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Abstract

In pathology, tissue samples are assessed using multi-
ple staining techniques to enhance contrast in unique his-
tologic features. In this paper, we introduce a multimodal
CNN-GNN based graph fusion approach that leverages
complementary information from multiple non-registered
histopathology images to predict pathologic scores. We
demonstrate this approach in nonalcoholic steatohepatitis
(NASH) by predicting CRN fibrosis stage and NAFLD Ac-
tivity Score (NAS). Primary assessment of NASH typically
requires liver biopsy evaluation on two histological stains:
Trichrome (TC) and hematoxylin and eosin (H&E). Our
multimodal approach learns to extract complementary in-
formation from TC and H&E graphs corresponding to each
stain while simultaneously learning an optimal policy to
combine this information. We report up to 20% improve-
ment in predicting fibrosis stage and NAS component grades
over single-stain modeling approaches, measured by com-
puting linearly weighted Cohen’s kappa between machine-
derived vs. pathologist consensus scores. Broadly, this pa-
per demonstrates the value of leveraging diverse pathology
images for improved ML-powered histologic assessment.

1. Introduction
Graph neural networks (GNN) are increasingly used in

digital pathology, as they enable the integration of tissue
spatial structure into the prediction of clinically relevant
metrics [1, 2, 6]. Graph representation of a tissue sample
can be built using features extracted from a single digital
whole slide image (WSI). However, in many cases infor-
mation from multiple images may be necessary for disease
assessment. These images are differently stained to identify
specific molecular features; moreover, they may be taken
from different areas of the diseased tissue. Thus, combin-
ing information from multiple images is rarely as straight-
forward as aligning serial sections to make a single graph,
and approaches to graph fusion are needed.

One specific use case of such a graph fusion approach

is in the evaluation of tissue biopsies from nonalcoholic
steatohepatitis (NASH). NASH, the progressive form of
non-alcoholic fatty liver disease, is increasingly prevalent
globally, and is characterized by steatosis (fat accumula-
tion), inflammation, and fibrosis leading to liver damage
and potentially the need for liver transplant as it grows in
severity. Studies show that around 20-50% of the US pop-
ulation suffers from early and late stages of NASH, with
risk factors including obesity, diabetes, and metabolic syn-
drome [48].

Primary medical evaluation of NASH, both clinically
and in clinical trials, typically involves histological review
of liver biopsies by histopathologists. In NASH histology,
tissue samples are assessed using two staining techniques
that provide contrast for relevant features: hematoxylin and
eosin (H&E) and Masson’s trichrome (TC). H&E stains cell
nuclei and cytoplasmic features, whereas TC differentiates
collagen fibers against nuclei and cytoplasm [4, 50]. NASH
disease severity is commonly scored on the ordinal grad-
ing system developed by NASH Clinical Research Network
(CRN) where H&E- and TC-stained samples are evaluated
separately: H&E-stained tissue is assessed for the degree of
steatosis, inflammation, and ballooning to generate a com-
posite NAFLD Activity score, and TC-stained samples are
evaluated for the level of fibrosis within to render a fibrosis
stage of 0 to 4.

While previous works have successfully demonstrated
the benefits of a quantitative, reproducible, and automated
ML system that analyzes liver biopsy WSIs for the evalua-
tion of NASH to a high degree of concordance with human
pathologists [16,44,47], they extract information from only
one of the two stains routinely available for examining such
samples. The contributions of this paper are two-fold:

1. We show that combining information from H&E and
TC whole-slide images leads to improved model per-
formance for predicting NAS component and fibrosis
scores with higher concordance over models trained
using single-stain images.

2. We propose a global graph attention-based fusion ap-
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proach that allows for information to flow between the
two graphs during graph convolution. This is in con-
trast to the common late fusion approaches where in-
formation from the two graphs is combined at the end
of graph convolution. The global attention inter mes-
sage passing (GAIMP) architecture outperforms non-
fusion approaches.

Importantly, we show these results using diverse, un-
curated, and imbalanced data acquired from clinical trials,
providing further evidence that our method yields benefit in
real-world conditions.

2. Related work
Today, there is more demand for AI-based tools for

histopathology and digital whole slide image analysis. This
is primarily attributed to inter- and intra-rater variability in
pathology and widespread adoption of digital scanners in
clinics and laboratories [1, 27, 33].

2.1. Deep learning methods for WSI analysis

Deep learning has achieved unparalleled success in
histopathology image analysis and enabled the fast, ac-
curate, and robust classification of complex cell and tis-
sue morphologies. A whole slide image (WSI) is pro-
duced by scanning a glass slide containing a stained sam-
ple of diseased tissue at a microscopic resolution (∼0.25-
0.5 microns per pixel). The high-resolution scan captures
sufficiently detailed microscopic information necessary for
pathology disease analysis. The size of WSIs is on the
order of 100,000 × 100,000 pixels taking up several hun-
dred megabytes of memory. Pathologists are tasked with
meticulously scanning through these large images at several
magnification levels to look for relevant biological struc-
tures that enable diagnosis, prognosis, or treatment deci-
sions. However, manual assessment in pathology is subject
to inter-observer variability which may affect patient treat-
ment or outcomes [37].

Common deep learning methods used for WSI analysis
can be broadly binned into two categories:

1. Segmentation Given the large size of WSIs, convolu-
tional neural networks (CNNs) are applied on smaller
patches sampled from WSIs. Patch-level segmentation
models make predictions about a single patch with-
out any global context of the larger WSI. Wang et
al. [46] developed a CNN-based metastatic cancer de-
tection system that achieves an AUC of 0.925 for WSI
classification and AUC of 0.7 for tumor localization.
Andrew Janowczyk and Anant Madabhushi [21] used
AlexNet [28] in nuclei segmentation, tubule segmen-
tation, lymphocyte detection, mitosis detection, inva-
sive ductal carcinoma detection, and lymphoma classi-
fication. Taylor-Weiner et al. [44] built a CNN-based

WSI segmentation system to measure key histological
features in NASH including steatosis, inflammation,
hepatocellular ballooning, and fibrosis. The pixel-
level features were used to calculate features sum-
marizing the entire segmentation maps. The authors
showed strong concordance between scores generated
from their system and expert pathologists. Addition-
ally, they evaluated the prognostic capabilities of their
system for liver-related clinical events. Heinemann et
al. [16] used Masson’s trichrome WSIs to develop 4
CNNs that classify a patch into fibrosis, ballooning,
inflammation, and steatosis stages. Slide level classes
were obtained by averaging the logits from each model
over all the patches of a trichrome WSI.

2. Slide-level prediction Deep learning models can be
used to aggregate pixel-level features obtained from
segmentation models to make slide-level predictions.
Iizuka et al. [18] use CNN-RNN architecture to clas-
sify entire WSIs into Adenocarcinoma, Adenoma, and
Non-neoplastic. Ilse et al. [19] employ a CNN-based
multiple instance learning framework [10] for WSI
classification in colon and breast cancer. Similarly,
Gadiya et al. [13] classify WSIs into cancerous vs non-
cancerous and in situ vs invasive by representing tis-
sue section as a multi-attributed spatial graph of cells.
Wang et al. [47] construct graph representations of
liver biopsy WSIs using pixel-level CNN features to
classify WSIs into different stages of NAS and fibro-
sis.

2.2. Multi modal integration for WSI analysis

In practice, medical prognostic and diagnostic deci-
sions are often made by collating information from multi-
ple sources including various kinds of tests that uniquely
characterize the disease, e.g., lab tests, imaging tests (CT
Scan, MRI, etc.), and tissue biopsy (needle, surgery, en-
doscopy) [20]. Information from a variety of modalities
provide complementary features that are independently pre-
dictive of an endpoint. Deep learning systems have shown
to benefit from integration of such multi-modal information.

Mobadersany et al. [35] showed that concatenation of la-
tent histology and genomic features leads to models better
predictive of survival outcome in glioma. Chen et al. [8]
developed an interpretable latent Kronecker product-based
strategy for end-to-end multimodal fusion of histologic im-
age and genomic features for survival outcome prediction.
Chen et al. [7] integrated quantitative latent features from
WSIs with mutations, transcriptomics, and proteomics data
for prognosis prediction in lung adenocarcinoma. They
showed improved survival prediction for LUAD using the
multimodal approach. Recently, Chen et al. [9] developed a
transformer-based multimodal integration strategy that cap-
tures interactions between histology-based visual concepts



and gene features.
While integration of WSI features with multi-omics data

has been extensively studied previously, to the best of our
knowledge, this paper is the first to explore the multimodal
integration of multiple histology stains.

3. Methods
We train CNN models to perform pixel-level classifica-

tion on WSIs of H&E and TC stains. We use the heatmaps
output by CNNs to generate graphs. The GNN models are
trained on these sets of graphs. Following is a detailed ex-
planation of the entire modeling pipeline. The process of
generating tissue heatmaps and the construction of graphs is
summarized in sections 3.1 and 3.2, respectively. In section
3.3 we describe the details of the single graph GNNs used
as baselines. Section 3.4 discusses different fusion methods
used to combine information from both H&E and TC stains.

3.1. ML model to generate tissue heatmap on WSIs

Taylor-Weiner et al. [44] presented CNN-based segmen-
tation models which generate tissue heatmaps on NASH
WSIs. Similar to [44] we train two CNN models, one for
H&E slides and another for TC slides, to perform patch
classification. Each model learns to classify the center pixel
of the patch into key categories of histological morpholo-
gies, 13 for H&E and 5 for TC. During inference, similar
to Long et al. [32], the fully connected classification layer
was converted to a convolutional layer. Transforming fully
connected layers into convolution layers enables a classifi-
cation net to output a spatial map. Background and artifact-
containing regions were excluded from the analysis using
additional models trained to classify pixels as either back-
ground, tissue with artifact, or usable tissue. All other mod-
els and features were then evaluated only in the areas classi-
fied as usable tissue. The network architecture is described
in more detail in section 4.2.

3.2. Graph Construction

Graphs are constructed based on heatmaps generated by
the CNN models. We randomly sample pixels from the
heatmaps and use the pixel coordinates and the class logits
to cluster pixels into 5000 groups. Clustering is done using
the Birch algorithm [51]. Each cluster in the heatmap cor-
responds to one node in the graph and the node features are
derived from pixel features within the cluster. We use three
types of features computed from segmentation heatmaps.
These features are pre-defined to represent biological mor-
phologies with known clinical relevance [47]. The spatial
features include the mean and standard deviation of spatial
coordinates of all the cluster pixels. Topological features in-
clude the area, perimeter, and convexity of the cluster, and
logit-related features include the mean and standard devi-
ation of logits for each of the classes (13 H&E and 5 TC)

corresponding to all the cluster pixels. For every node, one
directed edge is added to connect to each of its five nearest
neighbors.

3.3. Single Stain GNNs

Graphs generated in the previous section are used to train
non-fusion stain-specific GNNs. This section describes the
structure of GNNs.

GNNs can be considered a variant of CNNs that oper-
ate directly on graphs [25]. During the training process of
a GNN, feature vectors on each node iteratively aggregate
feature vectors from their neighbor node as a form of mes-
sage passing to generate a new feature vector at the next
hidden layer in the model. The message passing operation
is similar to the convolution operation in CNNs and can be
defined as follows:

a(k)v = AGGREGATE(k)({h(k−1)u : u ∈ N (v)}) (1)

where h(k)u is the feature vector of node v at the k − 1-th
iteration of the neighborhood aggregation and a

(k)
v is the

feature vector of node v at the next iteration. The neighbor-
hood N (v) = {u ∈ V |(v, u) ∈ E} of node v is the set of
adjacent nodes of v.

Using a pooling operation over all the nodes, the repre-
sentation of an entire graph can be obtained. The pooling
operation can be defined as COMBINE feature as fol-
lows:

h(k)u = COMBINE(k)(h(k)u , a(k)v ) (2)

This representation can be then used for various tasks
such as classification, prediction, segmentation or recon-
struction tasks [6, 8, 14, 17]. The AGGREGATE and
COMBINE operators are defined by the specific model.

In this work, we train two separate GNNs: one for H&E
graphs and another for TC graphs. Both models are based
on a two-layer GNN with an input normalization prepro-
cessing layer. The normalization layer gathers the mini-
mum and maximum values of the input features and, using
them, normalizes the features before passing them to the
main GNN model.

The number of input features for the H&E model and TC
models were 80 and 50, respectively. The hidden layer fea-
tures of both models were 128, and the output feature after
the pooling layer is 1. As the COMBINE operator, we
adopt a self-attention pooling operation, SAGPool by Lee
et al [29]. SAGPool is a hierarchical pooling method that
performs local pooling operations of node embeddings in a
graph. Each convolutional layer is followed by a SAGPool
layer. We used a concatenated jumping knowledge connec-
tion [49] to combine the global average of node features ob-
tained from each iteration of graph convolution. This com-
bined representation is passed to a feed-forward network
that performs the downstream ordinal classification.
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Figure 1. An illustration of the multi-stain workflow using the LateConcatenation architecture. H&E and TC CNNs are used to generate
heatmaps from paired H&E and TC WSIs. The latent embedding extracted by H&E and and TC GNNs from the respective graphs are
concatenated and a multilayer perceptron predicts a score based on the concatenated embedding.

The output of the feed-forward network is used to learn
an ordinal regression model. The goal of an ordinal regres-
sion model is to predict labels from an ordinal scale (i.e.,
labels from a discrete but ordered set) [39]. The decision
function used here is Gaussian cumulative link (CL) func-
tion which can be defined as:

ψCL(y, α) :=

 −log(σ(α1)) if y = 1
−log(σ(αy)− σ(αy−1)) if 1 < y < k
−log(1− σ(αy−1)) if y = k

(3)
where σ is the Gaussian cumulative distribution, defined

as σ(t) = 1√
2π

∫ t
−∞ e−x

2/2, k is the number of classes and
S is the subset of Rk−1 for which the components are non-
decreasing, that is

S := {α : α ∈ Rk−1 and αi ≤ αi+1 for 1 ≤ i ≤ k − 1}

Our GNN performance studies are done using two sets of
pathologist labels; those generated by a central pathologist
(CP), and those from a group of independent pathologists.
The central pathologist scores are from the expert hepato-
pathologist(s) leading the scoring in the referenced clinical
trials. The independent pathologist scores are generated af-
terwards from hepato-pathologists contracted for this study.
One of the challenges with learning from a dataset labeled
by a diverse set of raters is the heterogeneity in the system-
atic per-rater bias present in the labels. This is the case for
our independent pathologist scores. There is a bias specific
to each pathologist present in these scores.

In order to minimize the effect of pathologist bias on
the GNN training, we use a mixed-effect model to learn
the pathologist bias and remove it when performing infer-
ence [47]. The mixed effect model learns per-pathologist

biases in tandem with GNN training. The bias terms are
added to the GNN output before mapping to ordinal score
values. This minimizes the effect of per-pathologist bias on
the GNN training. At inference time, the GNN outputs are
directly mapped to ordinal scores.

3.4. Fusion

In this section we explore different ways to combine in-
formation from the two histological stains. In all the meth-
ods listed below, we use the same set of graphs as the ones
used to train single stain GNNs. Given paired H&E and
TC WSIs for all patients, we aim to learn informative fea-
tures that summarize the graph representations of WSIs. We
also learn a suitable function to merge these features. While
previous works [16, 44, 47] have used only one of the two
stains to predict fibrosis or NAS component stages, in this
work we present a novel multimodal approach that outper-
forms unimodal baselines when evaluated for concordance
with pathologist consensus. We note that the underlying
WSIs are not spatially co-registered. The clustering ap-
proach to graph generation results in the lack of inter-graph
correspondence between H&E and TC graphs. As such, the
following methods make no assumptions about the relation-
ship between nodes of the two graphs. Thus, the methods
are amenable to other scenarios common in digital pathol-
ogy where multiple tissue samples are used to make diag-
nostic or prognostic decisions.

3.4.1 Late Fusion

In this set of methods, information is combined at the very
end. Given H&E graph H = (VH , EH) and TC graph
T = (VT , ET ) and two graph neural networks gH and gT



that operate onH and T respectively, we obtain vector rep-
resentation of both graphs as:

h =
1

|VH |
∑
v∈VH

gH(H); t = 1

|VT |
∑
v∈VT

gT (T ) (4)

where h ∈ RdH and t ∈ RdT , dH and dT are the dimensions
of the node features in H and T respectively. Vectors h
and t are combined using a combination strategy γ(.) and
a feedforward network f maps the multimodal tensor to an
ordinal endpoint.

We explore different formulations of γ(.) below:

• Late concatenation: γ(.) takes the form of the con-
catenation operator and the multimododal tensor z ∈
RdH+dT .

• Late addition: γ(.) performs vector addition of latent
vectors after projecting them into a common d dimen-
sional latent space as follows:

z =WH · h+WT · t (5)

where z ∈ Rd, WH and WT are learnt and WH ∈
Rd×dH , WT ∈ Rd×dT .

• Late Hadamard product: γ(.) is the Hadamard product
of the projected latent vectors:

z = (WH · h) ◦ (WT · t) (6)

where z ∈ Rd, WH and WT are learnt and WH ∈
Rd×dH , WT ∈ Rd×dT .

• Kronecker product with gating based attention: The
fusion strategies discussed above do not explicitly cap-
ture interactions across each feature in the latent vec-
tor representations of both graphs. Chen et al. [8] use
the Kronecker product to fuse information from cell
graphs, histology images, and genomic features. They
use Kronecker product to ensure every unimodal fea-
ture interaction is explicitly accounted for in the mul-
timodal tensor. Their fusion strategy further employs
gating-based attention to control the expressiveness of
each feature in the unimodal representation. The dif-
ferentiable gating mechanism learns to suppress the
noisy or redundant unimodal feature interactions while
retaining the useful interactions. We use this fusion
strategy to model interactions between vector repre-
sentations ofH and T .

h′ = αH(h, t) ◦ReLU(WH · h) (7)

t′ = αT (h, t) ◦ReLU(WT · t) (8)

where, αm = σ(Wm′ · [h, t])

Wm ∈ Rdm×dm ,Wm′ ∈ Rdm×(dH+dT ) ∀ m ∈ {H,T}
We learn Wm and Wm′ ∀m ∈ {H,T} for feature gat-
ing. Finally, the multimodal tensor is evaluated as:

z =

[
h′

1

]
⊗
[
t′

1

]
(9)

where ⊗ is the Kronecker product and z ∈ RdH×dT .
We concatenate 1 to the unimodal vectors to retain
unmodified unimodal features in the final multimodal
tensor.

3.4.2 Mid fusion

Recent work in multimodal deep learning has observed im-
provements in performance by enabling information to flow
across feature encoders much earlier during feature extrac-
tion [22,43]. We apply the same intuition and explore meth-
ods that enable information to flow between the two graph
encoders gH and gT .

To our knowledge information fusion during graph con-
volution has not been studied in the literature previously.
The work of Fey et al. [12] is similar with some notable
differences. In this paper, the authors present a method
to pass messages between a molecular graph and its junc-
tion tree representation. Intra-messages are passed within
a graph along neighboring atoms and inter-messages are
passed from atoms of a cluster in the molecular graph to
the cluster’s junction tree representation and vice versa.
Each node in the junction tree represents a meaningful clus-
ter in the original graph e.g, rings or bridged compounds.
Inter-messages enable information to be aggregated at the
graph level while intra-messages allow for information to
flow between the graphs during feature extraction. We note
that the junction tree transformation naturally gives rise
to node-level correspondence between the molecular graph
and its junction tree representation. The authors exploit this
characteristic to limit inter-messages to be shared between
smaller subgraphs. This is where our problem diverges from
that of molecular graphs. In the absence of inter-graph cor-
respondence, we propose two novel strategies to achieve
competitive results.

• Global inter message passing (GIMP): Unlike Fey et
al. [12] we do not have a structured way to pass mes-
sages between subgraphs of different modalities. We
instead pass a global summary of both graphs to each
other at every message passing iteration. Let H(i) ∈
R|VH |×dH and T (i) ∈ R|VT |×dT be the intermediate
representations of graphs H and T after ith iteration
of graph convolution. We aggregate the node fea-
tures to obtain the graph summaries h(i) ∈ RdH and
t(i) ∈ RdT as

h(i) =
1

|VH |
∑
v∈VH

H(i); t(i) =
1

|VT |
∑
v∈VT

T (i) (10)



and pass the graph summaries across the two graphs

H(i)
v = H(i)

v +ReLU(WT→H · t(i)) ∀ v ∈ VH (11)

T (i)
v = T (i)

v +ReLU(WH→T · h(i)) ∀ v ∈ VT (12)

where WT→H ∈ RdH×dT and WH→T ∈ RdT×dH are
learnt.

An iteration of intra-message passing followed by
inter-message passing forms one whole iteration of
global inter message passing. At the end of graph
convolution we concatenate the feature representations
obtained from both GNNs similar to late concatenation
and use a feedforward network for ordinal classifica-
tion.

• Global attention inter message passing (GAIMP): The
global pooling operation of global inter message pass-
ing may severely dilute information for graphs with
high cardinality like ours. To overcome this we em-
ploy global graph attention proposed by Li et al. [31].

h(i) = tanh

( ∑
v∈VH

σ
(
fH1(H

(i)
v )
)
◦ fH2(H

(i)
v )

)
(13)

t(i) = tanh

( ∑
v∈VT

σ
(
fT1(T

(i)
v )
)
◦ fT2(T

(i)
v )

)
(14)

where fm1 and fm2 ∀m ∈ {H,T} are modality spe-
cific attention and projection neural networks respec-
tively. The learned global graph attention helps iden-
tify nodes with relevant information which is passed
over to all the nodes of the other graph.

4. Experimental Setup
The following section describes the data set, evaluation

metrics, and other implementation details.

4.1. Data description

Models for segmenting and scoring the NAS components
and fibrosis were developed using WSIs from 6 recently
completed NASH clinical trials 1. To evaluate the perfor-
mance and generalizability of our approach, we used a held-
out test dataset which was acquired separate from the clin-
ical trials referred to in the model development set. The
experiments in this paper are designed around clinical trial
data for two reasons:

• Data heterogeneity Histology data collected from dif-
ferent clinical trials is heterogeneous. This heterogene-
ity can be attributed to variations in specimen prepara-

1Clinicaltrials.gov identifier: NCT03053050, NCT03053063,
NCT01672866, NCT01672879, NCT02466516, NCT03551522;
NCT00117676, NCT00116805; NCT01672853

tion, histology stain, slide scanner and patient popula-
tions [23, 41, 45]. For a medical ML system to be use-
ful outside of research, it must perform accurately de-
spite these variations. We find that data heterogeneity
is limited in data sets created specifically for research
purposes. Campanella et al., 2019 [5] further explore
the issue of limited variation in common histopathol-
ogy datasets like CAMELYON16 [3].

• Data imbalance Real-world medical data typically
has class imbalance [30]. This is in contrast to exten-
sively used open-source data sets specifically curated
for machine learning research. As before, for a medi-
cal ML system to be useful outside of research, it must
perform well despite data imbalance.

Slides were scanned at 40X using an Aperio ScanScope®
system (Aperio, Vista, CA, USA) and digitized WSIs made
available to hepato-pathologists.

4.1.1 Patient based data splits

The dataset contains multiple WSIs per patient. For each
patient we have one or more H&E and TC slide across dif-
ferent time points. We perform patient-based data splitting
to ensure slides from each patient is present in only one of
the splits. For the H&E and TC segmentation models, we
use 5,175 and 4,737 WSIs in the training set and 1,151 and
1,028 WSIs in the validation set, respectively. The training
and the validation sets used for GNN model development
consist of 3,734 and 806 pairs of H&E and TC WSIs, re-
spectively. We compare all the GNN models based on their
performance on a held-out test set consisting of 620 pairs of
H&E and TC WSIs.

4.1.2 Annotations

Board-certified pathologists specializing in hepatobiliary
pathology were asked to provide two types of annotation
using a digital platform:

• Pixel-level annotations To train the CNN models,
pixel-level annotations designating regions of tissue
within a WSI as exhibiting specific morphologies were
used. We collected annotations for 13 H&E classes
(bile duct, blood vessels, hepatocellular ballooning,
hepatocellular swelling, interface hepatitis, lobular in-
flammation, lumen, microvesicular steatosis, normal,
normal hepatocytes, normal interface, portal inflam-
mation, steatosis) and 5 TC classes (bile duct, blood
vessel, fibrosis, lumen, normal). In total, 116,346 an-
notations of key histological parameters were used for
training H&E and TC CNN models.



Table 1. Distribution of NAS component and CRN fibrosis scores
for all pathologists in the development and held-out test datasets.

Endpoint Set Bin 0 Bin 1 Bin 2 Bin 3 Bin 4
Fibrosis Dev 239 379 536 1575 2012

Test 81 402 466 789 95
Hepatocellular ballooning Dev 990 1301 2878 NA NA

Test 319 727 793 NA NA
Lobular inflammation Dev 181 1433 1840 1714 NA

Test 98 1011 664 67 NA
Steatosis Dev 580 3783 636 184 NA

Test 81 580 626 553 NA

• Slide-level annotations Across all the trials in the de-
velopment set, the biopsy samples were evaluated by
a central pathologist who provided slide-level scores
based on NASH CRN and NAS scoring system. Ad-
ditionally, we collected slide-level scores from eight
board-certified hepato-pathologists. These patholo-
gists were different from those providing pixel-level
annotations. These additional scores allow us to gen-
erate a consensus score to compare the ML model
against. On the held-out test set, scores were col-
lected from three pathologists. Table 1 presents bin-
wise counts of slide-level annotations used for training
and evaluating GNN models.

4.2. Experimental Settings

Pytorch 1.8.1 [38] and Pytorch Geometric 2.0.1 [11]
python frameworks were used to train the CNN and GNN
models respectively.

Patch-wise CNN Training Using the pathologist anno-
tations as described in section 4.1.3, training image patches
on the order of 500,000 samples were generated. These
patches were used to train two stain-specific patch-wise
CNNs that generate pixel-level predictions of 13 H&E or
5 TC classes. The H&E and TC CNN models are trained
separately for a maximum of 30k iterations with valida-
tion loss-based early stopping, a batch size of 100 stratified
along class and slide ID variables. We use random horizon-
tal flip, random rotation, hue, brightness, contrast, and sat-
uration distortion to augment the patches. We use ADAM
optimizer [24] with a learning rate of 1e-4 and learning rate
decay factor of 0.5 applied every 10k iterations. Models
were composed of 8-12 blocks of compound layers with a
topology inspired by residual networks and inception net-
works with a softmax loss [15, 28].

GNN Training We train each GNN for a maximum of
7k iterations with validation loss-based early stopping. We
perform an extensive grid search over the number of graph
convolution layers, feed-forward layers, hidden dimensions,
drop probability, and other model-specific hyperparameters
to find the optimal set for each GNN model. The follow-
ing section summarizes the implementation details of each

GNN model.
Single Stain GNNs The two stain-specific GNNs trained

are similar in structure with minor differences. Both models
use the graph neural network operator proposed by Morris
et al. [36]. Both models use 2 layers of graph convolution
with a SAGPool layer in the middle. The H&E graph nodes
have 80 features while the TC graph nodes have 50 features.
This difference is due to the distinction in the number of
classes present in the H&E and TC heatmaps. The hidden
layer dimensions of both GNNs are kept at 128. This is
followed by a concatenated jumping connection and feed-
forward network with 2 layers. We use dropout with a drop
probability of 0.5 between the two feed-forward layers.

Late fusion The per-stain graph encoders follow a sim-
ilar architecture as the single-stain GNNs explained above.
In the late fusion models, we remove the last feed-forward
layer from GNN architecture and pass the 128-dimensional
output vectors to the fusion module. The fusion module for
late concatenation, late addition, and late Hadamard prod-
uct are similar. After performing addition, concatenation,
or Hadamard product operations between latent vectors, the
multimodal tensor is fed to a three layer feed-forward net-
work using Dropout (drop probability = 0.1) and Batch-
Norm. In the case of Kronecker product-based fusion we
keep the fusion module architecture close to what is used
in the original paper. We use a dropout rate of 0.5 for orig-
inal architecture and hidden dimension is kept at 64. We
show results with both concatenation and bilinear attention
computation as described in the paper.

Mid fusion The graph encoders in mid-fusion approach
follow a similar architecture as the single-stain GNNs. In
the GIMP network, we add a projection module to each
graph encoder which is composed of a linear layer (128 ×
128), ReLU (Rectified Linear Unit) activation and Dropout
(drop probability = 0.4). The global attention module of
GAIMP uses a linear layer (128,1) followed by sigmoid
activation for evaluating attention scores. It uses another
linear layer (128 × 128) followed by ReLU activation and
Dropout (drop probability = 0.2) for projection.

4.3. Evaluation

We use linearly weighted Cohen’s kappa to evaluate
model performance on the held-out test set. Cohen’s kappa
is a form of accuracy metric that corrects for agreement by
chance amongst two raters [34]. Disagreements are penal-
ized proportional to the absolute difference between the two
ratings [42]. We apply bootstrap analysis (n = 400) to the
kappa calculation to study the effects of sampling variations
for model and inter-pathologist performance.

5. Results and Discussion
We compare the GNN models using scores from all

pathologists. Models learn from more than one scores per



Table 2. Linearly weighted Cohen’s kappa is used to compare performance of fusion multi-stain models,
standard single-stain models, and pathologists measured against consensus pathologist scores

Model/label Ballooning Lobular inflammation Steatosis Fibrosis

H&E [unimodal] 0.49 [0.43,0.53]? 0.43 [0.37,0.47]? 0.69 [0.65,0.73]? 0.48 [0.43,0.52]
Trichrome [unimodal] 0.27 [0.22,0.33] 0.23 [0.18,0.28] 0.16 [0.12,0.2] 0.51 [0.47,0.56]?

GAIMP [fusion] 0.41 [0.36,0.45] 0.37 [0.32,0.41] 0.7 [0.66,0.74] 0.58 [0.54,0.62]
GIMP [fusion] 0.46 [0.41,0.5] 0.41 [0.35,0.46] 0.67 [0.62,0.71] 0.56 [0.52,0.6]
LateConcatenation [fusion] 0.52 [0.47,0.57] 0.42 [0.38,0.48] 0.67 [0.63,0.72] 0.61 [0.57,0.65]
LateAddition [fusion] 0.54 [0.49,0.58] 0.45 [0.4,0.5] 0.7 [0.66,0.74] 0.6 [0.56,0.64]
LateHadamardProduct [fusion] 0.37 [0.32,0.41] 0.51 [0.45,0.56] 0.63 [0.59,0.67] 0.48 [0.44,0.53]
pathomicFusion [fusion] 0.53 [0.48,0.58] 0.41 [0.37,0.46] 0.7 [0.66,0.74] 0.59 [0.55,0.63]
pathomicFusionBilinear [fusion] 0.45 [0.41,0.5] 0.4 [0.35,0.44] 0.71 [0.67,0.75] 0.6 [0.55,0.63]

Pathologist 0.49 [0.42,0.6] 0.36 [0.27,0.45] 0.6 [0.49,0.69] 0.54 [0.34,0.66]

WSI by means of a mixed-effect model which accounts for
heterogeneity in pathologist bias [40]. The learned biases
are discarded during inference as described in Section 3.3.

In Table 2, H&E and Trichrome rows at the top rep-
resent the single-stain GNNs trained on unimodal graphs.
The asterisks? indicate the primary single-stain model for
a given endpoint. H&E is the primary stain for scoring
ballooning, lobular inflammation, and steatosis by patholo-
gists, and TC is the primary stain for scoring fibrosis stage.
GIMP and GAIMP in Table 2 refer to global inter message
passing and global attention inter message passing, respec-
tively. For the models, we report the mean linearly weighted
Cohen’s kappa measured between the model and median
consensus of all pathologists [2] from bootstrap analysis in
addition to the 95% confidence interval around the mean.
Similarly, in the last row of Table 2, we report the mean lin-
early weighted Cohen’s kappa for independent pathologists
as a performance baseline. This kappa measures agreement
between independent pathologist scores and consensus (me-
dian) pathologist scores. The performance of single-stain
ML models (rows 1 and 2 in Table 2) match independent
pathologists, which is in agreement with prior published
work [44].

Based on results on the test set shown in Table 2, the
LateConcatenation, LateAddition, and pathomicFusion ap-
proaches either outperform or perform on par with the
single-stain models. Most notably, these three fusion ap-
proaches statistically outperform unimodal (single-stain)
H&E-based prediction of the ballooning score and statisti-
cally outperform unimodal TC-based prediction and pathol-
ogist scoring of the CRN fibrosis score. These improve-
ments in performance suggest the presence of comple-
mentary and independently predictive information in both
stains.

Further, in Table 2 we report a maximum relative im-
provement of 20% between LateConcatenation and TC,
which is the primary unimodal model in the prediction of
fibrosis. Similarly, we observe a 19% relative improvement
in lobular inflammation for LateHadamardProduct, 10% in

ballooning for LateAddition, and 3% in steatosis for path-
omicFusionBilinear over prediction from H&E, which is
the primary unimodal model for prediction of NAS com-
ponents. Overall, LateAddition fusion model provides the
most consistent performance with 18% relative improve-
ment in fibrosis, 10% in ballooning, 5% in lobular inflam-
mation and 1% in steatosis.

The improved performance observed in fusion models
over unimodal single-stain models can be primarily at-
tributed to the richness of information present in the histo-
logic stains in relation to their non-primary endpoints, e.g.,
H&E for fibrosis. In samples with sub-optimal quality or
inadequate tissue in the primary WSI, the fusion model can
learn to use information from the non-primary stain, e.g.,
leverage H&E when TC staining is poor, to provide a more
accurate score. This is an advantage that fusion models can
gain over unimodal models from having access to multi-
modal data. It must be noted that in NASH pathology it
is common to leverage the non-primary stain when the pri-
mary stain has quality complications. It has also been re-
ported in recent work [26] that models can locate and seg-
ment non-primary features such as collagen in H&E sam-
ples which are aligned with observations in this work.

6. Conclusions

This paper presents a novel graph fusion-based approach
for evaluating NAS components and CRN fibrosis stage
given paired H&E and TC histology slides. Both H&E
and TC slides are collected from patients under examina-
tion for NASH. Pathologists and previous ML systems typ-
ically use one (primary) of the two slides to evaluate either
the NAS component scores or the CRN fibrosis score. In
this paper, we show that using additional information in the
non-primary whole-slide image improves the performance
of models predicting NASH scores substantially. We show
that our fusion strategy statistically outperforms unimodal
ML models and pathologists in at least two NASH score
components on held-out clinical data.
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