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ABSTRACT

The accuracy of finger vein recognition systems gets degraded due to low and uneven contrast be-
tween veins and surroundings, often resulting in poor detection of vein patterns. We propose a
finger-vein enhancement technique, ResFPN (Residual Feature Pyramid Network), as a generic pre-
processing method agnostic to the recognition pipeline. A bottom-up pyramidal architecture using
the novel Structure Detection block (SDBlock) facilitates extraction of veins of varied widths. Us-
ing a feature aggregation module (FAM), we combine these vein-structures, and train the proposed
ResFPN for detection of veins across scales. With enhanced presentations, our experiments indicate
a reduction upto 5% in the average recognition errors for commonly used recognition pipeline over
two publicly available datasets. These improvements are persistent even in cross-dataset scenario
where the dataset used to train the ResFPN is different from the one used for recognition.

1 Introduction

Use of vascular patterns as the biometric recognition trait is becoming more prevalent due to its distinctive advantages
such as high recognition accuracy, difficulty in spoofing, and less interference of external factors. Typically, veins
of finger(s), palm, and wrist are popular biometric modalities. In this work, we consider only finger vein (FV) as
the biometric modality. The reflection-based FV scanners can be constructed in a contactless manner—which makes
them an attractive biometric modality offering a better user experience and alleviating hygiene concerns (that may
occur in enclosure or touch-based vein scanners). The performance of FV recognition pipeline is strongly correlated
to the quality of the FV presentation acquired by the near-infrared (NIR) sensor (i.e. camera). These blood vessels lie
beneath the skin of the subject and therefore do not always appear prominent in the acquired presentation. Figure 1
shows (see top row) some samples of FV presentations where the vein structures are not clearly visible across the
region. Due to lack of contrast and uneven illumination, these presentations often suffer from poor feature extraction,
and subsequently result in low and incorrect matching scores impeding the performance of the overall FV recognition
system. In this work, we propose a deep learning (DL)-based technique for enhancement of vein structures in the
presentations acquired in the NIR spectra. The proposed technique is independent module that can be plugged into an
existing FV recognition pipeline at the preprocessing stage.

An overall FV recognition pipeline can be built from conventional image processing techniques or it can be based on
a deep convolutional neural network (CNN). Typically, in both cases, the NIR presentation is first preprocessed for
cropping, resizing, and orientation correction. The conventional processing pipeline employs feature extraction block
to generate a feature descriptor (it acts as reference or template for enrolment data), followed by the matching block
that computes similarity metric between feature descriptor of the test sample (also known as probe) and predefined
templates. The DL-based FV recognition pipelines usually combine both blocks by modeling the recognition task as
an n-class classification problem. A cascade of convolutional and pooling layers learns vein-related features which are
then transformed into class probabilities by one or more fully connected layers. For any pipeline, conventional or DL-
based, efficient extraction or learning of relevant features from input presentations is the key to build a highly accurate
recognition system. Popular feature extraction methods such as repeated line tracking [3], wide line detector [4], and
maximum curvature (MC) [5] are based on computation of the local gradient or cross-sectional profile of pixels as the
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Figure 1: The top row shows examples of original (acquired by sensor) FV presentations: two each from SDUMLA [1]
and UTFVP [2] datasets. The corresponding images from the bottom row are the results of the proposed vein enhance-
ment technique.

first step. The efficacy of these quantities (gradient or profile) is directly proportional to the contrast in the image. The
deep CNNs, as well, are susceptible to distortion in the quality of input images such as noise, blur, and contrast [6, 7, 8].
This essentially reinforces the importance of good contrast (between vein structures and surroundings) in designing
a highly accurate FV recognition pipeline. It may be noted that the publicly available FV datasets are relatively
much smaller (in the range of 2000–3000 total presentations), furthermore, only a fraction of entire dataset is used
for training purposes. Since training deep CNNs with small amount of data is challenging, improving the quality
of the input presentations– by enhancing the vein structures– can be of significant assistance in training as well as
inference. From the existing literature, it appears that the problem of enhancement of vein structures, particularly
using learning-based methods, has not received much attention despite its apparent usefulness.

Using the presentations as captured by the NIR sensor without the aforementioned enhancement has two serious short-
comings: (1) Due to variable width of blood vessels and variable local contrast (because of presence of tissues around
vessels), the feature extraction may detect fewer vein-structures from the presentation. The subtle vein structures– that
may carry subject-specific discriminatory information– may remain undetected. Alternatively, one has to extensively
experiment with parameters of feature extractor or CNN to obtain good recognition accuracy. (2) Since the parameters
of pipeline are tuned for specific dataset or sensor, the FV recognition system can suffer from poor generalization
across different datasets. In case of change of NIR sensor, which is a quite common real life use-case, one has to rely
on expensive and time-consuming solution of capturing new dataset to tune the parameters or train the CNN.

To address these concerns, we propose a deep CNN-based method for enhancement of vein structures from the FV
presentations acquired in NIR channel. Our network accepts an NIR presentation in the form of single channel image;
and generates an image consisting of vein-like structures. This result is combined with the input to obtain the enhanced
presentation which can then be processed by any FV recognition pipeline. Samples of enhanced images obtained from
our work are shown in (the bottom row of) Figure 1 where the appearance of veins is much sharper, clearer, and visibly
darker as compared to their unprocessed/ original versions. With good contrast around veins, these presentations are
less sensitive to the parameters of feature extraction method or model. We train our model using the vein annotations
(manually generated binary labels) as the target.

As vein structures exhibit variable width or thickness, the choice of spatial resolution (or scale) is crucial in designing
the enhancement network. Our network consists of structure detection blocks at multiple resolutions akin to the feature
pyramid networks (FPNs)[9]. The vein structures (or their parts) detected at each level are combined through a feature
aggregation module (FAM) to get a fused output. We design a structure detection block (SDBlock) as the basic unit of
our network—that detects vein structures and also generates a set of feature maps, at reduced resolution, for processing
by subsequent blocks. Through residual architecture, our network is able to extract FV structures across scales and
fuse those to obtain an enhanced FV presentation. The contributions of our work can be summarized as follows:

• We have designed a fully convolutional Residual FPN (ResFPN) for enhancement of vein structures. This
architecture, consisting of only 600k parameters, efficiently detects vein structures of varied thickness without
need for any specific tuning.
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• We have introduced a novel unit for structure detection, SDBlock. Through the SDBlock, we are able to
achieve two objectives simultaneously: extraction of vein structures and generation of input for next lay-
ers/blocks.

• Through indirect assessment of work, we demonstrate the efficacy of the proposed enhancement technique:
the average error rate of FV recognition performance on publicly available datasets reduced upto 5% after
enhancing the presentations by ResFPN. This improvement has been validated in intra- and cross-dataset
testing scenarios.

In Section 2, we briefly describe existing works related to FV enhancement. The proposed ResFPN is described in
Section 3. We provide experimental results along with details of datasets and evaluations measures in Section 4.
Finally, Section 5 provides concluding remarks.

2 Related Work

Kumar and Zhou [10] generated an average background image for a sub-block of input FV presentation, followed
by local histogram equalization. A combination of edge preserving filtering, elliptic highpass filtering and histogram
equalization was proposed by Pi et al. [11]. The contrast limited adaptive histogram equalization (CLAHE) has been
considered towards enhancement of vein region by several works [10, 12, 13]. The use of Gabor wavelets at various
scales and orientations for enhancement of venous regions has been proposed by Yang and Shi [14]. They have
also devised a scattering removal method for better visibility of the acquired presentation. Methods in [15, 16] also
advocate the use of Gabor filters for enhancement of FV presentations.

Peng et al. proposed a non-local means (NLM)-based technique for enhancement of veins in the NIR presentation [17].
Their work is based on the availability of several local patches with similar vein structures. These multiple patches
have been exploited to enhance the vein-structures. A recent work by Zhang et al. combines the guided filter and
tri-Gaussian model for FV image enhancement [18].

All aforementioned approaches for enhancement of vein regions are based on conventional image processing tech-
niques. Despite success of deep CNNs in enhancement or restoration of images, very few works have studied DL-
based approaches for this task. In [19], a fully convolutional network (FCN) has been developed to enhance the vein
patterns, more specifically to recover the missing segments within vein patterns. The training data were created by
randomly cropping some pixels from the FV images, and the corresponding FCN was trained using MSE (mean square
error) loss between the output of the FCN and original image. Recently, Bros et al. proposed a deep autoencoder-based
method for enhancement of FV presentations [20]. They used presentations enhanced with vein-annotations to train
their network by reducing the MSE loss.

3 ResFPN for Vein Enhancement

In this section, we first describe the architecture of the proposed ResFPN for FV enhancement along with our ratio-
nale in designing its building blocks. Subsequently we provide details of training procedure and formulation of loss
function.

3.1 Network Architecture

Learning features at all scales from a combination of bottom-up pathway, top-down pathway, and lateral connections–
also known as feature pyramid network (FPN)– has been shown to be efficient generic feature extractor [9, 21]. When
analyzed locally, vein pattern is a structure of variable thickness; and extracting such a structure would require learning
a set of convolutional filters at different spatial resolutions or scales. Based on the idea of FPN [9], we construct a
multi-level bottom-up pathway to extract vein features at different scales. Figure 2a shows the overall architecture
of the proposed ResFPN. We call each unit of this pathway as the structure detection block (SDBlock)—which
will be described later in this section. At each successive level, the SDBlock extracts vein-like structures from
larger receptive fields as the spatial dimensions (resolution) of the corresponding feature maps gradually reduce.
Vein structures so-obtained from each SDBlock are then combined by a feature aggregation module (FAM) which
normalizes them in terms of resolution and number of feature maps. As each SDBlock extracts only a part of overall
vein pattern (depending on its width or thickness), we combine the normalized outputs of FAM into a single channel
representation of the extracted structures. The vein-enhanced presentation is obtained by a linear combination of the
output of our network and the original input presentation.

3



FV 
Presentation

I

SDBlock
L1 (↓2)

SDBlock
L2 (↓4)

SDBlock
L3 (↓8)

Up (↑2)

Up (↑4)

Up (↑8) CL

CL

CL

Loss L3

Loss L2

Loss L1

Loss L0

Output, y

fcomp

s1

s2

s3

(a) (b)

Figure 2: Architectures of the proposed finger vein enhancement technique: (a) ResFPN and (b) SDBlock. The blue
dotted lines in (a) represent FAM.

Structure Detection Block (SDBlock):

The architecture of SDBlock– the fundamental unit for extraction of vein-like structures– is shown in Figure 2b.
Detection of thin and subtle vein-structures is accomplished by learning a set of convolutional kernels, followed by
a non-linear activation such as ReLU. (In Figure 2b corresponding convolutional and ReLU layers are represented as
CF and RF , respectively.) The size of kernels can be calculated by analyzing the nominal width of vein structures
at original resolution. We employ a stride of 2 across the CF layer which implicitly reduces the spatial dimensions,
while no explicit spatial-level feature pooling is used. The outputs of RF are structure features (sL) extracted by the
L-th SDBlock.

Given the nature of vein structures, the feature extraction process is akin to learning a set of bandpass filters. The out-
put of such filters strongly suppresses or removes the information content beyond their effective bandwidth. Therefore,
using these outputs (sL) directly for detection of structures (that are predominantly present in the possibly suppressed
frequency bands) is likely to render ineffective results. Therefore, we propose to implement the shortcut (using the
ResNet terminology) by adding the input of the SDBlock to the output of RF . The input is passed through a convolu-
tional layer CI to align its dimensions (spatial dimensions and number of feature maps) to those of structure features,
sL. After the addition of shortcut, the corresponding output (xL+1) is normalized at batch level (BN) which may then
be fed to the next SDBlock.

If xL is the input to the SDBlock, which could be the FV presentation (I) or feature maps generated by previous
SDBlock, the functioning of the L-th SDBlock is summarized below.

sL = RF

(
CF (xL)

)
(1)

xL+1 = BN
(
CI(xL) + sL

)
(2)

The SDBlock, thus, accepts feature maps (or the input presentation), and generates two outputs: (1) the residual
structure features– to be processed by the FAM for output, and (2) normalized feature maps– to be processed by
the SDBlock at next level. The process of detection of sL features operates in different frequency bands for each
SDBlock. The proposed architecture simplifies these objectives using shortcut connections: the residual component
is trained to learn structures in the feature maps; while the combined/ summed component, boosted with detected
features, is suitable for similar processing at the next scale.

Feature Aggregation Module (FAM):

The FAM receives structure features, sL, from each SDBlock; and as the first step normalizes them through upsampling
and 1× 1 convolutions. For each SDBlock, the structure features are computed on successively reduced scale (spatial
resolution) of feature maps. We use nearest neighbor-based interpolation to upsample the structure features to the
scale of original input presentations. Thus, no learning parameters are involved at upsampling stage. Using 1 × 1
convolutions, we convert the feature maps of each SDBlock into the same channel-dimension, say nch, and refer to
them as ŝL.
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As each ŝL is upsampled to the resolution of input presentation, the upsampling factor of upL is determined accord-
ingly. If the network consists of k SDBlocks, we obtain a composite feature map with k nch channels whose spatial
dimensions are same as that of the input presentation. This composite feature map, fcomp, represents the aggregation
of vein features learnt across multiple scales. We fuse the individual feature maps of fcomp into a single channel out-
put, ŷ, using two layers of convolutional layers with an intermittent ReLU activation. The final output, y, is obtained
through sigmoidal activation of ŷ.

The functions of the FAM are summarized below.

ŝL = CL

(
upL(sL)

)
(3)

ŷ = C2

(
R1

(
C1(concat{ŝL})

))
(4)

y = Sigmoid(ŷ)

The enhanced presentation, IE , is obtained by linear combination of the output, y, and the input presentation, I using
a predefined weight α ∈ (0, 1) as IE = αy + (1− α)I.

3.2 Loss Function

We formulate the problem of detection of vein structures as a binary classification problem that assigns a probability
of being a (part) of vein to each pixel. The loss function, therefore, is defined as the binary cross entropy (BCE)
between the vein-annotations (a binary image with vein marking) and the output, y, of the ResFPN. The outputs of
each SDBlock post dimensional normalization, are expected to have extracted parts of vein pattern. Therefore, we
also propose to calculate loss over each of normalized feature maps, ŝL. These feature maps are passed through a
sigmoidal activation, the BCE loss is computed for each of nch feature maps, and then averaged to yield a scalar value.
The overall loss function, L, is defined as summation of losses computed over each of L levels, and the loss computed
on final output. If we denote the vein-annotations as ytarget, then the expression for overall loss function is provided
by Equation 5.

L = LBCE(ytarget, y) +

L∑
k=1

LBCE(ytarget, Sigmoid(ŝk)) (5)

3.3 Training Procedure

A small size of vein dataset and cumbersome task of manual annotation of vein structures drastically limit the scope
of training large deep networks. In addition to designing a deep network with relatively fewer parameters, we have
incorporated data augmentation by flipping it along horizontal and vertical axes. Each input presentation generates 4
samples (2 by horizontal flip and 2 by vertical flip) which are then shuffled during training. Note that each presentation
is flipped to create 4× data contrary to typical augmentation strategies where either original or flipped data are con-
sidered (flipping takes place randomly). The input presentations are rescaled to a fixed size (320× 240 in our case) to
ensure consistency across different datasets. The vein-annotations, acting as targets, were also processed in the same
manner. For training the ResFPN, we have chosen the Adam optimizer with a learning rate of 1.0e-4. To generate the
enhanced presentation, we have used α = 0.10 to combine the vein-structures with input.

4 Experiments and Results

We begin this section with details of the FV datasets and the protocols designed for our experiments. Since there are
no direct methods to access the performance of enhancement, we have considered indirect assessment of our work by
measuring the difference in the performance of overall FV recognition without and with application of our enhance-
ment technique. We employ a conventional FV recognition pipeline that consists of preprocessing functions (cropping,
orientation correction, resizing, etc.), followed feature extraction using Maximum Curvature (MC) technique [5]. The
Miura Matching technique [3] is used to compute the similarity or matching score between the probe and model. We
calculate the performance of FV recognition using the measures described in Section 4.2. Then we have provided
results of our experiments on conventional FV recognition pipeline. The python code to reproduce the experimental
results will be released publicly.1

1Repository of Python code for experiments described in this work: https://gitlab.idiap.ch/bob/bob.paper.
resfpn_cvprw
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Table 1: EXPERIMENTAL Nom PROTOCOL FOR THE SDUMLA DATABASE.
Identities Sessions

I II / III IV / V / VI
1
...
508 (80%)

A
training

preprocessing
unused

572 (10%)
C

development
enrollment

D
development

probes

636 (10%)

B
validation

preprocessing E
evaluation
enrollment

F
evaluation

probes

4.1 Datasets and Protocols

For experiments, we have used two publicly available datasets: SDUMLA [1] and UTFVP [2]. The SDUMLA dataset
consists of FV images of 6 fingers (3 finger of each hand) from 106 individuals. This collection has been repeated 6
times (called as sessions) to obtain a total of 3,816 FV presentations with 320 × 240 pixels in size. As we consider
each finger as a separate entity for our experiments, the SDUMLA dataset is considered to have 106×6 = 636 clients.
It should be also noted that vein annotations are available only for session-I. We require this dataset for two tasks:
(1) to train and validate the ResFPN for enhancement; and (2) to validate the overall FV recognition pipeline. The
first task requires a split of presentations to train the CNN, and to validate its performance over training epochs. The
second task requires two disjoint sets of data: one to obtain score-related thresholds (dev), and another to evaluate
the performance of FV recognition using these score thresholds (eval). In each subset, a further split of samples is
required to enroll (i.e., to build models), and samples to probe. We have created a Nom (Normal Operative Mode)
protocol where both tasks and their subtasks are allocated samples without any overlap of samples or clients. The data
from session-I has been used for training and validating the ResFPN by splitting in the ratio of 0.8:0.2. Thus, 508
FV presentations from session-I of SDUMLA were used to train the ResFPN, while remaining 128 presentations were
used to evaluate the performance of the ResFPN over each training epoch. Hereafter we do not use the presentations
from first 80% clients as these have been seen by the network. The remaining 20% data is split into equal halves for
dev (development set) and eval (evaluation or test set). In either case, the presentations from sessions II and III are
used for enrollment and those from sessions IV, V and VI are used for probing. The protocol is summarized in Table 1.
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Figure 3: Receiver Operating Characteristics (ROC) curve and score histogram for the FV recognition on the Nom
protocol of the SDUMLA dataset.

The UTFVP dataset consists of 6 fingers (3 for each hand) from 60 individuals captured twice in 2 sessions. The
dataset, thus, consists of 1,440 FV presentations with 672× 380 pixels. Considering each finger as a separate identity,
we have a total of 60× 6 = 360 unique fingers in the UTFVP dataset. For experiments, we consider the Nom (Normal
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Operative Mode) protocol which is similar to the one implemented for the SDUMLA dataset.2 Here, the unique fingers
from first 10 clients are considered towards training the ResFPN. Due to small size of training set, we do not split it
further for validation, and rather the performance of model is evaluated on the training data itself (no cross-validation
for ResFPN). FV presentations from clients 11–28 constitute the dev set, and remaining presentations from clients
29–60 are included in the eval set. We omit further details of this protocol for the brevity of space.

Table 2: PERFORMANCE EVALUATION OF THE PROPOSED RESFPN FOR FV ENHANCEMENT ON THE SDUMLA
AND UTFVP DATASETS ALONG WITH BASELINES. ALL MEASURE RATES ARE IN %. THE NUMBERS IN PAREN-
THESIS INDICATE THE NUMBER OF INCORRECTLY CLASSIFIED SAMPLES FOR TOTAL SAMPLES IN THE GIVEN
CLASS.

Measure Baseline (No Enhancement) Enhanced with ResFPN (SDUMLA) Enhanced with ResFPN (UTFVP)
dev eval dev eval dev eval

Test dataset: SDUMLA
FMR 12.1 (6856/56718) 11.4 (5922/51876) 7.2 (4110/56718) 8.3 (4309/51876) 9.2 (5206/56718) 10.4 (5401/51876)
FNMR 12.1 (50/414) 15.4 (61/396) 7.2 (30/414) 8.6 (34/396) 9.2 (38/414) 8.6 (34/396)
HTER 12.1 13.4 7.2 8.4 9.2 9.5

Test dataset: UTFVP
FMR 1.2 (274/23112) 1.1 (807/73344) 0.5 (107/23112) 0.3 (209/73344) 0.5 (107/23112) 0.3 (218/73344)
FNMR 1.4 (3/216) 3.6 (14/384) 0.5 (1/216) 2.3 (9/384) 0.5 (1/216) 2.9 (11/384)
HTER 1.3 2.4 0.5 1.3 0.5 1.6

4.2 Evaluation Measures

We have reported the performance of the overall FV recognition pipeline using False Match Rate (FMR) and False
Non-Match Rate (FNMR). The FMR is the ratio of number of impostor attempts incorrectly classified as genuine
matches to the total number of impostor attempts. The FNMR is defined as the percentage of genuine matches that are
incorrectly rejected. We used the equal error rate (EER) on the dev set to compute the score threshold, where FMR
≈ FNMR. The Half-Total Error Rate (HTER)– average of FMR and FNMR on the eval set– is also reported.

4.3 Results

Baselines: The recognition performances of eval sets of SDUMLA as well as UTFVP datasets without applying the
proposed enhancement technique are considered as the baselines for each dataset. For SDUMLA dataset, we obtained
12.1% EER on its dev set, and 13.4% HTER on the eval set. For the UTFVP dataset, these numbers were 1.3% and
2.4%, respectively. The results are summarized in Table 2. The Receiver Operating Characteristics (ROC) plots for
SDUMLA and UTFVP baselines are shown in Figures 3 and 4, respectively (indicated by blue lines).

Experiments on SDUMLA dataset: The ResFPN trained on (the train set of) SDUMLA dataset was used to enhance
the presentations of dev and eval sets of the SDUMLA dataset. This intra-dataset experiment, however, does not
have any overlapped samples or clients across partitions. On enhanced FV presentations, we obtained the EER of
7.2% on the dev set where 4,140 matches out of 57,132 were incorrectly classified. For the eval set, the HTER
was 8.4% with 4,343 incorrect results out of 52,272 matches. The reduction in the overall classification error on the
dev as well as eval set is around 5% after applying the vein-enhancement at preprocessing stage. The number of
falsely matched impostors reduced from 5,922 to 4,309 (i.e., nearly 27% less) on the eval set of the SDUMLA. This
improvement is particularly important since it was observed on the subset of the data that was unseen by the ResFPN
and FV recognition system. For the cross-dataset testing, we have enhanced the FV presentations from SDUMLA
using the ResFPN trained on the UTFVP dataset. Compared to the baseline, we observed an average improvement
of 3% on the dev set for this experiment. For the eval set, the number of falsely matched impostors reduced by
nearly 500 samples, and the number of incorrectly rejected genuine matches reduced to 34 from 61. In terms of
HTER, the use of vein-enhancement resulted in an improvement of 4.9% over the baseline. For both experiments,
the performance measures are provided in Table 2 and ROC plots are shown in Figure 3. It may be observed from
the ROCs that the performance of the FV recognition using enhanced presentations is consistently better than the
baseline (without enhancement) over a complete range of FMR. This relative improvement is highlighted even more
on the ROC of eval set at lower values of FMR. For enhanced presentations, the score histograms of the eval set

2The details of Nom protocol as devised by Idiap Research Institute: https://www.idiap.ch/software/bob/docs/
bob/bob.db.utfvp/master
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(Figure 3c) indicate a better separation between scores of both classes, and also lowered mean and lesser variance of
the scores of the impostor comparisons.

Experiments on UTFVP dataset: The Nom protocol of the UTFVP dataset comprises 73,344 impostor comparisons
and 384 genuine comparisons on the eval set. When the presentations were enhanced using the proposed ResFPN
(trained on the SDUMLA, i.e. cross-dataset), 209 impostor comparisons were incorrectly classified as genuine. This
number is approximately 1/4-th of the same metric obtained for non-enhanced version of same presentations. On the
dev set, we observed 40% reduction for this metric with respect to the baseline. The FNMR and, thus, HTER on both
sets of the UTFVP dataset also improved by 0.8–1.3% when the performance of FV recognition was evaluated in the
cross-dataset scenario as detailed in Table 2.
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Figure 4: Receiver Operating Characteristics (ROC) curve and score histogram for the FV recognition on the Nom
protocol of the UTFVP dataset.

Interestingly, when the FV presentations were enhanced using ResFPN trained on the other (disjoint) partition of
UTFVP, we observed the improvement, in terms of FMR/FNMR, to be similar to the aforementioned cross-dataset
experiment. The total number of misclassifications on the dev set of the UTFVP reduced from 277 (in baseline) to
108 for both experiments of vein enhancement. This improvement was even better for the eval set where misclassi-
fications reduced from 821 to 218–229 after enhancement of the input. While it may appear that the ResFPN trained
on the subset of UTFVP has performed relatively poorer than the network trained on the SDUMLA dataset, it may
be noted that the train set of UTFVP consists of only 388 presentations, which is much smaller than its SDUMLA
counterpart.

The ROC plots for the dev set are near-perfect for both enhancement experiments as indicated by almost horizontal
curves in Figure 4a. While the performance of baseline experiment slowly degrades for FMR < 10−3, the recognition
of the enhanced presentations remains consistently accurate. On the eval set, one can observe that the improvement
in FV recognition, brought by the ResFPN, is similar for models trained on SDUMLA as well as UTFVP. Figure 4c
shows the overall increase in the genuine scores of the enhanced presentations which improves separability of genuine
comparisons from the impostor attempts.

5 Conclusions

In this work, we have proposed a ResFPN (Residual Feature Pyramid Network) for enhancement of vascular patterns
in the FV presentations acquired in NIR. This network can be integrated into a standard recognition pipeline as a
part of preprocessing module. With its peculiar SDBlock and FAM architectures, the proposed network is able to
detect vein-structures at various scales and combine them efficiently to generate an enhanced presentation. With usage
of enhanced data, the performance of recognition system has improved in terms of FMR, FNMR, and HTER– over
different datasets as demonstrated by our results. Thus, the resultant recognition systems are more accurate and secure.

We have introduced a novel network architecture for detection of vein-structures. Further work in this direction mainly
includes better generalization across variety of recognition methods, and efficiently processing size-independent pre-
sentations.
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