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Abstract

Neural Radiance Fields (NeRF) has emerged as the
state-of-the-art method for novel view generation of com-
plex scenes, but is very slow during inference. Recently,
there have been multiple works on speeding up NeRF in-
ference, but the state of the art methods for real-time NeRF
inference rely on caching the neural network output, which
occupies several giga-bytes of disk space that limits their
real-world applicability. As caching the neural network of
original NeRF network is not feasible, Garbin et.al. pro-
posed "FastNeRF" which factorizes the problem into 2 sub-
networks - one which depends only on the 3D coordinate of
a sample point and one which depends only on the 2D cam-
era viewing direction. Although this factorization enables
them to reduce the cache size and perform inference at over
200 frames per second, the memory overhead is still sub-
stantial. In this work, we propose SqueezeNeRF, which is
more than 60 times memory-efficient than the sparse cache
of FastNeRF and is still able to render at more than 190
frames per second on a high spec GPU during inference.

1. Introduction
Image-based rendering and novel view synthesis are fun-

damental problems in computer vision, and there is a rich
and long history of research works in these directions [2–4].
This field of novel view synthesis, using a set of observed
images of a scene to recover 3D representation of the scene
that allows rendering from unobserved viewpoints, has seen
an unprecedented rise in popularity with the proposal of
Neural Radiance Fields (NeRF) [12]. Given a limited
amount of images of a scene, NeRF learns an implicit volu-
metric representation of the scene that allows photo-realistic
rendering of novel views of the scene that is able to capture
fine level details and view-dependent effects. Essentially,
it is a multi-layer perceptron (MLP) based model to learn
a mapping of 5D input-3D coordinates plus 2D viewing di-
rections to density and color values. The model is optimized
on a set of training views of a scene with known camera
poses. The learnt model can then be used to render novel

Figure 1. Memory requirement vs inference speed (to generate
800x800 image) for faster inference based NeRF models on the
synthetic 360◦ dataset [12]. Note: Reported numbers in this figure
may have different GPU settings. FastNeRF result uses Nvidia
RTX-3090 while PlenOctrees and SqueezeNeRF have been tested
on Nvidia V100.

views by volume rendering.

However, despite impressive view generation results,
NeRF has several limitations. Some of them are: (i) it can-
not handle dynamic objects and scene appearance(s), (ii) it
cannot handle unbounded scenes, (iii) a network trained on
one scene cannot generalize across another scene, (iv) it re-
quires relatively large number of views to learn an accurate
representation, and (v) slow inference speed. These several
limitations of NeRF have inspired several follow-up works
such as [1, 5, 19, 20].

In this work, we focus on the slow rendering issue of
NeRF. The reason why NeRF is slow during inference is
also, its greatest strength - an MLP-based volumetric rep-
resentation. How NeRF works is that for a given camera
pose, a ray is projected that passes through each pixel in the
image into the 3D scene. We then sample points on each
ray, predict the color and density value at each point and
then, do volumetric integration along each ray to compute
the final color at the pixel location. While the simplicity of
NeRF’s representation of a 3D scene via a MLP is elegant
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and results in high-quality novel view synthesis of a scene,
it also means that during inference, we need to query the
neural network to get the color and density values for mil-
lions of points. For example, in order to render a 800x800
image by sampling 192 points along each ray, we will need
to query the neural network for 122.88 million 3D points.
This means that it takes a several seconds to render an im-
age via NeRF on a high-end GPU.

There have been multiple works that have attempted to
speed-up NeRF inference [6–10, 14, 17, 18]. While all of
them are considerably faster than the original NeRF model
during inference, they either still do not achieve real time
rendering [8–10] or achieve real-time rendering at the cost
of significant memory overhead [6, 7, 17, 18].

The state-of-the-art approaches in speeding up NeRF in-
ference rely on caching the mapping learnt by MLP. Now
it must be stated that caching the original NeRF model is
not practically possible. This is because NeRF maps a 5-
dimensional input (3D coordinate p+ 2D viewing direction
d) to a 4-dimensional output (RGB color c and scalar den-
sity σ). So caching this function in the input space would
mean that the cache-size would scale with n5 (where n is
the number of bins or sampled values per input dimension).
For n = 512 bins per input dimension, the cache size would
be approximately 176 terabytes and infeasible to store. In
order to solve this issue, FastNeRF [6] proposed a novel
architecture that factorizes the problem into 2 independent
networks - their first MLP takes the 3D coordinate p as in-
put and the second MLP takes the 2D viewing direction d as
input. The outputs of these two networks are combined via
their inner product to produce the RGB color values. Now
considering np number of bins for each position dimension
and nd number of bins for each viewing direction compo-
nent, the FastNeRF cache size would have a complexity of
O(Dpn

3
p + Ddn

2
d) ∼ O(n3) where Dp and Dd represent

the dimensionality of the position dependent MLP output
and viewing direction dependent MLP output respectively.
For standard FastNeRF configuration of Dp = 25, Dd = 8
and np = 512, nd = 256, the cache size is approximately
6.7 GB, if all the values are stored as half-precision float-
ing point numbers. The FastNeRF authors further lever-
aged the scene sparsity to store a sparse cache instead of a
dense one in order to reduce the cache size to around 3GB.
Similarly, NeRF-SH [18] and SNeRG [7] also use an archi-
tecture based on similar factorization but rely on different
architecture and cache-storage strategy.

While FastNeRF and NeRF-SH (PlenOctrees based in-
ference) can render over 150 frames per second (FPS) on a
high-end GPU, their cache takes up several gigabytes (GBs)
of memory, which make them prohibitive for any embedded
system application and can lead to memory fragmentation
issues during inference. Moreover, as a NeRF requires a
different MLP to be trained for each scene, storing several

GBs of cache for every scene makes this memory overhead
issue even worse.

To address this issue, we propose SqueezeNeRF, a fur-
ther factorized version of FastNeRF which is able to ren-
der over 150 FPS with affordable cache-size. This makes
the model convenient for deploying on embedded systems.
SqueezeNeRF factorizes the position dependent MLP of
FastNeRF into 3 separate MLPs - which take (x, y), (y, z)
and (z, x) as input. This factorization enables SqueezeN-
eRF to have a cache-size complexity ofO((Dpxy +Dpyz +
Dpzx)n

2
p + Ddn

2
d) ∼ O(n2), where Dpxy , Dpyz , Dpzx

represent the dimensionality of the 3 position dependent
networks. For a standard SqueezeNeRF configuration of
Dpyz = Dpyz = Dpyz = 25, Dd = 8 and np = 512, nd =
64, the cache-size is approximately 40 MB, which is more
than 160 times memory efficient than the dense FastNeRF
cache, more than 65 times memory efficient that sparse
FastNeRF cache. We further compare our approach with
the fast inference based NeRF approaches in terms of per-
formance, speed and memory requirements and show that
our relatively straightforward approach is competitive with
the state-of-the-art approaches in terms of speed while be-
ing more memory-efficient, although is slightly inferior in
terms of image generation performance.

The contributions of our work can be summarized as:

• We propose SqueezeNeRF, which is the first approach
that allows NeRF rendering at over 150 frames per sec-
ond with cache-size less than 200 megabytes. The ap-
proach is based on a novel NeRF architecture, that is
based on further factorization of FastNeRF.

• We present a comprehensive evaluation of NeRF
follow-up works for faster inference and compare their
speed, performance and memory requirements.

2. Related Work

Neural Radiance Fields [12] has shown impressive re-
sults in the task of novel view generation of a static scene
but is limited by its slow inference speed. A number of re-
cent works [6–10, 14, 16, 18] have tried to address this par-
ticular limitation of NeRF. Our proposed model, SqueezeN-
eRF also belongs to these family of methods aimed to im-
prove the inference speed of NeRF.

AutoInt [9] proposed a neural network to learn integrals
along each ray with reduces number of point samples on
each ray. Neural Sparse Voxel Fields [10] learns a sparse
voxel grid that allows to skip over empty region during in-
ference. While considerably faster than NeRF, [9,10] do not
render at interactive frame rates.

KiloNeRF [14] splits one network into multiple tiny net-
works and parallelizes the multiple network evaluations.
DIVeR [17] combines implicit representation learning with



voxel based representation and uses deterministic integra-
tion instead of the sampling scheme done in NeRF. DON-
eRF [13] predicts depth distribution along each ray for
using reduced number of samples in volumetric render-
ing. NeX [16] models the scene as a multi-plane im-
age (MPI) rather than a continuous volumetric representa-
tion. While NeX shows impressive results, it cannot model
scenes where the viewpoint span is high. State-of-the-art
methods [6,7,18] in fast inference of NeRF rely on caching
the neural network output. Caching NeRF MLP is not feasi-
ble due to extremely high memory complexity. So all these
work modify the NeRF architecture in order to make this
caching possible. All [6,7,18] factorize the structure of the
implicit model, by using two separate neural networks for
3D position and camera view direction. While this factor-
ization allows their network cache to be 1000 times smaller
than NeRF and perform inference at interactive rate, their
cache-size is still in the order of few giga-bytes. Although
memory requirement in [7, 13, 14, 17] is smaller due to not
relying on cache [13, 14] or efficient compression scheme
[7], their rendering speed is less than those in FastNeRF [6]
and NeRF-SH [18]. In this work, we further factorize the
position dependent network in FastNeRF which allows us
to reduce the FastNeRF cache-size by more than 60 times
as compared to FastNeRF or NeRF-SH, while still main-
taining similar rendering speed.

A concurrent work [8] also proposed to combine implicit
representation based learning neural networks with a split
MLP architecture, which is similar in spirit to the idea of
factorization used by FastNeRF or us. They use a separate
MLP for each dimension of the input but they do not employ
caching for faster inference and their speed-up for inference
is significantly less than our approach.

3. Method
In this section, we describe SqueezeNeRF. FastNeRF

splits NeRF into 2 neural networks - a position (x, y, z) de-
pendent network and viewing direction dependent network.
The key idea in this work is to further split the position de-
pendent network into 3 networks, which are dependent on
(x, y), (y, z) and (z, x) respectively. We briefly recap NeRF
and FastNeRF in the following subsection before describing
the details of our model.

3.1. Background

Neural Radiance Fields (NeRF): Given multi-view im-
ages of a scene with known camera poses and parameters,
NeRF [12] learns to recover the 3D volumetric representa-
tion of a scene in the form of (i) opacity field or volume
density σ that captures a soft or an approximate geometry
of the scene and (ii) a radiance field or RGB color c that
captures the view dependent surface texture. This represen-
tation is captured in the form of a mapping from 3D co-

ordinate position p = (x, y, z) and 2D viewing direction
d = (θ, φ). A MLP FNeRF is used to learn this mapping
FNeRF : (p,d) → (σ, c). The density σ is modelled as a
function of p. On the other hand, the color c is modelled as
a function of both p and d.

How this process works is that for a given viewing angle,
in order to render a single pixel at pixel location P , a ray
is projected from the camera center that passes through that
pixel and into the 3D scene. This ray direction is denoted
as d. N number of 3D points are sampled along this ray
(p1,p2 . . .pN ) between the near and far plane of the cam-
era. Each point sample is fed as input to the neural network
which then predicts the color ci and density σi at each point
pi. The color and density value at each point is then used to
compute the final pixel color ĉ using volumetric integration
as:

ĉ(P ) =

N∑
i=1

Ti(1− exp(−σiδi)ci), (1)

where Ti = exp(−
∑i−1
j=1 σjδj) is the transmittance and

δi = (pi+1 − pi) is the distance between adjacent samples.
Given a set of training images with known camera poses,

NeRF optimizes the MLP by minimizing the squared error
between input pixel color and the pixel color value predicted
using Eq. (1). So, the network weights are trained to opti-
mize:
Lp =

∑
P ||c(P )− ĉ(P )||22,

where c(P ) is the ground truth color atP . Hence, by re-
placing an explicit volumetric representation with an MLP,
NeRF requires orders of magnitude less space than a dense
voxel grid, but rendering an image requires querying the
neural network at millions of 3D points, which makes the
rendering process slow and computationally expensive.

FastNeRF: As mentioned earlier, FastNeRF [6] splits
NeRF’s neural network FNeRF into two networks, (i) po-
sition dependent network Fpos : p → {σ, (u,v,w)}
and (ii) ray direction dependent network Fdir : d → β
where u,v,w are D-dimensional vectors that form a radi-
ance map describing the view dependent radiance at posi-
tion p, and β is a D−dimensional vector for the D com-
ponents of the deep radiance map. Note that D is a hy-
perparameter here and is set as 8 for most of the scenes in
FastNeRF and this work as well. The color at a given 3D
position is then computed by taking the inner product of the
weights and deep radiance map:

c = (r, g, b) =

D∑
i=1

βi(ui, vi, wi) = β
T · (u,v,w). (2)

After computing the color c at a given 3D position, the
final pixel color can be computed in a similar manner as
NeRF by using Eq. (1).
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Figure 2. Neural network architecture comparison. Top left: NeRF architecture. Cache-size of the original NeRF network is of the
order O(n5), where n is the number of bins per input dimension. Top right: FastNeRF [6] architecture based on factorization into position
dependent network Fpos and Fdir. Cache-size of FastNeRF network is of the order O(n3). Bottom: Proposed SqueezeNeRF architecture
that further factorizes the position dependent network in FastNeRF into 3 networks: F xy

pos , F yz
pos and F zx

pos . Cache-size of SqueezeNeRF
network is of the order O(n2). In the above diagram, (x, y, z) denotes 3D position of input sample, (θ, φ) denotes camera ray direction
and (r, g, b, σ) are the color and density/opacity values.

3.2. SqueezeNeRF

Default architecture: In our proposed SqueezeNeRF,
we further split Fpos into three networks as:
F jpos : j → {(σj0,W j

σ), (w
j
u,u

j
0,w

j
v,v

j
0,w

j
w,w

j
0)}, for

∀ j ∈ {(x, y), (y, z), (z, x)}.
We then compute σj ,uj ,vj and wj (∗ denotes point-

wise multiplication) as:

σj = σj0 ∗ wjσ,k
j = wj

k ∗ k
j
0 ∀ k ∈ {u,v,w}. (3)

Essentially for each σj and kj , we also compute its cor-
responding weight. In our experiments, we found that ex-
plicitly predicting the weight of the quantities and then, us-
ing them for subsequent computation Eq. (4) led to better
results. We also present the non-weighted network perfor-
mance as an ablation study in Tab. 5.

We then combine the output of the three networks:

σ = fσ({σj}),k = fk({kj}) ∀ k ∈ {u,v,w},
∀ j ∈ {(x, y), (y, z), (z, x)}.

(4)

There can be multiple ways in which we represent the
network outputs. In the default SqueezeNeRF configura-
tion, for simplicity, we model each σj as a scalar value and

each k as a D dimensional vector (wjσ ∈ R,w
j
k ∈ RD).

We use a straightforward combination scheme to model
fσ, fk as represented in Fig. 2. We simply multiply all σj

to get our final σ value. We add each kj to get k.
Alternate architecture: We also evaluate our factoriza-

tion scheme with another type of architecture. Referred to
as "SqueezeNeRF (alt)" in our results, Fpos is split as
Fposj : j → {σσσj ,uj ,vj ,wj}.
Here each σσσj ∈ RDσ and k ∈ RDk . In our experiments,

Dσ is set as 12 and Dk is set as 8. Finally σ and (u,v,w)
is computed as:

σ =Wσ[concat({σσσj})] + bσ,

k =Wk[concat({kj})] + bk,
(5)

where Wσ ∈ R1×3Dσ , bσ ∈ R, Wk ∈ RD×3Dk , bk ∈
RD are learnable parameters, that are also saved when the
neural network is cached and concat refers to concatenation
operation.

Please note that while other factorization schemes such
as splitting (x, y, z) into x, y, z instead of (x, y), (y, z) and
(z, x) is also possible but, we found that the former factor-
ization scheme lead to considerably inferior results. Exper-
imentation with more sophisticated combination functions



in Eq. (4) is left as part of future work.
Fdir remains same as that in FastNeRF. After computing

σ, (u,v,w), we follow Eq. (2) to compute the color at a 3D
point sample and then use Eq. (1) to compute the final pixel
color. After computing the final pixel color, SqueezeNeRF
is trained in a similar manner as NeRF.

3.3. Caching

The motivation of our proposed architecture is that the
cache-size of the mapping learnt by all the F jpos and Fdir
is considerably small. Following similar caching strategy
as described in FastNeRF, we define a bounding box that
covers the entire scene captured by the NeRF. We sample np
values along each 3D dimension and nd number of points
for each of the ray direction coordinate θ and φ. Hence
for each F jpos, we store the output of n2p values, that is, we
store { σj , (uj , vj , wj) } for every ordered pair of j. For
default architecture, σj is a scalar value and (uj , vj , wj)
areD dimensional vectors, we store 3n2p(3D+1) values for
n3p combination of (x, y, z). Similarly for SqueezeNeRF
(alt), we store 3n2p(3D + Dσ) values for n3p combination
of (x, y, z). For Fdir, we store the output for D dimensional
vector for the n2d combination of (θ, φ). So, we store n2d(D)
output values of Fdir.

In our experiments, we observe that nd = 64 for syn-
thetic 360◦ [12] and nd = 32 for LLFF dataset [11] is
sufficient for good results. We further test the cache based
inference model for np = 512 (referred to as 512 cache)
and np = 1024 (referred to as 1K cache). Based on our
experimental observations, we store each σj using 32 bit
floating point precision whereas each of uj ,vj ,wj and β
are stored using 16 bit floating point precision. In total,
our 1K cache takes up 155MB of memory whereas our
512 cache occupies 39MB. A similarly dense 1K cache for
FastNeRF would take approximately 54GB, and the corre-
sponding 512 cache would occupy approximately 6.7GB.
Also, the corresponding 1K cache and 512 cache size for
NeRF would be approximately 35TB and 4.4TB respec-
tively. Alternatively, SqueezeNeRF (alt) is evaluated with
np = 512, nd = 256 and all the values are stored us-
ing 16 bit floating point precision. So, the 512 cache for
SqueezeNeRF (alt) occupies 58MB. Readers are referred to
the Supplementary of [6] for the formulas used to calculate
cache sizes for FastNeRF and NeRF. The formula was sim-
ilarly adapted for cache-size calculation of SqueezeNeRF.

Also note that as the dense cache corresponding to Fast-
NeRF, NeRF-SH [18] and SNeRG [7] are quite huge, they
save a sparse cache of the neural network mapping based
on the scene geometry. While this works fine in case of
the scenes used for comparison in this and their work, we
believe that this will be less effective for highly dense and
feature-rich scenes. On the other hand, SqueezeNeRF en-
ables storage of affordable dense cache.

3.4. Implementation

The SqueezeNeRF training script is based on that of
NeRF [12]. Apart from the different architecture, the train-
ing process is identical to NeRF.

The position dependent MLPs are modelled using 6 lay-
ers with 256 hidden units each whereas the view dependent
MLP is modelled with 4 layers and 128 hidden units. As
our network has more number of parameters than NeRF, it’s
training and inference without caching the trained network
is slower than that of NeRF. Other training features such as
hierarchical sampling and positional encoding and training
and testing hyper-parameters are same as that in NeRF.

At inference, similar to NeRF, our method takes a test
view as input and predicts the color at each pixel location
as described in Sec. 3.2. We sample 256 points along each
projected ray. The 3D location and viewing direction of
each point is then used to fetch σj ,uj ,vj ,wj ,β from the
respective cache files, which are then used to compute the
color and density using Eq. (4) and Eq. (2). Finally, the final
pixel color is computed using Eq. (1).

While we use custom CUDA kernels for speeding up in-
ference, our implementation relies on simply querying our
dense cache and computing the pixel color via ray march-
ing. We use nearest neighbour interpolation for cache look-
up of the outputs of F jpos and bilinear interpolation for sam-
pling from the cache of Fdir

Unlike FastNeRF, we did not use bounded volume hi-
erarchy based ray tracing or other performance enhance-
ments. Therefore, the performance of our approach can be
further improved with similar techniques.

4. Experiments, Result and Discussion

We evaluate our method along with the current ap-
proaches on novel view synthesis in terms of quality of ren-
dered images, speed at which the images are generated and
memory requirement for any additional data structure such
as a cache for neural network output or weights of trained
neural network. We use two datasets for this task - NeRF
synthetic 360◦ [12] and forward facing Local Light Field
Fusion (LLFF) dataset [11].

Image quality: To evaluate the quality of rendered im-
ages, we quantitatively measure the performance by com-
paring the model output to its corresponding ground truth
image in the test set using 3 metrics - Peak Signal to
Noise Ratio (PSNR), Structured Similarity (SSIM) [15] and
LPIPS [21]. In the top half of Tab. 1 and Tab. 2, we com-
pare the quality of images rendered by our model (without
caching) to NeRF [12], the corresponding network outputs
of the different NeRF variants that also rely on caching for
speeding up inference [6, 7, 18] and faster inference based
NeRF models that do not rely on caching. In the bottom
half, we compare the cache based inference of the different



Method Image Generation Quality Speed [FPS] ↑ Memory [MB] ↓PSNR [dB] ↑ SSIM ↑ LPIPS ↓
NeRF [12] 30.23 0.946 0.050 0.04 5
FastNeRF (no-cache) [6] 29.16 0.936 0.053 0.03 28
NeRF-SH (no-cache) [18] 31.57 0.953 0.047 14 12
JAXNeRF+ Deferred [7] 30.55 0.952 0.049 0.01 18
KiloNeRF [14] 31.00 0.920 0.060 50 160
AutoInt (8 sections) [9] 25.55 0.911 0.170 0.6 5
DIVeR32 (RT) [17] 32.12 0.958 0.033 47 68
SqueezeNeRF (no-cache) 29.59 0.931 0.038 0.02 11
FastNeRF (1K Cache) 29.97 0.941 0.053 172 16200
FastNeRF (512 Cache) N/A N/A N/A 238 2700
NeRF-SH (PlenOctree) 31.71 0.958 0.053 168 1900
SNeRG (PNG) [7] 30.38 0.950 0.050 84 87
SqueezeNeRF (1K Cache) 29.61 0.921 0.046 165 155
SqueezeNeRF (512 Cache) 28.12 0.917 0.087 168 39

Table 1. Results: Comparison of Image Quality, inference speed and required memory for storing cache/network weights for the
novel view synthesis of 800x800 image in synthetic 360◦ dataset.

Method Image Generation Quality Speed [FPS] ↑ Memory [MB] ↓PSNR [dB] ↑ SSIM ↑ LPIPS ↓
NeRF [12] 26.50 0.855 0.07 0.06 5
FastNeRF (no-cache) [6] 27.96 0.888 0.063 0.04 28
JAXNeRF+ Deferred [7] 24.32 0.808 0.086 0.00 18
AutoInt (8 sections) [9] 24.14 0.820 0.176 0.6 5
NeX [16] 27.26 0.904 0.178 449 89
SqueezeNeRF (no-cache) 24.32 0.808 0.085 0.03 11
SqueezeNeRF (alt, no-cache) 26.08 0.859 0.081 0.02 11
FastNeRF (768 Cache) 26.04 0.856 0.085 714 6100
SNeRG (PNG) [7] 25.63 0.818 0.183 27 373
SqueezeNeRF (1K Cache) 22.50 0.762 0.122 480 155
SqueezeNeRF (512 Cache) 21.62 0.729 0.189 484 39
SqueezeNeRF (alt, 512 Cache) 23.87 0.817 0.071 190 58

Table 2. Results: Comparison of Image Quality, inference speed and required memory for storing cache/network weights for the
novel view synthesis of 504x378 image in LLFF dataset.

NeRF variants to our model’s cache based inference. The
reported PSNR for NeRF synthetic 360◦ and LLFF are av-
eraged across all the eight types of scenes present in the two
types of datasets. KiloNeRF [14], DIVeR32 [17] and NeRF-
SH [18] are not designed for frontal facing and unbounded
scenes so, their performance is not reported in Tab. 2. Like-
wise, NeX [16] is not designed for 360◦ scenes so its perfor-
mance is not reported in Tab. 1. The reported PSNR in these
tables are taken from the respective papers. From these ta-
bles, we can see that the quality of images generated by our
proposed network architecture is competitive with NeRF
and other models. Cache based inference does lead to a
degradation in the quality of the images, but also provides
significantly high rendering speed. For the NeRF synthetic
360◦ dataset, the drop in quality due to cache based infer-

ence is still small (<7%) and the rendered images in Fig. 3
(a-b) also verify that that. For LLFF dataset, the drop in im-
age quality is relatively higher but still, the rendered images
in Fig. 3 (d-e) still look reasonable. The significant drop in
the quality of images generated by SqueezeNeRF for LLFF
dataset served as our motivation to propose SqueezeNeRF
(alt). From the tables, we can see that the quality of images
generated by SqueezeNeRF (alt) is superior to SqueezeN-
eRF but the performance improvement comes at the cost of
slower inference speed. With that said, with caching, we
can still render at 190 FPS with SqueezeNeRF (alt).

Rendering speed comparison: We compare the infer-
ence speed of our method with the baselines in terms of
number of image frames generated per second. In Tab. 1
and Tab. 2, the inference speed for NeRF [12], NeRF-SH



(no-cache and plenoctree) [18], AutoInt [9] has been meau-
red on a single Nvidia V100 GPU. FastNeRF has been mea-
sured on Nvidia RTX 3090, while JAXNeRF+ Deferred
and SNeRG have been measured on Nvidia RTX 2080 and
KiloNeRF [14] and DiVeR32 [17] have been measured on
Nvidia GTX 1080 Ti. For the purposes of comparison in
Tab. 1, Tab. 2 and Tab. 4, we report our performance on
a single Nvidia V100 GPU. We also report our inference
speed on Nvidia A100 GPU in Tab. 3.

In Tab. 1 and Tab. 2, we can see that our method enables
real-time inference of NeRF and is able to render at over
150 frames per second. The rendering speed of our method
is competitive with the state of the art methods [6,18], while
our memory requirement is significantly less than these
methods. Moreover, in Tab. 4, we also compare [6,18] with
our method in terms the time taken to generate taken to gen-
erate the cache for neural network. Our smaller cache-size
allows us to generate the cache in less than 9s, in contrast
to the considerably longer time required by other methods,
which is another advantage of our method. So even if the
inference speed of our 512 cache model is less than the cor-
responding FastNeRF model, it will take FastNeRF over 16
minutes to compensate for the longer cache generation time
in comparison to our approach.

Memory comparison and speed-memory trade-off: In
Tab. 1 and Tab. 2, we also compare the memory requirement
of our method along with our baselines. For SNeRG [7],
NeRF-SH (PlenOctree) [18], FastNeRF [6] cache based in-
ference and our method, memory here refers to the net-
work cache-size. For other methods, memory here refers
to the memory occupied by the weights of the trained neu-
ral network. From the two tables, we can see that non-
caching based methods have a considerably less memory
overhead but have a slower inference speed compared to
the caching based methods. So there is a clear trade-off be-
tween the memory efficiency of a model and it’s inference
speed. From Tab. 1, Tab. 2 and Fig. 1, we can see that our
model can generate images at a high speed, which is com-
petitive with caching based methods, with sufficiently low
memory requirement, which is closer to the non-caching
based methods.

Other experiments: In Tab. 5, we also present results
of our model with different configurations. We compare the
quality of image generation of our final model configura-
tion (referred to as SqueezeNeRF (no-cache) in Tab. 5) in
terms of PSNR to the different configurations of hidden di-
mension in the MLPs of F xypos , F yzpos and F zxpos and different
settings of D, dimensionality of u,v,w and β. In Tab. 5,
we also show the effect of number of bins per dimension on
the quality of images generated via cache-based inference.

Method Cache-size Speed [FPS] ↑
[MB] ↓ V100 A100

SqueezeNeRF (1K cache) 155 165 200
SqueezeNeRF (512 cache) 39 168 202

Table 3. Results: cache-size and inference speed. SqueezeNeRF
cache-size and inference speed of the 800x800 images from syn-
thetic 360◦ scene. The inference speed has been reported on two
different GPUs - Nvidia V100 and Nvidia A100.

Method Time [sec] ↓
FastNeRF (1K cache) [6] 420
NeRF-SH (PlenOctree) [18] 1539
SqueezeNeRF (1K cache) 9

Table 4. Results: Cache generation time on a single Nvidia
V100 GPU. Comparison of time required to cache the trained neu-
ral network into a sparse 3D grid (for FastNeRF) or Octree (for
PlenOctree) or dense 2D grid (for SqueezeNeRF).

Configuration PSNR [dB] ↑
NeRF [12] 26.80
SqueezeNeRF (No-cache): 256 hidden units, 26.92D=8, weighted combination Eq. (3)
128 hidden units, D = 8, using Eq. (3) 25.61
256 hidden units, D = 6, using Eq. (3) 26.31
256 hidden units, D = 10, using Eq. (3) 26.67
256 hidden units, D = 8, without Eq. (3) 24.11
np = 1024, nd = 64 (cache-size=155MB) 26.68
np = 1024, nd = 32 (cache-size=155MB) 26.46
np = 512, nd = 64 (cache-size=39MB) 24.52
np = 512, nd = 32 (cache-size=39MB) 24.42

Table 5. Results: Other experiments and ablation study. Com-
parison of Image quality (in PSNR) of the different SqueezeNeRF
configurations for the "Chair" scene in synthetic 360◦ dataset. In
the first row, we report NeRF performance as a reference.

5. Summary and Limitations

We present SqueezeNeRF, a further factorized varia-
tion of FastNeRF [6] that allows real-time rendering of
NeRF [12] in a memory efficient manner. Similar to the
state of the art methods, FastNeRF and NeRF-SH [18], our
method also relies on storing a cache of the neural network
mapping so that during inference we can replace the mil-
lions of neural network computations by simple look-up op-
erations. But while these method can also render at over 150
frames per second, their cache-size, even though they store
a sparse version of it, is in the order of few GBs which is
a major drawback for any embedded systems application.
Our proposed model factorizes the NeRF MLPs into a view
conditioned network which takes the camera viewing di-
rection (θ, φ) as input and three position conditioned net-
works, which take (x, y), (y, z) and (z, x) as input respec-



(a) Blender scene: Hotdog

(b) Blender scene: Chair

(c) LLFF scene: Horns

(d) LLFF scene: Room

Figure 3. Results: Images generated from a novel view in the test set. From left to right: Ground truth image from the test set, NeRF
generation, SqueezeNeRF (no-cache) generation, SqueezeNeRF (1K-cache) generation, SqueezeNeRF (512-cache) generation

tively. This factorization allows us to reduce the memory
complexity of our neural network cache from O(n3) (for
FastNeRF) to O(n2). This allows us to store a dense cache
which occupies less than 160MB and still enables us to ren-
der over 160 frames per second with Nvidia V100 and over
200 frames per second with Nvidia A100.

Despite being competitive with the state of the art models
in rendering speed with a considerably less memory over-
head, the quality of images generated via cache based in-
ference of our approach is inferior to NeRF and some of
the other baselines. This can be attributed to our relatively
simple combination scheme of fusing the intermediate out-
puts as described by Eq. (4). A more sophisticated fusion of
these intermediate output or incorporation of training tech-
niques from some other follow-up works on NeRF such
as [5, 13, 20] should lead to higher quality of rendered im-

ages. Another point to worth noting is that our factorization
scheme, while applied to the position dependent network of
FastNeRF in this work, also lends itself for future applica-
tion to NeRF-SH and SNeRG [7] in a similar manner.
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