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Abstract

This paper presents an approach to assess the perfusion
of visible human tissue from RGB video files. We propose
metrics derived from remote photoplethysmography (rPPG)
signals to detect whether a tissue is adequately supplied
with blood. The perfusion analysis is done in three differ-
ent scales, offering a flexible approach for different appli-
cations. We perform a plane-orthogonal-to-skin rPPG in-
dependently for locally defined regions of interest on each
scale. From the extracted signals, we derive the signal-
to-noise ratio, magnitude in the frequency domain, heart
rate, perfusion index as well as correlation between spe-
cific rPPG signals in order to locally assess the perfusion
of a specific region of human tissue. We show that locally
resolved rPPG has a broad range of applications. As ex-
emplary applications, we present results in intraoperative
perfusion analysis and visualization during skin and organ
transplantation as well as an application for liveliness as-
sessment for the detection of presentation attacks to authen-
tication systems.

1. Introduction
Perfusion assessment and vital sign monitoring have

been addressed in recent years with a vast amount of possi-
ble solutions. The range of proposed applications last from
clinical diagnostics and monitoring up to liveliness analysis
in security applications.

Especially, the assessment of perfusion is challenging as
an analysis of the blood flow requires temporally contin-
uous, and at the same time, locally resolved information.
Most solutions do not meet all these requirements. Global
vital signs can be measured objectively and continuously
using a monitoring system with sensors attached to the pa-
tient. Heart rate (HR) measurement is usually based on

photoplethysmography (PPG) [43] measuring optically the
light transmission and reflectance caused by blood flow [30]
with a sensor directly placed on the skin of the patient. The
same principle is used in remote photoplethysmography
(rPPG), which allows contactless measurements of the HR
with a regular RGB camera [15,24,33,37]. The majority of
rPPG-related literature addresses the extraction of global vi-
tal signs. Only little work has been published on locally re-
solved rPPG signals to, e.g., analyze the blood flow through
human tissue, mainly in the human face [13, 15, 38, 43].

Although the assessment of optimal blood flow is es-
sential for many medical procedures, e.g. tissue or or-
gan transplantation, in order to evaluate the surgical suc-
cess, the current gold standard is still subjective clinical
assessment of the situs and patient’s condition at the bed-
side. Existing monitoring techniques have been reported
in the past, but due to several disadvantages, e.g., inva-
siveness and potential complications, they failed to gain
acceptance [12, 20, 29]. A promising non-invasive, non-
contact and non-ionising but cost-intensive method is hy-
perspectral imaging [21, 31, 34, 39]. Further, telemedicine
as a remote service for diagnosis and medical monitor-
ing is a fast-growing public health sector. Especially, the
COVID-19 pandemic moved it into focus. Unfortunately,
telehealth does not allow measuring the vital signs using
patient contact. However, the face of the patient can be an
essential source of information about vital signs and well-
being. Therefore, it would be beneficial to directly de-
termine the patient’s condition from the face in the video
stream. Thus, there is a growing need for an objective,
reliable, and examiner-independent method to safely as-
sess perfusion and vital signs in many medical applications,
ranging from intraoperative monitoring as well as telehealth
applications.

In addition to clinical assessment, rPPG can also be used
in security applications for liveliness analysis in order to de-
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tect presentation attacks (PAD) [9, 13, 18, 23, 28]. The use
of a facial recognition system for authentication has become
widespread. Biometric authentication systems based on fa-
cial recognition are already used in border security systems
and unlock smartphones. Although widely used and highly
accurate, facial recognition algorithms suffer from vulnera-
bility to simple spoofing attacks by impersonating a target
victim holding the desired authorization [19] through the
use of, e.g., photos or masks [6]. RPPG methods can be
used to detect if the whole face is covered by a mask or
not [18]. In addition, locally resolved rPPG analysis, as
proposed in this paper, is able to detect partial face masks.

In this paper, we propose a method for locally (i.e. spa-
tially) resolved rPPG analysis for the assessment of the
blood flow through human tissue from videos with the aim
to visualize tissue perfusion quality as well as blood flow.
In our approach, the perfusion can be assessed at different
scales depending on the chosen application: globally for
an overall perfusion assessment of, e.g., implanted tissue,
region-based to detect poorly or non-perfused regions, and
locally to visualize the blood flow. We introduce metrics
derived from rPPG to detect whether a tissue is adequately
supplied with blood. We compute these multiple parame-
ters from the local rPPG signal, which are then utilized to
assess the perfusion. Here, we define three parameters to
analyze the perfusion in a region of interest (ROI) based on
the rPPG signal.

The remainder of this paper is organized as follows. In
Sec. 2, we review existing related work on remote photo-
plethysmography for vital sign and perfusion analysis. The
proposed method and the dataset are described in Sec. 3 and
Sec. 4, respectively. In Sec. 5, we introduce different appli-
cations for each presented scale. Then, in Sec. 6 the results
are discussed, while Sec. 7 concludes the paper.

2. Related Work
The measurement of the HR1 is usually based on the

optical measuring technique photoplethysmography (PPG)
[43]. The principle is based on human blood circulation
and the fact that blood absorbs more light than surrounding
tissue. Thus, variations in blood volume affect light trans-
mission or reflectance accordingly [30]. A photoplethys-
mography (PPG) sensor (commonly used to measure the
human pulse rate) is placed directly on the skin and opti-
cally detects the changes in blood volume [30]. The same
principle is used in remote photoplethysmography (rPPG),
which allows contactless measurements of the HR with a
regular RGB camera [43]: the blood flow through the hu-
man circulatory system leads to a continuous change in skin

1Heart rate and pulse rate have been used synonymously in the litera-
ture, although they are not precisely the same [16, 25, 32]. To be precise,
according to medical definitions, the rPPG signal can be used to extract the
pulse rate signal, but we will use the term HR in this paper.

color, which is analyzed by rPPG techniques to determine
the HR [5, 24, 32, 33].

To robustly extract an rPPG signal regardless of the
subject’s skin tone and illumination color (non-white illu-
mination), a chrominance-based calculation (CHROM) of
the rPPG signal has been developed [5] for pre-processing
the input frames. Similarly, the Plane-Orthogonal-to-Skin
Transformation (POS) [33] projects a three-channel (R-G-
B) image onto a plane orthogonal to the [1, 1, 1] direction
to create a two-channel image. These two channels are then
fused to the desired rPPG signal.

As global model-based methods can be affected, e.g., by
noise, compression artifacts, or masking, several of the lat-
est rPPG related publications use deep neural networks to
extract the HR from video [4,41,42]. Yang et al. [37] com-
pared three neural networks (Deepphys [4], rPPGNet [42],
and Physnet [41]) with model-based approaches (indepen-
dent component analysis (ICA) [24], CHROM [5], and
POS [33]) on the publicly available UBFC-rPPG dataset
[1]. In these experiments, the deep-learning-based ap-
proaches outperform the model-based approaches under
constant lighting conditions, but model-based approaches
(ICA, CHROM, and POS) show more accurate and ro-
bust results than neuronal networks in varying lighting con-
ditions [37]. The recent ICCV Vision-for-Vitals (V4V)
challenge [27] comparing different model-based as well as
network-based approaches [7, 10, 14, 27] for the measure-
ment of the HR, shows similar results.

Recently, rPPG signals have also been analyzed locally
and visualized based on amplitude, velocity, or signal-to-
noise ratio (SNR) map [38, 43]. Especially, the blood
flow has been analyzed in videos showing a human face
[13, 15, 38]. The blood flow velocity is calculated from the
relative phase shift of the frequency component correspond-
ing to the HR in the frequency domain. These methods as-
sume that the difference between neighboring phase values
directly corresponds to the velocity at this point. Applying
a 2D Sobel operator to the calculated phase shifts results to
the desired velocity map. Another method for estimating
perfusion speed from videos uses spatially separated rPPG
signals; band-pass filtered based on the HR measured with
an electrocardiogram (ECG) [43]. The time delay between
specific positions can then be extracted and the pulse wave
perfusion speed calculated. However, since the calculation
is performed on pixel values, the result is neither a physical
speed nor can it be transferred to other data.

Besides medical applications, rPPG analysis has also
been applied to detect so-called presentation attacks to au-
thentication systems. In these works, rPPG methods are ap-
plied to facial videos in order to detect whether the face is
covered by a mask [13, 18, 40].
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3. Method
This chapter presents our approach for rPPG-based per-

fusion assessment of skin tissue. We distinguish between
three different scales for the analysis of perfusion and blood
flow: (1) global, (2) region-based, and (3) local. The global
analysis resembles a one-dimensional rPPG signal extrac-
tion from a video recording. In the region-based approach,
we subdivide the region of interest (ROI) in the video into
sub-regions and analyze these. The local blood flow analy-
sis resolves the rPPG signal on pixel-level in the input RGB
video. The three different scales require different prepos-
sessing steps, including annotation of the ROI, image reg-
istration, image filtering, and scaling. In the following, we
describe our approach for calculating the rPPG signal and
the derivation of the perfusion parameters from the rPPG
signal. Details on the pre-processing steps for the different
scales are explained in sections Sec. 3.2 to Sec. 3.4.

3.1. rPPG-based Perfusion Assessment

In order to extract an rPPG signal for each scale (ROI,
region or pixel position), we use the POS transformation
[33] as it showed best results for different lightning condi-
tions [37]. For each frame, the red (R), green (G), and blue
(B) color values are pixel-wise averaged for each scale and
concatenated to a three-dimensional (3D) normalized time
signal [r(t), g(t), b(t)] per scale. This signal is projected
onto a plane orthogonal to an normalized skin tone vector
using

S1(t) = g(t)− b(t) (1)

and
S2(t) = g(t) + b(t)− 2r(t), (2)

The resulting 2D signal is combined into a 1D signal by

h(t) = S1(t) +
σ(S1)

σ(S2)
S2, (3)

where σ is the standard deviation (SD). This ensures that the
resulting signal contains the maximum amount of pulsating
component. Details can be found in [33]. The output sig-
nal h(t) is normalized and filtered with a fifth order Butter-
worth digital band-pass filter (between 0.6Hz and 4.0Hz),
resulting in the rPPG signal rPPG(t). The temporal trend
of the rPPG signal is extracted using a sliding window of
twin = 10 s with step size tstep = 1 s.

The HR determination is done in the frequency domain
[15,24]. We propose the sub bin maximum analysis to deter-
mine the heart frequency fHR of the rPPG signal. For each
scale, we transform the time domain rPPG signal into the
frequency domain via fast Fourier transform (FFT). Then
we identify the maximum sum of the magnitudes of a fun-
damental frequency and its second harmonic. Thereby,
the range from 0.6Hz to 4.0Hz (i.e., a HR of 36BPM

to 240BPM) is considered as eligible interval of the fun-
damental frequency. The selected fundamental frequency
represents the heart frequency fHR for the corresponding
scale in the analyzed sliding window of size twin. This sub
bin maximum analysis prevents selecting noise-related fre-
quency components as heart frequency. The HR in beats
per minute (BPM) is given by 60 · fHR. During twin, the
subject’s heart rate varies, which is referred to as heart rate
variability (HRV) [43]. In the following, the magnitude of
fHR is referred to as M(fHR) (i.e., selected peak on the
power spectrum density).

Based on the HR and the extracted rPPG signal, we an-
alyze different parameters for perfusion and blood: SNR,
magnitude M of the heart frequency, perfusion index (PI),
and the reference correlation coefficient ρ between the rPPG
signal of ROI and reference region. The SNR, as well as
M(fHR), indicate if the quality of the extracted rPPG sig-
nals is sufficient and the measured HR is reliable. The PI
immediately reacts to acute and significant changes in blood
volume and allows to distinguish between non-perfused and
continuously perfused tissue regions quantitatively. The
correlation ρ quantifies the relationship between a specific
area and a well-perfused reference region.

3.1.1 SNR and Magnitude of the rPPG Signal

In order to quantify the rPPG signal quality, we analyze
the SNR, representing the strength of the signal in the fre-
quency domain compared to unwanted noise present in the
signal following De Haan et al. [5].

SNR = 10 log10

( ∑f2
k=f1

(Um(k)M(k))
2∑f2

k=f1
((1− Um(k))M(k))

2

)
, (4)

where M(k) is the magnitude of the signal f(t), f1 and f2
define the range in which the SNR is calculated (e.g., 0.6 Hz
to 4.0 Hz), k is the bin number of the frequency component,
and Um(k) is a binary mask defining the signal interval

Um(k) =


1, if |fHR −∆f · k| ≤ (0.05Hz)

1, if |2fHR −∆f · k| ≤ (0.05Hz),

0, otherwise
(5)

where ∆f is the spectral frequency resolution

∆f =
fs
Nfft

, (6)

with the number of FFT points Nfft (i.e. number of sam-
ples) and the sampling frequency fs of the input signal
f(t). Due to HRV, an interval of ±3BPM (±0.05Hz in fre-
quency domain) around the heart frequency fHR as well as
its second harmonic 2fHR is used to select the signal. The
remaining frequency components are classified as noise,
i.e. (1− Um(k)).
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Besides the SNR, the magnitude M(fHR) of the heart
frequency is relevant for perfusion assessment. Both values
are indicators of the strength and quality of the rPPG signal.

3.1.2 Reference Correlation

The reference correlation coefficient ρref measures the cor-
relation between the rPPG signals of the ROI rPPGroi(t)
and the reference region rPPGref (t) [14]. If no reference
region can be specified within the image, an externally mea-
sured HR can be used to imitate a reference signal by using
a sine wave.

3.1.3 Perfusion Index

Initially, the Perfusion Index (PI) is derived from the PPG
signal and represents the ratio of pulsatile on non-pulsatile
light absorbance or reflectance of the PPG signal, but it can
also be computed from the rPPG signal as a ratio between
the DC and AC component [26]. However, it has to be cal-
culated using only the green color channel values g(t) of
the ROI [25] as the rPPG signal after POS transformation
contains no DC component, which would lead to a division
by zero.

PI =
glp,AC

glp,DC
=

max(glp(t))

µ(glp(t))
, (7)

where time signal g(t) is low-pass filtered with cutoff fre-
quency fcut = 20Hz leading to glp(t) and µ is the mean
and max finds the largest value in the time series glp(t). The
sample rate fs and the corresponding Nyquist frequency in-
fluence fcut and if fcut = 20Hz is not applicable, 0.8 ·fs/2
has been used.

3.2. Global Analysis

The global analysis allows an overall perfusion assess-
ment of tissue, based on the rPPG signal, the determined
HR, and the parameters presented in Sec. 3.1. In the pre-
processing steps, an ROI and, if possible, a reference re-
gion has to be defined. Based on these areas, the cap-
tured frames are motion-compensated as breathing, heart-
beat, and external physical contact cause slight movements
in the video. We determine the rPPG signals rPPGroi(t)
and rPPGref (t) for the ROI as well as the reference region
in order to compute the HR and the parameters for the per-
fusion assessment (see Sec. 3.1). When skin tissue is the
focus of the analyzed video recording, skin segmentation is
applied to each frame removing occlusions within the de-
fined ROI (e.g., eyeglasses in facial images). This skin seg-
mentation increases the SNR of the rPPG signal.

3.3. Region-based Analysis

For the region-based approach, the selected ROI is di-
vided into several (five in our examples for the facial videos)

sub-regions to preserve the signal intensity of global analy-
sis but, on the other hand, analyze region-based differences.
The regions are selected in a way that, despite object (or
camera) position, at least one region can be captured by the
camera to counteract possible occlusions.For each region,
the rPPG signal is extracted individually to determine the
subject’s HR fHR [14] as well as the region-specific param-
eters presented in Sec. 3.1.

3.4. Local Analysis

The local analysis resolves the rPPG signal on a pixel
level. It allows identifying poorly perfused areas and the
accurate differentiation of living tissue from non-living ma-
terials. Each spatial position within the image is analyzed.
Beforehand, a reference region has to be defined to extract
the reference rPPG signal and a global fHR. If no reference
region is present, an external HR measurement can also be
used to receive fHR. As the influence of noise is stronger
for local analysis, we calculate a Gaussian pyramid for each
registered image. We chose a pyramid level consisting ap-
prox. 10 000 px (i.e., 100 px x 100 px) and conducted an
rPPG signal extraction as well as parameter calculation (see
Sec. 3.1) for each spatial position. The locally resolved pa-
rameters can then be used to visualize local perfusion be-
haviors, e.g., blood flow (see Fig. 3).

4. Datasets
We recorded two datasets, SurgTissue and FaceMask, for

the evaluation of our perfusion assessment approach.
Dataset I SurgTissue consists of the operation situs of 14

oncological patients, who underwent tumor resection and
defect reconstruction with a free fasciocutaneous flap for
head-neck tumors (see Fig. 3) as well as 27 patients re-
ceiving a kidney transplantation (see Fig. 4). After recon-
struction of the defect with the flap, respectively transplan-
tation of the kidney, the artery as well as the accompanying
veins were anastomosed (surgically connected). The reper-
fusion after opening the clamped artery was documented
with an all-digital surgical imaging device with resolution
of 1920 px x 1080 px, either a surgical microscope (AR-
RIscope, Munich Surgical Imaging, Germany) with 60 fps
or an endoscope (Karl Storz SE, Germany) with 25 fps. The
patient’s vital signs were recorded continuously and syn-
chronized with each video recording for validation reasons.

Dataset II FaceMask is a collection of RGB video
recordings of masked and unmasked subjects. In total,
44 participants aged between 22 to 62 years, 43% female
and 57% male, coming from diverse ethnic backgrounds
(Hispanic, Asian, African, European) were captured using
two different RGB cameras (35 subjects with ace acA2440-
75uc, Basler AG, Ahrensburg, Germany and 9 subjects
with RealSense D435, Intel Corp, CA, USA). Each per-
son was recorded ten times for 20 s to 30 s each with res-
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olution of 2448 px × 2048 px (ace with frame rate 25, 30,
40, or 60 fps) or 1280 px × 720 px (RealSense D435 with
30 fps). The subjects were illuminated with white light us-
ing LED panels (Diva-Lite L20X and L30X, Kino Flo, Inc.,
CA, USA) and varying light temperatures (2500K, 5000K,
9900K). Each participant was connected to a vital sign
monitor (VitaGuard 3100, GETEMED, Germany) to mea-
sure ECG (via body electrodes, fs = 256Hz) and PPG (via
finger clip sensor, fs = 64Hz) simultaneously to the video
recording. The respective subject looked either straight into
the camera or as well as moved the head slightly during
the recording. First, we recorded the unmasked subject
with and without movement. Subsequently, the subject was
masked by applying full or partial facial coverings or thick
layers of make-up. Finally, we recorded the masked partici-
pants again with and without movement. The partial cover-
age was applied to either the cheek, forehead, chin, or nose
region using different variations (skin tones and sizes) of
professional make-up equipment. Example images of the
FaceMask dataset are shown in the first column of Fig. 6.

5. Results and Applications
In the following, we present results for different appli-

cations. First, we show how the scale analysis can measure
perfusion and blood flow during surgery. In the second step,
we present region-based and local presentation attack detec-
tion (PAD).

5.1. Intraoperative Perfusion Assessment

In reconstructive and transplant surgery, flap respectively
organ monitoring is crucial for early detection of perfu-
sion problems. The survival of transplanted tissues anas-
tomosed to suitable donor vessels depends on adequate tis-
sue perfusion. Transplantation failure may result due to
arterial or venous occlusion due to vasospasm, thrombo-
sis, external compression, vessel kinking, or hematoma for-
mation [2]. Furthermore, timely re-exploration can sig-
nificantly increase the rate of compromised tissue salvage.
Consequently, detecting early signs of deterioration and the
necessary correction is only possible with close monitor-
ing [3, 36]. Although several objective monitoring tech-
niques have been reported in the past [8, 22, 29] and a
growing need for a reliable and examiner-independent as-
sessment is depicted, the current gold standard for perfu-
sion monitoring is still based on subjective clinical assess-
ment [2]. As a result, since not all parts of the vessel re-
main visible and slight discoloration is invisible to the hu-
man eye, suboptimal positioning as well as slight kinks in
the course of the vessel remain undetected though impair-
ing organ function. Analyzing the SurgTissue dataset shows
statistically distinct behavior for perfused and non-perfused
tissue parts, allowing to specify relevant time points and tis-
sue behaviors.

Figure 1. Normalized perfusion index showing the exact time of
reperfusion of transplanted flaps. Maximum and half-width of the
perfusion peak depend on the individual temporal opening of the
external carotid artery. No reperfusion is detected for case #8 (red
curve) suggesting insufficient blood flow.

Figure 2. Correlation of the pulse-induced rPPG signal for trans-
planted flaps around the time of reperfusion (∼50 s) with a defined
reference region. The higher the correlation value, the closer the
perfusion in the flap matches the healthy perfused reference re-
gion. For case #8 (red curve), no perfusion is detectable in the flap
resulting in a permanently low correlation value.

5.1.1 Global and Region-based Assessment

For all free fasciocutaneous flap patients in the SurgTissue
dataset, it is possible to quantify how accurately the HR
can be determined from the video data using the recorded
ground truth comparison values. Further, for all patients,
where the flap transplantation went successfully (13 out of
14 cases), it is possible to detect region-based perfusion
changes in the transplanted tissues. From the extracted
rPPG signal of the flap region, the PI shows a significant
change of perfusion, i.e., the reperfusion of the tissue can
be detected, see Fig. 1. This event of reperfusion produces
a peak, reaching its maximum tPI = 15 second after the
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documented reperfusion event. The reference correlation
ρ between the flap and a reference skin region increases
in parallel to the increasing PI , reaching its maximum at
t(PImax), see Fig. 2.

For the case #8, no characteristic parameters could be de-
rived intraoperatively, cf. red curve in Fig. 1 and Fig. 2. This
flap showed no vitality after inspection on the 3rd postoper-
ative day and the necrotic flap tissue was removed 5 weeks
postoperatively.

5.1.2 Local Assessment

A good visualization of blood flow propagation and repre-
sentation of the signal quality of each spatial position would
allow the surgeon to make a robust quantitative diagno-
sis. In addition, it could reveal transplantation failures at
an early stage without the need for additional complex and
invasive methods.

An augmented overlay of the different parameters, which
have been determined locally, allows to visually highlight
relevant tissue behaviors during critical processes. The nor-
mal RGB view on a transplanted region shortly after reper-
fusion shows no difference compared to the non-perfused
appearance, cf. Fig. 3 and Fig. 4 (top row). However, the
local reference correlation shows a clear improvement in
perfusion over time with specific local variations.

5.2. Presentation Attack Detection via Perfusion
Analysis

The goal of a presentation attack is to impersonate a per-
son’s identity through the presentation of photos or wear-
ing a mask such that an identification system allows the at-
tacker to pass through the system with a false identity. The
FaceMask dataset includes attacks with full face masking,
cf. Sec. 4. Such full-face masks with the authorized person’s
biometric feature have the disadvantage of being sometimes
easily recognized as the masks do not move like a real face,
and the reflection of light might differ from human skin.
More advanced attacks involve partial masks altering a per-
son’s face so that the attacker’s biometric features match
the target victim’s. These masks can be blended into the
face’s overall appearance with make-up equipment to create
a natural look. In the dataset, such partial mask attacks are
simulated using handmade partial masks made of gelatin,
latex, latex milk, wax, and Artex silicone. An application
of perfusion assessment to detect masks (i.e., presentation
attacks) in video sequences is presented in the following.

5.2.1 Region-based PAD

Fig. 5 shows the major steps of the proposed region-based
PAD. To evaluate this approach, recordings of the Face-
Mask dataset have been used, containing simulated attacks

Figure 3. Local reference correlation between the pixel-wise posi-
tion within the flap and a reference signal of a well-perfused skin
area (highlighted in gray) at two points in time; before reperfusion
(A) and after reperfusion (B). The improvement of the reference
correlation of the flap before reperfusion (C) to a time point after
(D) can be visualized with the local perfusion assessment.

Figure 4. This figure shows the reperfusion during the implanta-
tion of a donated kidney. In the input images of the kidney, no
perceptible changes can be detected after 73 s (A) and 112 s (B)
after reperfusion. However, by the visualization using local anal-
ysis and corresponding reference correlation map (bottom row),
an evident change and improvement of perfusion between (C) and
(D) can be observed. The reference skin region is marked in gray.

with full face masks out of latex and foam latex. Ran-
domly, 43 video recordings are selected; 17 of them are
showing presentation attacks. The length of each video is
approx. 30 s. The position of the face is determined using
face detection based on the dlib algorithm [11] extracting
68 landmarks per face. Based on these landmarks, the face
is segmented into five symmetric regions covering the ma-
jor parts of the face, excluding the eyes since they mostly do
not show visible skin. Fig. 5 shows the regions: right fore-
head, left forehead, right cheek, left cheek, and nose. The
mouth and chin areas are not analyzed due to low signal
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Figure 5. Illustration of our presentation attack detection approach based on region-based perfusion assessment. After pre-processing (face
and landmark detection and downscaling), the region-based rPPG calculation is applied to the pre-processed image sequence. The resulting
signals are transformed into the frequency domain, where the heart rate is determined. Subsequently, the reliability determination [14] is
performed, and thus the reference signal rPPGref is determined. The parameters SNR, M(fHR), and ρref can be calculated for each
region. Based on the calculated parameters, the SVM classifier classifies between presentation attack and no attack.

quality [17]. The pre-processing steps for facial videos de-
scribed in Sec. 3.3, yield 10 s long image sequence and the
corresponding facial landmarks for each frame which deter-
mine the facial ROIs. To determine the HR of the recorded
subject, the region with the most robust signal based on a
reliability determination has been selected [14] as reference
signal rPPGref .

For each region and sliding window, the three parame-
ters (SNR, M(fHR), ρref ) are calculated, cf. Fig. 5, result-
ing in 2216 ground truth samples. A cubic SVM classi-
fier is trained to detect presentation attacks. The data are
split into training and test set (training: 80.3% (1780 sam-
ples), testing: 19.7% (436 samples)). Thereby, the data set
was randomly split with the constraint that no subject of the
test set appears in the training set and vice versa. We use
cross-validation to protect the classifier against over-fitting
to the training data (10 folds). The classifier is tested against
the test data and reaches an accuracy of 96.8%. Tab. 1
shows the confusion matrix visualizing the performance of
the classifier.

5.2.2 Local PAD Visualization

Local perfusion assessment can be used to visualize more
details of the local perfusion within the human face. We use
the local analysis described in Sec. 3.4 and visualize our
approach for local perfusion assessment. This visualization
can be used for PAD assistance to detect and localize par-

Table 1. Confusion matrix of full-mask presentation attack classi-
fication (no attack = 0, presentation attack = 1).

Predicted Class
0 1 total

A
ct

ua
lC

la
ss 0 200 4 204

1 11 221 232

total 211 225

tial masks. The FaceMask dataset (see in Sec. 4) simulates
presentation attacks with partial masks. These masks cover
single or multiple facial regions like the nose, cheeks, or
forehead. Fig. 6 shows four examples of different face cov-
erings and one non-covered face. It shows the input frame,
the magnitude-, SNR- and reference correlation-maps. All
five attacks are clearly visible within each corresponding
map. With the local rPPG perfusion assessment, we can
determine if a person is wearing a mask and localize the
position of this mask coverage.

6. Discussion

The rPPG is a non-contact vital parameter determination
method and has been used for objective intraoperative per-
fusion assessment of transplanted tissues. The overall goal
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Figure 6. This figure shows the resulting maps of the local analysis
of different subjects wearing #0 no mask, #1 cheek mask, #2 nose
mask, #3 forehead mask, #4 forehead mask, and #5 full face mask.
In the respective maps, the pixel positions in red are assigned to a
high value and blue to a low value for the respective parameter.
The contour drawn in each plot shows the subject’s face position.

of the considered surgical procedures is to achieve a sim-
ilar blood flow in the transplanted tissues compared to the
reference region. Sufficient reperfusion in transplanted tis-
sue resulting from opening the artery is clearly detectable
by the PI peak and the increase in correlation of the pulse-
induced rPPG signal. Further, we could show that rPPG is
able to detect critically perfused tissues before clinical is-
chemia occurs.

The correlation quantifies the similarity of both rPPG
signals, which allows clear conclusions about the perfusion
of the transplanted tissue. Therefore, an objective and re-
producible perfusion assessment can be made region-based
as well as locally based on the introduced parameters. This
gives to surgeon additional relevant information about phys-
iological parameters and perfusion problems, which would
manifest clinically much later so that a possible interven-
tion would be already too late. For this reason, such a
non-invasive continuous monitoring approach using exist-

ing imaging techniques such as surgical microscopes and
endoscopes would be an excellent improvement for various
medical applications, such as intraoperative tissue perfusion
measurements as well as postoperative wound assessment.
All results calculated for the SurgTissue dataset and pre-
sented in this paper have been reviewed and verified by sev-
eral medical experts (for free fasciocutaneous flap and kid-
ney transplantation).

As shown in Fig. 6, the partial and full-face masks can
be located in a person’s face by inspecting the magnitude,
SNR, and reference correlation maps generated via the lo-
cal analysis. However, the figure also shows for subject
#3 that his dense beard appears as an occlusion, which in
fact is an occlusion of skin. Thus, facial hair makes it dif-
ficult robustly detect presentation attacks, as it has to be
distinguished between normal occlusions such as beard and
glasses and attacks with partial masks. Because of this chal-
lenge, as well as it has been reported that the chin gener-
ally shows less signal strength [17], we decided to ignore
the chin region for the region-based PAD. With the region-
based approach, we were able to detect full-face coverage.
Compared to the local analysis, the advantage of the region-
based method is reducing processing time, making real-time
application possible.

7. Conclusion
We presented a method for rPPG-based perfusion assess-

ment in visible human tissue from RGB video-based. We
use a plane-orthogonal-to-skin remote photoplethysmogra-
phy technique in order to extract the rPPG signal and derive
perfusion-relevant parameters at three different scales, of-
fering flexibility for different applications.

We presented two example applications for intraoper-
ative tissue perfusion monitoring in patients undergoing
transplantation or reconstruction surgery. Our approach
yields objective and reproducible results, verified by medi-
cal experts. We will perform further clinical studies to eval-
uate our approach for continuous intraoperative as well as
postoperative tissue monitoring. Existing digital imaging
units, such as a surgical microscope or endoscope could be
easily expanded [35] to be used for tissue monitoring.

In addition to applications in the medical field, we pre-
sented an application to presentation attack detection to
authentication systems. In our experiments, attacks with
partial- and full-face masks could robustly been detected.
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