improvement of 21% over Fast, and
12% over Squeeze. Finally, the oracle selection between
Fast and Squeeze achieves 0.2915 MRAE, highlighting the
potential of the proposed solution in case of a classifier
trained to identify two different classes of images, and sug-
gesting a direction for future developments.

4.5. Comparison with state-of-the-art methods

In this section we present the comparison of our Fast-
n-Squeeze with the two best methods of the NTIRE 2020
Spectral Reconstruction Challenge, namely AWAN [10]
and HRNet [15], and a sparse coding method presenting
some similarities to the proposed one, i.e. A+ [1]. AWAN,
Arad+, and HRNet have been trained on the NTIRE 2022
Arad 1k Hyperspectral Database using the original codes
provided by the authors with the default settings. For train-
ing AWAN and HRNet we reduce the batch size (i.e. AWAN
= 6 and HRNet = 4) due to the limited GPU memory. For the
same reason, at inference time, we process the input RGB
image by splitting it into 128× 128 patches with an overlap
of 64 pixels using the algorithm provided by the authors.
The results for HRNet are obtained by generating the spec-
tral images using a single model, while the original method
gets the final spectral image by calculating the average of 8
spectral images obtained with an ensemble of models.

We report the comparison on the validation image pairs
of NTIRE 2022 as the HS images for the testing set are not
publicly available. The results are summarized in Table 3.
We also visualize the output of each method in Figure 4
by pseudo-color map. For all the considered metrics, the
proposed Fast-n-Squeeze outperforms the competitors by a
large gap, namely -0.08 MRAE on the second best method,
i.e. AWAN. There are three reasons the proposed method
outperforms the other three methods. The first is that the
Fast part of our Fast-n-Squeeze provides a good approxima-
tion of the shape of the ground-truth spectra for each pixel.
The second is that the Squeeze part of the proposed method
effectively scales the spectra based on the global statistics
of the generated spectral image. The third is that compared
to AWAN and HRNet, Fast-n-Squeeze does not introduce
spatial artifacts, as can be seen in rows 2, 3 and 4 of Figure
4. We will further discuss the latter in the next subsection.

We compare the performance of the proposed Fast-n-
Squeeze with previous methods also on the validation set
of NTIRE 2020 Spectral Reconstruction Challenge. Table
4 reports the quantitative comparison. For all the considered
metrics the best model is AWAN, followed by HRNet and
Arad+. These methods are pixel based algorithms trained
on a not processed database. This approach allows these
methods to better reconstruct the spectra associated to the
RGB pixels without being diverted by the image normal-
ization factor and noise (See Section 4.1 for details). Our

method, despite being the least performing among the ana-
lyzed solutions on this database, represents a good balance
between efficiency and effectiveness (see Section 4.5.2).

4.5.1 Spatial reconstruction artifacts comparison

In this section we focus on the problem of spatial re-
construction artifacts. For this analysis we consider two
perceptually motivated distance metrics, such as the Peak
Signal-to-Noise Ratio (PSNR) and the Structural SIMilar-
ity (SSIM) index [14]. The PSNR is defined as follows:

MSE =
1

N

N∑
i=1

∥G(x)i − yi∥2,

PSNR = 20× log10

( pmax

MSE

)
,

(8)

where pmax = 1 is the maximum possible value of pixels
in HS images. On the other hand, SSIM is computed in the
following way:

SSIMi,n =
(2µµ∗ + C1)(2σ̂ + C2)

(µ∗2 + µ2 + C1)(σ∗2 + σ2 + C2)
,

SSIM =
1

M ×W ×H

M∑
i=1

W×H∑
n=1

SSIMi,n,

(9)

where µ∗ and σ∗2 are the mean and variance for the nth N×
N window in the ith band on the generated spectral image.
Similarly, µ and σ2 account for the mean and variance of
the window in the ground-truth spectral image. Also, C1 =
k1L, and C2 = k2L are introduced to avoid division by zero
when the mean or covariance values are close to zero. M is
the number of bands, W and H are width and height of the
image. We set N = 47 following [7], where it is shown that
a larger local window is better for distortions with larger
signal-error cross-correlation.

The PSNR and SSIM results on the NTIRE 2022 vali-
dation set are reported in the second part of Table 3. The
proposed Fast-n-Squeeze achieves the best performance for
both the metrics with respect to the state-of-the-art methods.
The worst results are achieved by HRNet, i.e. 0.1266 lower
for SSIM and 5.88 lower for PSNR than Fast-n-Squeeze.
A qualitative comparison of how spatial artifacts manifest
for different bands of a sample image is provided in Figure
4. As it is possible to see, AWAN introduces very notice-
able blocking artifacts likely due to patch-wise processing.
HRNet generates a spectral image in which there are many
discontinuities in the pixel intensities that are not present in
the ground-truth image. Finally, for Arad+ and our Fast-
n-Squeeze the generated spectral image presents no spatial
artifacts and it is very similar to the ground-truth.

Spatial artifacts are more evident when the generated
spectral image is backprojected to RGB using Eq. 2. Figure
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Method MRAE RMSE BPMRAE
Weighted
accuracy PSNR SSIM

Infer. speed
FPS

A+ [1] 0.3906 0.0785 0.3570 0.4004 29.1255 0.8420 0.31 (CPU)
AWAN [10] 0.3551 0.0704 0.3312 0.3660 29.7714 0.8619 0.14 (GPU)
HRNet [15] 0.5810 0.0848 0.5436 0.5565 27.5177 0.8037 40.26 (GPU)
Fast-n-Squeeze (this paper) 0.2753 0.0452 0.2107 0.2986 33.4023 0.9303 198.45 (GPU)

Table 3. Quantitative comparison on the NTIRE 2022 validation set. Best result for each metric is reported in bold.

Method MRAE RMSE BPMRAE

A+ [1] 0.0467 0.0155 0.0001
AWAN [10] 0.0312 0.0111 –
HRNet [15] 0.0423 0.0135 0.0061
Fast-n-Squeeze (this paper) 0.0882 0.0247 0.0177

Table 4. Quantitative comparison on the NTIRE 2020 validation
set. Best result for each metric is reported in bold.

5 shows a validation image of Arad 1k generated with the
different methods considered. It is highlighted in the detail
of the sky how AWAN and HRNet introduce some artifacts
of which Arad+ and the proposed method are instead lack-
ing. The presence of such artifacts is reflected in the lower
values of PSNR and SSIM for AWAN and HRNet with re-
spect to those achieved by Arad+ and our Fast-n-Squeeze.

4.5.2 Inference speed comparison

For spectral reconstruction methods, efficiency is also cru-
cial. In this section, we complement the part of performance
estimation with that of computational efficiency. To this
end, we measure the inference speed in terms of Frame-
Per-Seconds (FPS) by running all the methods on the same
workstation in GPU (apart from Arad+ which only runs in
CPU). The inference speed estimated on the Arad 1k im-
ages having spatial resolution of 482 × 512 pixels is re-
ported in the last column of Table 3. As is possible to see,
the proposed method with 198.45 FPS is considerably faster
than the other methods. This number is higher than the
104.71 FPS reported in [5] because we optimize the code
efficiency by asynchronously running the forward pass for
the two SqueezeNet models. Compared to deep learning-
based methods that run in GPUs, it is an order of magnitude
faster than HRNet and three orders of magnitude faster than
AWAN. The proposed Fast-n-Squeeze is also faster than
Arad+ in CPU, in fact the former has an inference speed
of 50 FPS, while the latter of 0.31 FPS.

For our Fast-n-Squeeze we deepen the inference speed
analysis by running the method in both GPU and CPU on in-
put images with various standard image resolutions, namely

that of the Arad 1k (482 × 512), Standard Definition (SD,
720 × 576), High Definition (HD, 1280 × 720), Full-HD
(FHD, 1920 × 1080), 2K 2048 × 1080, Ultra-HD (UHD,
3840× 2160), and Digital Cinema Initiatives 4K (DCI 4K,
4096 × 2160). On the basis of the results shown in Fig-
ure 6, we can claim that the proposed method is suitable
for real-time spectral reconstruction of images even at very
high resolution. Indeed, it has an upper limit of around 200
FPS for SD images and a lower limit of around 20 FPS for
DCI 4K images in GPU. The CPU inference speed range
is instead between 50 FPS for SD images and just under 4
FPS for DCI 4K.

5. Conclusion

We have proposed an efficient method for the reconstruc-
tion of multispectral information from RGB images, as a
contribution to the NTIRE 2022 Spectral Reconstruction
Challenge. Our approach defines a global RGB-to-spectral
linear transformation matrix, estimated using low-level im-
age features, and subsequently applies a global scaling fac-
tor, determined through a lightweight convolutional neural
network. The matrix-based reconstruction was found to be
effective at correctly estimating the spectral signature disre-
garding the global magnitude, while an oracle-based scaling
factor showed a significant potential improvement on the
MRAE-based evaluation. Based on these results, we con-
sider for future developments the integration of additional
shooting information (such as aperture and exposition) for
a more accurate estimation of the appropriate scaling factor
and, consequently, for a more accurate spectral reconstruc-
tion.

Furthermore, We have also presented a comparative
analysis of our proposed solution against state-of-the-art
methods, focusing on spatial reconstruction artifacts as
well as inference speed, showing how the proposed Fast-n-
Squeeze methods obtains positive results according to both
criteria. In the future, we will consider a spatially-varying
extension of our proposal, aiming for a good balance be-
tween efficiency and effectiveness.
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Figure 4. Comparison of generated results from A+ [1], AWAN [10], HRNet [15], and the proposed Fast-n-Squeeze on NTIRE 2022 HS
challenge. On top of each HS image we report MRAE, PSNR and SSIM metrics. Best viewed in color on a screen.
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