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Abstract

Understanding the suitability of agricultural land for
applying specific management practices is of great impor-
tance for sustainable and resilient agriculture against cli-
mate change. Recent developments in the field of causal
machine learning enable the estimation of intervention im-
pacts on an outcome of interest, for samples described by
a set of observed characteristics. We introduce an exten-
sible data-driven framework that leverages earth observa-
tions and frames agricultural land suitability as a geospa-
tial impact assessment problem, where the estimated effects
of agricultural practices on agroecosystems serve as a land
suitability score and guide decision making. We formulate
this as a causal machine learning task and discuss how
this approach can be used for agricultural planning in a
changing climate. Specifically, we extract the agricultural
management practices of “crop rotation” and “landscape
crop diversity” from crop type maps, account for climate
and land use data, and use double machine learning to esti-
mate their heterogeneous effect on Net Primary Productivity
(NPP), within the Flanders region of Belgium from 2010 to
2020. We find that the effect of crop rotation was insignif-
icant, while landscape crop diversity had a small negative
effect on NPP. Finally, we observe considerable effect het-
erogeneity in space for both practices and analyze it.

1. Introduction
One of the greatest challenges faced by humankind is

producing and supplying food to a rapidly growing popula-
tion in a climate changing world [47]. Given the increasing
demand for natural resources, the expansion of croplands
exerts substantial pressure on natural ecosystems. Ecosys-
tem prosperity can be compromised by complex human-
nature dynamics, risking human well-being itself [24].

The inclusion of complex causal relationships in en-
vironmental decision and policy making processes is key
for policy implementation under sustainable management

regimes [32, 71]. Towards this direction, recent research
utilizes environmental causal analyses to evaluate potential
causes driving an observed or hypothesized change in spe-
cific target metrics [37]. In this paper, we discuss causal
inference and machine learning in agricultural policy mak-
ing that aims at increasing productivity to meet the global
food requirements, while ensuring ecosystem resilience.

Predictive Machine Learning (ML) models can be inef-
ficient for agricultural policy making since they are based
on correlations and are not inherently capable of address-
ing causal questions that a policy maker is after [31]. Even
when causal analyses are employed, they are usually based
on localized experiments on few samples and cannot ac-
count for the spatial variability caused by changes in cli-
matic conditions, management practices and other factors
[18]. Policies are often horizontally implemented, leading
to the lack of spatial targeting among areas with different
ecological characteristics [16]. To mitigate these issues, the
Common Agricultural Policy (CAP) of the European Union
(EU) proposes the introduction of agri-environmental mea-
sures and eco-schemes that are tailored and optimized to the
specificities of different regions [63].

Every policy measure aims at implementing an agricul-
tural management practice to achieve a certain goal. In or-
der to assess the efficiency of policy measures for agroe-
cological resilience, policy makers need to know whether
particular management practices can achieve a given set of
objectives [41]. Specifically, it is required to know if and
how practices are effective at influencing key target met-
rics, such as the supply of ecosystem services or climate
change mitigation and adaptation [54]. There are several
studies that approach policy evaluation in experimental set-
tings [14]. Nevertheless, large-scale experiments on agri-
cultural policies can be challenging and, thus, the only way
to assess their impact is through observational data [19].

Land and crop information derived from satellite images,
and environmental data derived from numerical simulations
can both capture large areas with high frequency and at high
spatial resolutions. Machine learning based causal infer-
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ence on observed and simulated data is a promising com-
plementary approach to field experiments, as it enables the
detailed assessment of the heterogeneous effects of agri-
cultural practices over millions of fields. The exploitation
of this kind of data ensures high spatial representation, ac-
counting for regional differences in climatic, soil and crop
conditions. Nevertheless, it should be noted that causal in-
ference on observational data is subject to biases from mea-
surement, selection and confounding [49, 52].

The evaluation of the agricultural practices of Crop Ro-
tation - CR (growing different crops across a sequence of
growing seasons) and Landscape Crop Diversity - LCD (in-
creasing the number and evenness of crops grown in a land-
scape) can be used to allocate them in space. Evaluating
such practices by their impact on agroecosystem productiv-
ity enables implementing resilient farming systems in the
light of climate change and high consumer demand [21,23].
Contributions. We demonstrate the applicability of causal
machine learning, specifically Double Machine Learning
(DML), to estimate the impact that the LCD and CR agri-
cultural practices had on Net Primary Productivity (NPP),
which we use as an ecosystem service proxy of climate
regulation [57]. By deriving treatment effects and analyz-
ing their heterogeneity, we infer a data-driven and context-
aware agricultural land suitability score for both practices.
We thus propose a flexible observation-based agricultural
land suitability framework that can be extended to include
any management practice and agroecosystem metric that
practitioners might have data on. Our approach, illustrated
in Figure 1, was tested in Flanders for the period 2010-
2020, where we studied the practices’ effect heterogeneity
and discussed results in the context of local characteristics.

2. Related Work
Agricultural land suitability. Understanding agricultural
land suitability is critical for policy applications aiming
to foster sustainable agricultural practices and ensure food
security. According to Akpoti et al. [3], the analysis of
land suitability depends on many factors, including the pur-
pose of the assessment and data availability, and therefore
there is no one-size-fits-all approach. Studied techniques
are commonly categorized into traditional and modern ap-
proaches. Traditional approaches include quantitative and
qualitative methods accounting for biophysical characteris-
tics of land [17, 22]. On the other hand, modern methods
exploit a plethora of variables and, according to Mugiyo
et al. [46], are categorized into i) computer-assisted over-
lay mapping, ii) geo-computation or machine learning and
iii) Multi-Criteria Decision Making (MCDM). Jayasinghe
et al. [42] used the Analytical Hierarchy Process (AHP),
which is the most common MCDM method in literature,
and the Decision-Making Trail and Evaluation Laboratory
(DEMATEL) model to assess the suitability of land for tea

crops. Using DEMATEL they were able to visualize inter-
relationships between factors in a causal diagram. Here, we
explicitly frame agricultural land suitability as a causal ma-
chine learning task, attempting to spatially optimize a met-
ric of interest via intervening on the land use; and to the best
of our knowledge this is the first work that does so.
Heterogeneous Treatment Effects. The Average Treat-
ment Effect (ATE) has traditionally been the main con-
cern of causal inference. However, it does not necessar-
ily convey all information needed, particularly in cases
where treatment effects vary systematically with sample
characteristics. This is frequently the case in applications,
and treatment effect heterogeneity has been studied in di-
verse fields such as medicine, social sciences, and eco-
nomics [25, 29, 36, 38]. Such methods have also been re-
searched in the context of earth and environmental sciences,
where heterogeneity of effects is present. Effect magnitude
is determined by various factors, including geography, cli-
mate and land cover. For instance, Serra-Burriel et al. [56]
estimated the heterogeneous effects of wildfires and Deines
et al. [18] found significant variability in the effects of con-
servation tillage on yield. Both studies used earth observa-
tions to uncover the heterogeneity of treatment effects.
Causal Machine Learning. While statistical methods can
be used for the estimation of heterogeneous treatment ef-
fects [15, 43, 66], there has been a recent surge of machine
learning methods tailored for the same task [11, 20, 34, 39,
64]. Such methods are suitable for high-dimensional data
and are able to learn general functional forms, thus taking
advantage of the ever-increasing volume of data. Causal
machine learning was recently used in environmental stud-
ies utilizing both satellite observations and environmental
data. The interaction of aerosols and clouds was studied
in Jesson et al. [33] with causal neural networks [34]. In
the context of agriculture, the investigation of the effects of
conservation tillage on yield in Deines et al. [18] was car-
ried out with causal forests [5, 65].

By employing remote sensing data and numerical predic-
tions, one can achieve large spatio-temporal coverage that is
much needed for effect heterogeneity to manifest. We also
took advantage of the scale of earth observations and cli-
mate data and combined them with data that reflect histor-
ical agricultural use. We were then able to derive the LCD
and CR practices, and estimate their heterogeneous impact
on the climate regulation for each land sample.

3. Data & Methods
We first provide a brief overview of the theory of Con-

ditional Average Treatment Effects in Sec. 3.1. We then
provide details on the data that were used in our approach,
as illustrated in Figure 1. In Sec. 3.2, we describe the data
derived from crop type maps, including i) the LCD and CR
agricultural practices that are used as treatments in our anal-
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Figure 1. An overview of our process for learning the heterogeneous impact of Crop Rotation (CR) and Landscape Crop Diversity (LCD)
on Net Primary Productivity (NPP). The study period extends from 2010 to 2020. First, the parcel-level crop type maps are transformed to
gridded maps of 500m cells to match the pixel size of MODIS. For any given year and grid cell, by considering the percentage area of the
cell that a crop type occupies, a crop abundance value for all major crop types is generated. Based on this, for each grid cell we compute
i) the LCD practice using the Shannon diversity index and ii) the CR practice via quantifying the change between consecutive years in
crop abundances within each cell, and summing for the whole study period. Our input data also include environmental variables from the
TerraClimate dataset and MODIS NPP values for each cell. We run two separate analyses, one for each practice. Considering the value of
each practice as the treatment, NPP as the outcome, and controlling for relevant crop abundances and environmental factors, the dataset is
modeled with double machine learning. The heterogeneous impact of a practice per grid cell is studied and used as a land suitability score.

ysis and ii) the crop type abundance features that are used as
controls. In Sec. 3.3, we provide information on the NPP,
which is the outcome variable in our heterogeneous treat-
ment effects analysis, and in Sec. 3.4 we describe the envi-
ronmental factors that are also used as controls. The section
concludes with Sec. 3.5 and the methodological setup.

3.1. Conditional Average Treatment Effects

Terminology and Assumptions. Using the potential out-
comes framework [52], let Y (T ) denote the value (poten-
tial outcome) of a random variable Y if we were to treat a
unit with a binary treatment T ∈ {0, 1}. Given a vector of
features X describing the units, we want to estimate:

θ(x) = E[Y (1)− Y (0)|X = x] (1)

This heterogeneous treatment effect is referred to as the
Conditional Average Treatment Effect (CATE) [2]. There
are three important assumptions:

Overlap 0 < P(T = 1|X = x) < 1 ∀x
Unconfoudedness (Y (1), Y (0)) ⊥⊥ T |X
Consistency T = t =⇒ Y = Y (t)

Overlap states that for all feature vectors in the population
of interest, receiving treatment is possible but not certain.
Unconfoudedness assumes that, conditional on X , poten-
tial outcomes are independent of the treatment. Consistency

postulates that, if the treatment is t, the observed outcome
Y is actually the potential outcome under t. Provided these
assumptions hold, CATE is identifiable from observational
data and equals the following statistical estimand [33]:

θ(x) = E[Y |T = 1, X = x]− E[Y |T = 0, X = x] (2)

CATE can be similarly defined for continuous treatments,
and by averaging over X it reduces to the standard ATE
E
[
Y (1) − Y (0)

]
. Variables included in the feature vector

X are known as controls. Depending on the causal structure
of the phenomenon under study, controlling for a variable
might reduce or increase bias of effect estimates [13].
Double Machine Learning. Assuming unconfoudedness,
Double Machine Learning [11] formulates the data generat-
ing process in terms of the Partially Linear Model [50]:

Y = θ(X) · T + g(X) + ε (3)
T = f(X) + η (4)

where θ(X) is the CATE, and g, f are arbitrary functions
(nuisance parameters). Notably, (4) keeps track of con-
founding as features X drive both the treatment T and out-
come Y . CATE θ(X) is then estimated using a two-stage
estimation procedure. During the first stage, both the out-
come Y and treatment T are separately predicted from fea-
tures X using arbitrary ML models. Then, in the final stage,
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the CATE θ(X) is estimated by solving (for the linear case)

θ̂ = argmin
θ∈Θ

E
[
(Ỹ − θ(X) · T̃ )2

]
(5)

over a model class Θ, where Ỹ are the residuals of the
Y ∼ X regression, and T̃ are the residuals of the T ∼ X
regression. In (3) and (5) the linearity assumption can be
dropped to allow for fully non-parametric CATE estimation.

3.2. Data derived from crop type maps

Co-designing practical and effective solutions to major
challenges, such as climate change, requires understanding
the pattern of interventions carried out by agents of change
in agricultural ecosystems, i.e farmers [8]. LCD and CR
are considered to be important management practices since
they support synergistic improvements in crop yield, envi-
ronmental health, and ecological sustainability [9, 21, 61].
Hence, such practices should be considered in strategies that
promote sustainable agricultural production.

We exploited a series of yearly Land Parcel Identification
System (LPIS) data to produce variables representing agri-
cultural management practices [44]. LPIS is a geo-spatial
database that contains the geometries of the parcels and the
declared crop type by the farmers, as part of their applica-
tion for CAP subsidies [51]. For each year, we extracted the
proportion of the total area occupied by each crop type (crop
abundance) per grid cell of the 500m MODIS square grid.
We then calculated the Shannon diversity index (H’) [45,58]
as a metric of LCD per grid cell. We finally took the mean
of all years to end up with an average LCD value per cell for
2010-2020. For CR, we summed the absolute difference per
crop type abundance per grid cell for two consecutive years;
this procedure was repeated for all pairs of adjacent years
with which we calculated the total (sum) rotations for the
studied period. Both LCD and CR were used as treatments
to test their effect on NPP, while crop type abundances for
the major crop types in Flanders (grassland, maize, potato,
wheat) were used as controls.

3.3. Net Primary Productivity

Net primary productivity (NPP) is the uptake flux, in
which carbon from the atmosphere is sequestrated by plants
through the balance between photosynthesis and plant res-
piration. It is a fundamental ecological variable in biosphere
functioning, the quantification of which is needed for as-
sessing the carbon balance at regional and global scales
[68]. As NPP has been widely used for measuring vegeta-
tion dynamics, this index is highly suitable for capturing en-
vironmental changes due to natural and anthropogenic fac-
tors [26, 73]. The MODIS NPP is produced by the US Na-
tional Aeronautics and Space Administration (NASA) Earth
Observing System. It is based on an energy budget ap-
proach, utilizing earth observations on the fraction of pho-

tosynthetically active solar radiation absorbed by the vege-
tation surface [48, 53]. The results have been validated as
being able to capture spatio-temporal patterns across vari-
ous biomes and climate regimes [70]. We used annual time
series of MODIS NPP (MOD17A3HGF v006) gridded at
500m for 2010-2020 as the target metric (outcome) repre-
senting the ecosystem function of climate regulation over
Flanders (North Belgium). The MOD17A3 annual product
is derived by summing all 8-day net photosynthesis prod-
ucts (MOD17A2H), partly capturing seasonal variability.

3.4. Environmental factors

Variability in agricultural NPP arises due to environ-
mental effects, with specific conditions favoring specific
crop types. To uncover the diverse environmental condi-
tions that support or inhibit climate regulation we used a
series of parameters provided by Terraclimate [1]. The
gridded meteorological data were produced through a cli-
matically aided spatiotemporal interpolation of the World-
Clim datasets to estimate monthly time series. Environmen-
tal factors used in this study included maximum and min-
imum temperature, actual evapotranspiration, climate wa-
ter deficit, precipitation, soil moisture, downward surface
shortwave radiation and vapor pressure. The idea behind
the selection of the aforementioned variables relies on the
wide recognition that temperature and precipitation directly
affect NPP [12, 27, 68], the influence of water availability
on soil productivity and vegetation growth [28], and the pro-
cesses themselves (e.g. evapotranspiration) that relate to the
ecosystem function of climate regulation [60, 67].

3.5. Methodological setup

We have thus created a population of N units indexed
by i, where Yi(Ti) is the observed outcome of unit i treated
with Ti and Xi are the controls and features that generate
systematic variation on the treatment effect. Specifically,
the population consists of N grid cells exhaustively cov-
ering agricultural land within Flanders, Yi is the observed
NPP value of each cell, Ti is (the value of) the agricultural
practice that was applied to the cell, and Xi refers to im-
portant characteristics of the specific grid cell, comprising
environmental data and agricultural use (i.e., crop types cul-
tivated within the grid cell). The CATE (1) is then the aver-
age impact that practice Ti had on NPP Yi for the i-th grid
cell, conditional to its characteristics Xi. Obtaining such
local insights on where and why the impact magnitude of
agricultural practices on important agro-ecosystem metrics
differed is of primary interest to policy makers as it allows
for targeted agricultural policy making.

All data mentioned in the previous subsections are re-
trieved as time series, with different spatio-temporal resolu-
tions. Data were temporally aggregated over the period of
study (2010-2020), since treating every cell-year combina-
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tion as different units would potentially introduce interfer-
ence effects [62], where treatments (agricultural practices)
during any year might also influence the outcome (climate
regulation) of the next years. For the case of CR, tempo-
ral aggregation over the 2010-2020 period happens by sum-
ming all the rotations that happened in grid cell i from 2010
to 2020, while for LCD we consider the average Shannon
diversity index over all years. This is the treatment T we
are using for the analyses.

By adding the crop abundances to the feature vector X ,
we control for the four most dominant crop types mentioned
in Sec. 3.2; the median abundance value of all other crop
types is less than 2%. We also control for important envi-
ronmental variables, listed in Sec. 3.4. Crop types are con-
founders for the causal relation under study and thus good
controls as they drive the magnitude of both the agricultural
practices and the NPP. As such, they should be included in
the model. On the other hand, environmental data are not
driving any practice, but they are driving the NPP values,
thus making them strong candidates for good controls [13].
We finally binarize the treatment by letting the median CR
value and median LCD value to be thresholds, over which
we designate cells as treated units and the rest as control.

The assumption of unconfoudedness can’t be tested, and
within any observational study it is likely to be invalid.
Even if the variables we controlled for will help with bias
reduction, some bias from unobserved confounders might
still be present. Nevertheless, we note that by being cau-
tious with the selection of controls we try to avoid selection
bias, and reported results provide a large-scale complemen-
tary approach to localized field experiments.

4. Experimental Results & Discussion
Filtering. For the experiments we used the EconML
Python package implementing the Double Machine Learn-
ing method [6]. We derived CATE estimates for both LCD
and CR at the 500m native NPP resolution. We ensured
that fitting takes place over actual croplands by restrict-
ing the dataset to grid cells where the sum of crop abun-
dances, given by the crop type maps, exceeded a threshold
of 80%. To aid the overlap assumption, propensity scores
were first estimated using a Gradient Boosting Propensity
Model from the CausalML Python package [10], and units
with extreme propensity scores (≤ 0.2 or ≥ 0.8) were fil-
tered out. Within DML, it is crucial to avoid overfitting first
stage models; otherwise a portion of the outcome and treat-
ment variability explained will be due to factors other than
the controls. During the first stage of DML only, we there-
fore split the dataset to train and test (80-20) to evaluate the
predictive performance and assess overfit.
Double Machine Learning. In first stage, for both the
CR and LCD analyses, random forest regressors were se-
lected to predict NPP from controls, outperforming Lasso

and gradient boosting regression. To predict the binary
treatments themselves, logistic regression was used, outper-
forming random forest and gradient boosting classifiers.

All model selection procedures happened by performing
3-fold cross validation and a grid search for hyperparameter
optimization. During the first stage only, the maximum ab-
solute scaler was applied, as it retains the sparsity structure
that is prevalent in crop abundance data. For the final stage
regression, for both analyses, a Causal Forest [65] with
1000 trees was used with heterogeneity score as the split-
ting criterion. The final stage causal forest was fine-tuned
based on the out of sample performance. Minimization of
(5) happened with unscaled features to maintain interpreta-
tion in the original units of measurement. Fitting results for
CR and LCD can be found in Table 1. First stage models
captured a significant part of the variability of both the out-
come and treatment variables in both cases. The difference
between the training and test performance was marginal, in-
dicating that models avoided overfitting.

Crop Rotation Train Test

Y ∼ X (Outcome Modeling) 0.75 0.74
T ∼ X (Treatment Modeling) 0.63 0.62

Landscape crop diversity Train Test

Y ∼ X (Outcome Modeling) 0.73 0.71
T ∼ X (Treatment Modeling) 0.59 0.62

Table 1. Performance (R2 for outcome modeling, F-1 score for
treatment modeling) of ML models internally used by DML. Out-
come Y is Net Primary Productivity, treatment T is crop rotation
/ landscape crop diversity, X is a vector of features.

4.1. CATE Results

Figure 2 illustrates the DML CATE estimates over the
region of Flanders for LCD and CR. Intervening by apply-
ing a practice in a cell with a CATE estimate of e.g. 20,
we would expect an increase of 20 kilograms of carbon for
each squared meter of land within a year. From such re-
sults, a spatially explicit policy for sustainable agriculture
can be extracted, by prioritizing for each cell the application
of practices whose effect estimate (land suitability score) is
high. Such analysis can be repeated for any agricultural
practice and outcome metric of interest, while appropriate
controls can be added using expert knowledge.

Our results indicated that in north-west areas that are
characterised by high abundance of grasslands, CR in-
creased NPP by approximately 100 kgC/m²/year (Figure 2a;
square 1). This suggests that the contribution of grasslands
in crop rotations is important in positively driving climate
regulation [69]. Positive effects were also found on south-
east areas where the dominating crop type is winter wheat
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followed by maize and grasslands (Figure 2a; square 2).
For LCD, negatively affected areas west (Figure 2b;

square 3) and south-east (Figure 2b; square 5) that are dom-
inated by grasslands and winter wheat revealed a decrease
in NPP of over 100 kgC/m²/year. Due to the importance
of the aforementioned crop types to the carbon cycle, one
could expect positive LCD impacts on local climate regu-
lation [7, 55]. However, as these crops appear clustered in
space, diversifying such cropland regions led to a negatively
affected NPP. By contrast, where multiple crop types exist,
maize showed a significant role in carbon uptake as its ex-
istence in a diversified agricultural landscape indicated an
NPP increase of approximately 50 kgC/m²/year (Figure 2b;
square 4 and 6). In fact, maize has a high capacity in cap-
turing large amounts of carbon from the atmosphere [40].

The ATE estimates for CR were 1.08
(95% CI [−20.35, 22.51]) and for LCD were −35.73
(95% CI [−58.73,−12.73]). The distribution of CATE
estimates for both practices over the Flanders croplands
can be seen in Figure 3. Besides the more granular CATE
insights we are reporting, we also note that a LCD practice
implemented over the entire Flanders cropland would have
a weak yet significant negative impact on NPP. On the
other hand, a CR practice implemented across the entire
terrain would be able to bring multiple agro-environmental

Figure 3. Distribution of CATE estimates for crop rotation and
landscape crop diversity.

benefits without impacting the average NPP [30, 35].

4.2. Heterogeneity Analysis

We used causal trees to analyze the heterogeneity of the
model, accounting for all features in X [4,6]. The tree suc-
cessively splits on feature values that maximize the treat-
ment effect difference across leaves. We constrained the
tree depth to 2 to retain explainability.

In Figure 4a we see that minimum temperature was
found to be the most important driver of effect heterogeneity
for CR. Particularly, high minimum temperatures combined

(a) Impact of crop rotation on climate regulation (NPP) in Flanders at 500 m resolution.

(b) Impact of landscape crop diversity on climate regulation (NPP) in Flanders at 500 m resolution.

Figure 2. Estimated impact of crop rotation (a) and landscape crop diversity (b) on climate regulation (NPP) based on the heterogeneous
treatment effect analysis for the Flanders region from 2010 to 2020. The annual NPP outcome variable is measured in kgC/m²/year.
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with low climate water deficit seem to benefit CR perfor-
mance in Flanders. Wheat abundance was also detected as
a major contributor to CR heterogeneity, spatially coincid-
ing with high CATE estimates as reported in Sec. 4.1.

LCD impact heterogeneity (Figure 4b) was found to
be affected by maximum temperature, solar radiation and
grassland abundance. LCD negatively affected NPP the
least when maximum temperature was lower than 15.1°C,
and radiation was lower than 119.9 W/m2. Addition-
ally, in high maximum temperatures, diversifying crops in
grassland-abundant cells appears more preferable than di-
versifying cells lacking grasslands.

While trees are useful to detect the most important fea-
tures in the sense described above, a complementary under-
standing of effect heterogeneity can be obtained by plotting
CATE estimates as a function of selected features. In Fig-
ures 5 and 6, we see clear patterns that show maximum tem-
perature driving effect heterogeneity for both practices. For
the rest of the features, we report Spearman correlation co-
efficients between them and the estimated CATE in Figure
7. There are moderate correlations for almost all factors, in-
dicating that the effect under study is indeed heterogeneous.
The correlation values for environmental features are larger
but comparable to the ones of crop features, highlighting

that both control categories contribute to heterogeneity.

4.3. Agricultural land suitability & climate change

So far, we estimated the impact of agricultural practices
on climate regulation from historical data (2010-2020).
Nevertheless, important climatic variables are expected to
change over the next decades as a result of climate change.
The estimation of their trajectory has been the subject of nu-
merous scientific studies [59]. In order to devise impactful
agricultural policies, we need to evaluate the performance
of practices in future climatic conditions.

In the context of causal machine learning, we learned the
function θ(x) = E[Y (1)−Y (0)|X = x] where feature vec-
tor X contains multiple climate variables. In theory, we are
able to derive the impact of a practice on an outcome metric
under future climatic conditions by changing the relevant
variables of feature vector X and re-calculating. However,
θ(x) was learned from historical data, and by definition fu-
ture climatic conditions were not observed. By changing
climate variables to match future projections, we are essen-
tially extrapolating the function to points outside the ob-
served feature space.

In Figure 5 for example, a quadratic trend between the
CR CATE and maximum temperature is seen, allowing us to

(a) Heterogeneity tree for crop rotation.

(b) Heterogeneity tree for landscape crop diversity.

Figure 4. Trees interpreting effect heterogeneity for both practices studied. To be read from top to bottom, going left if the Boolean
condition at the top of each box is true, and right if it is false. Sample size for each leaf is reported, alongside the CATE mean, standard
deviation and confidence intervals. Wheat and grassland abundance are in %, min. and max. temperature are in °C, climate water deficit is
in mm and radiation is in W/m².
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hypothesize that in slightly warmer conditions the benefit of
CR would increase. Thus, our results provide preliminary
insights on an ex-ante impact assessment for the agricultural
practices studied in the context of climate change, enabling
the formulation of scientific hypotheses for further study.

Future work includes incorporating climatic projections
in the pipeline and comparing the impact learned from them
to the impact learned from historical data. Further work also
comprises the study of more agricultural practices, e.g., in-
tercropping and minimum soil cover, but also the study of
more target outcomes, such as erosion prevention and pol-
lination potential. This way, we can move towards a syn-
thesis of ecosystem service trade-offs and the formulation
of a comprehensive suite of policies in response to climate
change. Finally, the correlations between agricultural prac-
tices and NPP, and consequently the treatment impact, de-
pend on the spatial scale of analysis [72]. Therefore, agri-
cultural practices should be evaluated at different scales to
gain insights towards optimizing agriculture land suitability
from farm to landscape level and achieve optimum value.

Figure 5. Crop rotation impact against max. temperature (°C).

Figure 6. Landscape crop diversity impact against max. tempera-
ture (°C).

Figure 7. Barplot showing Spearman correlation coefficients of
estimated CATEs with all features for both practices.

5. Conclusions
We presented an approach for assessing agricultural land

suitability using causal machine learning. We estimated the
heterogeneous treatment effects of CR and LCD on climate
regulation (NPP), accounting for historical crop and envi-
ronmental data. We used earth observations (MODIS), cli-
mate data (TerraClimate) and openly available yearly crop
type maps covering North Belgium (Flanders) from 2010 to
2020. CATE results reveal significant impact heterogene-
ity in space, highlighting the usefulness of extended spatio-
temporal data coverage, the importance of spatially targeted
measures and the relevance of CATE estimates as land suit-
ability scores. The ATE for CR is insignificant, while for
LCD it is significant but relatively small compared to the
influence environmental drivers have on NPP [73]. It would
be difficult to extract such subtle effects from localized ex-
periments of confined samples.

Significant challenges remain towards the application of
the proposed approach in real-life planning. Observational
studies enable the manifestation of heterogeneity, which is
vital for spatially explicit recommendations, but suffer from
unobserved confounding. For this reason, our results should
be used along with insights from local field experiments.
Furthermore, we offered insights on how our two treatments
affect climate regulation but we did not provide detailed in-
formation on the contribution of specific crop types. For the
CR treatment, we do not consider the crop types involved in
the transition but simply the transition itself. Similarly, for
the LCD all crop type mixtures are treated equally. Ad-
ditional analyses with crop-aware treatments can offer en-
hanced understanding for evidence-based decision making.
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[17] Alexandre Danvi, Thomas Jütten, Simone Giertz, Sander J
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Rastislav Skalskỳ, Piero Visconti, Philippe Ciais, Ivan A
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[34] Andrew Jesson, Sören Mindermann, Yarin Gal, and
Uri Shalit. Quantifying Ignorance in Individual-Level
Causal-Effect Estimates under Hidden Confounding.
arXiv:2103.04850 [cs, stat], Aug. 2021. 2

[35] Douglas L Karlen, Eric G Hurley, Susan S Andrews, Cyn-
thia A Cambardella, David W Meek, Michael D Duffy, and
Antonio P Mallarino. Crop rotation effects on soil quality at
three northern corn/soybean belt locations. Agronomy jour-
nal, 98(3):484–495, 2006. 6

[36] David M Kent, Peter M Rothwell, John PA Ioannidis,
Doug G Altman, and Rodney A Hayward. Assessing and
reporting heterogeneity in treatment effects in clinical trials:
a proposal. Trials, 11(1):1–11, 2010. 2

[37] Dan M Kluger, Art B Owen, and David B Lobell. Combin-
ing randomized field experiments with observational satellite
data to assess the benefits of crop rotations on yields. arXiv
preprint arXiv:2112.13700, 2021. 1

[38] Richard L Kravitz, Naihua Duan, and Joel Braslow.
Evidence-based medicine, heterogeneity of treatment ef-
fects, and the trouble with averages. The Milbank Quarterly,
82(4):661–687, 2004. 2
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