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Abstract

In recent years novel activation functions have been pro-
posed to improve the performance of neural networks, and
they show superior performance compared to the ReLU
counterpart. However, there are environments, where the
availability of complex activations is limited, and usually
only the ReLU is supported. In this paper we propose meth-
ods that can be used to improve the performance of ReLU
networks by using these efficient novel activations during
model training. More specifically, we propose ensemble ac-
tivations that are composed of the ReLU and one of these
novel activations. Furthermore, the coefficients of the en-
semble are neither fixed nor learned, but are progressively
updated during the training process in a way that by the end
of the training only the ReLU activations remain active in
the network and the other activations can be removed. This
means that in inference time the network contains ReLU ac-
tivations only. We perform extensive evaluations on the Im-
ageNet classification task using various compact network
architectures and various novel activation functions. Re-
sults show 0.2–0.8% top-1 accuracy gain, which confirms
the applicability of the proposed methods. Furthermore, we
demonstrate the proposed methods on semantic segmenta-
tion and we boost the performance of a compact segmen-
tation network by 0.34% mIOU on the Cityscapes dataset.

1. Introduction

Currently, the most widely used activation function in
neural networks is the Rectified Linear Unit (ReLU) [32].
However, in the past couple of years both hand-crafted (e.g.
Gaussian Error Linear Unit - GELU [13], or Mish [31]), and
search-based (Swish [34]) smooth, non-monotonic, contin-
uous activation functions have been proposed, which out-
perform ReLU networks. In general, these activations pro-
vide a better information propagation in the network, and
they solve some weaknesses of ReLU, for example the

problem of dying ReLUs. Currently, networks using novel
activations can be found at the top of the leaderboards of
popular benchmarks such as ImageNet [5] classification, or
MS-COCO [23] object detection. Although these activa-
tions can be used to improve the performance, in some envi-
ronments they have no hardware support, which limits their
applicability. For example in many embedded systems (e.g.
in autonomous driving systems) the hardware supports the
ReLU (or optionally some ReLU-variant, e.g. ReLU6) acti-
vation only, and hence using these novel activations in such
systems is cumbersome or, in the worst case, not feasible.

In this paper, we propose training methods to improve
the performance of ReLU networks. We use state-of-the-
art smooth, non-monotonic, continuous activation functions
(referred as SOTA activation hereinafter) in the beginning
of the training process, and as the training progresses the
network is adapted to the ReLU activation. In the proposed
methods an ensemble is created from these two activations.
Moreover, the activation coefficients of the ensemble are
progressively updated during training in a way that the co-
efficient of the SOTA activation is decayed towards zero.
We name our training method as Progressive Ensemble Ac-
tivations or PEA. At the end of the PEA training process we
obtain a network containing ReLU activations only, and the
network can be deployed in environments, where only the
ReLU activation is supported. We propose two ensemble
variants: i) a weighted ensemble model linearly combining
the two activations, and ii) a stochastic variant, where the
activation function is randomly selected. Our experiments
show that the proposed methods improve the accuracy of
the resulting ReLU network. Note that the ensemble is used
during training only, but the network used during inference
is a ReLU network. This means that from the network’s
point of view the improvement is for free, as the network
architecture during inference is unchanged. In this work,
our main focus is on improving compact, low-latency net-
works, that can be used in real-time vision applications e.g.
in mobile or embedded systems.

We extensively evaluate the proposed methods on the
ImageNet classification task in Sec. 4.1, using compact
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ReLU networks and various recent SOTA activations. Ac-
cording to our experiments, the proposed PEA training pro-
cess results in ReLU networks with improved top-1 accu-
racy, and this improvement can go as high as 0.82%. Al-
though our main focus is on compact networks, we also
applied PEA for training a large ResNet-50 network, and
improved its top-1 accuracy by 0.23%. Next, we demon-
strate the proposed methods on semantic segmentation task
in Sec. 4.2, and we improved the performance of a compact
neural network by 0.34% mIOU on the Cityscapes dataset.

Our contributions are summarized as follows:

1. We propose the PEA training method to improve the
performance of ReLU networks. PEA uses ensemble
activations during training and updates the ensemble
coefficients progressively, while in inference time the
ensemble activation is replaced by a ReLU.

2. We propose two ensemble variants: i) in the weighted
ensemble the activations are linearly combined, and ii)
in the stochastic ensemble the activations are randomly
selected.

3. We demonstrate the capabilities of the proposed
method on ImageNet classification. In our experi-
ments we mainly focus on compact low-latency net-
works (AlexNet, MobileNet, ERFNet, ResNet-18). In
addition, we also apply the method on a larger ResNet-
50 network. The proposed methods improved the top-1
accuracy of these networks by 0.2–0.8%.

4. We demonstrate the proposed method on semantic seg-
mentation, and we improve the performance of the
compact ERFNet network by 0.34% mIOU on the
Cityscapes dataset.

2. Related Works
In our proposed methods we use SOTA activation func-

tions during the network training, hence we start with a brief
introduction to some of the recent activations, especially
those that showed great success on popular vision bench-
marks. Then we discuss techniques that can be used for
improving the accuracy, and more specifically we focus on
techniques, that do not modify the inference time network
architecture. For simplicity, we refer to these techniques
as for-free methods, which in general improve the accu-
racy with modifications in the training process, but the final
model structure used during inference is left intact.

2.1. Activation Functions

Early neural networks used sigmoid or tanh as activa-
tion, but they were ineffective in deep neural networks. The
Rectified Linear Unit (ReLU) [32] was the first success-
ful activation in deep neural networks [9], and is still the

most widely used activation in various networks. Moreover,
the ReLU is supported by a large range of hardware, in-
cluding GPUs, TPUs, mobile or embedded AI accelerators.
However, it has some well-known weaknesses, such as dy-
ing ReLUs [28], which can be mitigated by using careful
weight initialization [11], regularization during the training
(e.g. Dropout [40]), or normalization techniques (e.g. batch
normalization [17]) in the network architecture.

To overcome these weaknesses, some other works re-
place the ReLU with more efficient activation functions,
such as Leaky-ReLU [29], Exponential Linear Unit (ELU)
[2], or Scaled Exponential Linear Unit (SELU) [20]. In
recent state-of-the-art neural networks the ReLU is usu-
ally replaced by smooth, non-monotonic, continuous acti-
vations, which retain the advantageous properties of ReLU,
e.g. they are bounded below resulting in sparsity, and un-
bounded above resulting in unsaturated output. On the other
hand, they result in a smooth output landscape and hence
in a better gradient flow. Moreover, they also reduce the
dying neurons phenomenon, and unlike the ReLU they are
continuously differentiable. One of the earliest such acti-
vation is the Gaussian Error Linear Unit (GELU) [13], de-
fined as GELU (x) = x · 1

2

[
1 + erf

(
x/

√
2
)]

. With the
recent introduction of Transformers for vision tasks e.g.
[6, 26] the GELU activation has become very popular. The
Swish activation was proposed in [34], and unlike previous
hand-crafted activations, it was discovered by architecture
search. Swish is defined as Swish (x) = x · sigmoid (βx),
where β is either a constant or a trainable parameter, and
if β = 1, it is equivalent to the Sigmoid-weighted Lin-
ear Unit (SiLU) [7]. In their extensive experiments they
found that Swish consistently outperforms ReLU in most
cases. Finally, the Mish activation, defined as Mish (x) =
x · tanh (softplus (x)), was proposed in [31]. Its design
was inspired by the self-gating mechanism of Swish, which
means the input is multiplied with the non-linear function
of the input. In their evaluations they found that Mish
outperforms other activations, including GELU and Swish.
Note that these activations are relatively complex, but effi-
cient implementations are available for high-end GPUs, e.g.
Swish is supported in cuDNN 8.2.

The superior performance of these novel activation func-
tions is also apparent in popular vision benchmarks out-
performing previous ReLU networks. For example, at the
time of writing the manuscript the transformer-based ViT-
G/14 network was leading the ImageNet benchmark with
90.94% top-1 accuracy, and it uses GELU activations. The
best convolutional neural networks include EfficientNet-L2
using Swish (top-1=90.2%), and NFNet-F4+ using GELU
(top-1=89.2%). The top of the MS-COCO object detec-
tion [23] leaderboard was populated by Transformer based
networks, which use the GELU activation. Such works
include [25, 41, 42] where the backbone is a Swin Trans-



former [26] variant, and their average precision (AP) is in
the range of 62.4−63.3. The best performing convolutional
detector (AP = 57.3) [8] is a Cascade Mask-RCNN, based
on the EfficientNet-B7 architecture, which uses the Swish
activation. Nevertheless, the applicability of neural net-
works using these activations is limited in resource-limited
systems, such as embedded AI accelerators, where only the
ReLU activation is supported by the hardware.

2.2. For-Free Methods

As discussed above in Sec. 2.1 the accuracy of neural
networks can be improved by using one of the novel acti-
vation functions proposed recently. However, the improve-
ments of this approach are not for-free, because i) these ac-
tivations come with an increased inference time caused by
their complex formulation, and ii) in the worst case they
have lack of support in several environments, such as em-
bedded AI accelerators.

On the other hand, there are existing approaches that can
be used to improve the performance of neural networks for-
free. Such widely used approaches for convolutional neu-
ral networks include different random image augmentations
(pixel manipulation, or geometric transformation) e.g. Ran-
dAugment [4], or regularization techniques such as weight
decay [22], or Dropout [40]. Some other works improve the
performance by using a better optimization method to train
the network, and i) replace the vanilla SGD with advanced
algorithms such as the adaptive Adam [19] or RAdam [24],
or the Lookahead mechanism proposed in [43], or ii) use
hand-crafted learning rate schedule, such as piece-wise
constants, exponential/polynomial/cosine decay, or using
restart techniques [27]. The Stochastic Depth method [16]
is specially designed for improving deep ResNet networks,
and during training it randomly disables the residual branch
of a block, bypassing it through the identity transform in
the skip connection branch. The Stochastic Weight Averag-
ing (SWA) method [18] creates and ensemble in the weight
space, and combines the weights of the network at differ-
ent stages of the training into a single model, which is ob-
tained by maintaining the running average of these weights.
In our experiments we also use some of these well-known
techniques, in particular we use simple data augmentations,
dropout, weight decay, different learning rate schedules,
and adaptive optimizers.

Recently, the ExpandNets method [10] was proposed to
improve the performance of networks, and it applies lin-
ear over-parameterization during training. Each layer is
expanded into a succession of multiple layers without us-
ing any non-linearity between them. This results in an in-
creased number of network parameters during training, but
due to the lack of non-linear transformations they can be
contracted back into the original form after the training is
finished. Although the method does not affect the inference

time, the additional matrix operations in the expansion re-
sults in significantly increased training time and memory
footprint, e.g. the authors reported a 2 to 5 times slower
training of compact networks using an expansion rate of 4,
which can be a limitation for training larger networks.

Another approach for improving compact networks is
knowledge distillation (KD) where a trained teacher (typ-
ically a big network) provides knowledge either i) as the
supervisory signal [14], or ii) as some regularization of in-
termediate layers of the compact student network [21, 36].
However, recent works in KD [1, 30, 37, 38] found that the
final accuracy of the student is largely affected by many dif-
ferent factors of the teacher-student setup, including e.g. ini-
tialization, label smoothing, weight decay, or teacher qual-
ity. Finally, recent advances in self-supervised and semi-
supervised learning show promising results, but these meth-
ods require a large number of additional unlabeled, but cu-
rated training data to improve the performance. For exam-
ple in [33] the authors use 300 million unlabeled images to
boost the ImageNet top-1 accuracy of their network.

In this paper we propose an alternative for-free ap-
proach, which is complementary to other techniques dis-
cussed above, and its training-time computation overhead
is relatively small. To the best of our knowledge there is no
prior work that uses SOTA activation functions during train-
ing time to improve the performance of ReLU networks.
In the proposed method we create ensembles composed of
the ReLU and the efficient activation functions discussed in
Sec. 2.1. During training the ensemble is progressively up-
dated in a way that by the end of the training only the ReLU
remains active, and the other activation can be removed.
This means that the computation overhead during training is
mainly due to the additional point-wise activations, which
requires significantly less computation and memory as com-
pared to e.g. the additional matrix operations used in Ex-
pandNet. This means that our proposed methods can also
be applied to improve larger networks.

3. Proposed Methods
During training the proposed PEA methods use ensem-

ble activations, which are composed of the ReLU and one
of the SOTA activations discussed in Sec. 2.1. Let x ∈ Rn

denote a tensor, and let f (x, α) denote the ensemble acti-
vation parameterized by coefficient α. We perform model
training in three phases, such that by varying the ensem-
ble coefficients α we control the contribution of each ac-
tivation. In the first part of the training, referred as ini-
tial phase, only the SOTA activation contributes to the en-
semble, and the ReLU is disabled. Next, in a transition
phase the ensemble is slowly adapted towards the ReLU
activation, which means that the contribution of the SOTA
activation is decayed, while the contribution of the ReLU
is increased. The training process is finalized in the final



phase, where only the ReLU activation is used to fine-tune
the network and the SOTA activations are completely dis-
abled. This means that the final network contains ReLU
activations only. In the next subsections we present two dif-
ferent ensemble variants. Note that both methods involve
the computation of two activations, but this extra operation
is relatively cheap as compared to the other computation-
heavy operations like matrix multiplication used in convo-
lutions or in fully-connected layers.

3.1. Weighted Ensemble

In the first ensemble variant we create a simple weighted
ensemble model linearly combining the two activations, i.e.

fw (x, α) := α · ReLU (x) + (1− α) ·ActS (x) , (1)

where ActS denotes one of the SOTA activations, e.g. in our
experiments we use ActS ∈ {GELU,Swish,Mish}. fw is
parameterized by α, which controls the contribution of the
two activations. Note that parameter α is not learned, but
is progressively updated during training as follows. In the
initial phase we set α = 0, which means that the ReLU ac-
tivation is disabled. Next, in the transition phase we slowly
update α towards 1, such that the network is progressively
adapted to the ReLU activation. In our experiments we use
a linear schedule to update α, i.e.

αt =
t

Ttrans
, (2)

where t denotes the tth iteration of the transition phase, and
Ttrans is the total number of iterations of this phase. As
the training progresses (t → Ttrans) the αt coefficient of
the ReLU in Eq. (1) gets higher (α → 1). Finally, in the
final phase of PEA, the training is finished with α = 1, i.e.
only the ReLU activation is used. This linear schedule is
demonstrated in Fig. 1, where the coefficient of the ReLU
activation (i.e. αt) is denoted by a solid red line, and the
coefficient of the SOTA activation is by a dashed blue line.

3.2. Stochastic Ensemble

In the second variant we create an ensemble, where the
activation is randomly selected. In our experiments the en-
semble is composed of two activations, and they are sam-
pled according to a Bernoulli distribution, where the param-
eter of the distribution is updated such that as the training
progresses, the ReLU activation is selected with increasing
probability. Formally, we define the stochastic ensemble as

fs (x, α) :=

{
ActS (x) if r = 0
ReLU (x) if r = 1

, r ∼ Bern (α) (3)

We apply the same scheduling as used with the weighted en-
semble in Sec. 3.1, we start with α = 0 in the initial phase

Figure 1. A linear scheduler provides the coefficients of the
weighted ensemble. The solid red line denotes the αt coefficient
of the ReLU activation. In the initial phase (first 5 epochs) it is set
to 0. During the transition phase (epochs 6–115) it is progressively
increased towards 1. In the final phase (last 5 epochs) it remains 1.
The dashed blue line denotes the coefficient of the SOTA activa-
tion of the ensemble, which is 1−αt, and in the transition phase it
is decayed from 1 towards 0. It remains 0 in the final phase, which
means that only the ReLUs are used in the final network.

(r = 0, only ActS is sampled), followed by the transition
phase using the parameter schedule of Eq. (2), and finally
using α = 1 in the final phase, where r = 1 means that
only the ReLU activation is used. Note that this random-
ized mechanism used in fs is similar to the Dropout [40],
where tensor elements are randomly zeroed, i.e. Dropout
could be formulated by using ActS (x) = 0 in Eq. (3).

4. Experiments
For the experiments we implemented the proposed PEA

methods in TensorFlow: the two ensemble activations dis-
cussed in Secs. 3.1 and 3.2 as Keras Layers, and the ensem-
ble parameter schedulers of Eq. (2) as Keras Callbacks.

4.1. ImageNet Classification

First, in ImageNet classification we evaluated four com-
pact neural networks, including AlexNet [22], ResNet-18
[12], ERFNet [35], and MobileNet [15]. In AlexNet we re-
placed the local response normalization (LRN) with batch
normalization (BN) [17] as proposed in [39], referred as
AlexNet-BN in the rest of the paper. For the other net-
works we used their original architecture without any mod-
ifications. As the details of the architecture of the ERFNet
ImageNet classifier was not discussed in the published pa-
per [35], similarly to ResNet-18 we applied global average
pooling on the last feature map to extract a feature vector,
and used a single fully-connected layer for classification.
Moreover, we use the smallest MobileNet variant, which
has a width multiplier of α = 0.25, referred as MobileNet-
0.25 in the rest of the paper.

In our experiments we used the Image Classification
repository from the TensorFlow Model Garden1. Our train-

1https : / / github . com / tensorflow / models / tree /
master/official/vision/image_classification

https://github.com/tensorflow/models/tree/master/official/vision/image_classification
https://github.com/tensorflow/models/tree/master/official/vision/image_classification


Table 1. Top-1 accuracy of the reproduced baseline ImageNet clas-
sifiers using ReLU. Our reported results are the average of 5 runs.

Baseline ReLU net Top-1 (repr) Top-1 (publ)

AlexNet-BN [39] 60.74 60.1
ResNet-18 [12] 70.31 69.57
ERFNet [35] 66.35 N/A
MobileNet-0.25 [15] 51.17 N/A

ing setup is based on the default settings of the ResNet-
50 configuration: crop and flip augmentations, ImageNet
standardized input, batch size of 256, label smoothing with
α = 0.1, SGD optimizer with momentum 0.9, a piece-wise
learning rate schedule reducing the learning rate by a factor
of 0.1 three times (at epochs 30, 60, and 80), and using a
linear warm-up period of 5 epochs. However, we increased
the training epochs from 90 to 120, which slightly increased
the performance of the ResNet baseline. We used these set-
tings in all our experiments, and additional network specific
parameters are listed below.

AlexNet-BN: The initial learning rate is set to 0.05, the
weight decay is 1e-4, and we apply Dropout with rate 0.5
before the first and second fully-connected layers.

ResNet-18: The initial learning rate is set to 0.1, the
weight decay is 1e-4, and no Dropout layer is used.

ERFNet: The initial learning rate is set to 0.1, the weight
decay is 1e-4, and we apply Dropout with rate 0.1 in all 1D-
factorized non-bottleneck residual modules.

MobileNet-0.25: The initial learning rate is set to 0.1,
the weight decay is 4e-5 (no decay for the depthwise con-
volutions), and we apply Dropout with rate 1e-3 before the
fully-connected layer.

First, we trained the original models to reproduce the
baselines. MobileNet-0.25 uses the ReLU6 activation by
default. Therefore, first we re-trained this model with
ReLU6 and obtained similar results as reported in the orig-
inal publication, i.e. our MobileNet-0.25 with ReLU6 had
50.4% top-1 accuracy, while 50.6% was reported in [15].
Next, we replaced ReLU6 with ReLU, and in our experi-
ments this ReLU variant is considered as baseline. Table 1
summarizes our ReLU baseline networks, compared to the
results available from the literature. The ResNet-18 accu-
racy is from the public repository provided by the authors2.

Next, we replaced the ReLU activation with SOTA acti-
vation functions and repeated the evaluation process, using
the same settings. We considered this modified network as
our Upper limit, which improves the performance by us-

2https://github.com/facebookarchive/fb.resnet.
torch/blob/master/pretrained/README.md

ing a more efficient activation. Note that although in some
cases it is recommended to tune the training settings (e.g.
compared to ReLU networks a lower learning rate was rec-
ommended for Swish [34]), we did not modify any hyper-
parameters because our goal was not to tune the network to
the highest top-1 score, but to see the improvements on the
ReLU network induced by applying the proposed method.

Finally, we trained the ReLU networks using the pro-
posed PEA training. In all cases the transition phase started
at the 5th epoch, and for the duration of the final phase we
evaluated two settings. In the first setup the final phase in-
cluded the last 5 epochs (epochs 116–120) only, while in
the second setup we increased its duration and used the last
30 epochs (epochs 91–120).

Our ImageNet classification results using the stochastic
and weighted variants of PEA are presented in Tabs. 2 and 3
respectively. In general, the stochastic ensemble variant im-
proved the accuracy of all networks in all configurations
(see Tab. 2). On the other hand, the weighted ensemble (see
Tab. 3) showed superior performance with AlexNet-BN, but
there were some failure cases with the other networks. We
discuss our network specific findings below.

AlexNet-BN. All of the evaluated PEA settings im-
proved the accuracy of AlexNet-BN. In general, the
weighted ensemble was clearly superior, and overall the
GELU activation performed slightly better.

ResNet-18. Both ensemble methods performed equally
well with the GELU activation. In general, the stochastic
ensemble variant was clearly superior for both the Swish
and the Mish activations, all these configurations improved
the performance. On the other hand, two weighted ensem-
bles resulted in performance degradation, a 0.14% and a
0.06% drop in top-1 accuracy, when the longer transition
phase was used. In general, the shorter transition phase
was beneficial for the weighted variant.

ERFNet. All PEA configurations improved the ac-
curacy. In general, the stochastic ensemble variant was
slightly better, and its performance gain was very similar
in all settings. Overall the shorter transition phase was su-
perior in both ensemble variants.

MobileNet-0.25. The stochastic ensemble improved the
performance in all settings, where Mish worked the best,
GELU performed slightly worse, and Swish was clearly in-
ferior. However, with the weighted ensemble variants we
observed sudden degradation near the end of the transition
phase. We are planning to investigate this issue in the fu-
ture, but as this phenomenon was not present with other net-
works, we suspect that it might be related to the compact
depthwise convolutions used in MobileNet. We also tried
the weighted ensemble variant with the ELU activation [2],
and surprisingly we did not observe this phenomenon, and
the accuracy increased to 51.29%. Nevertheless, this im-
provement is inferior as compared to the stochastic variant.

https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md
https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md


Table 2. ImageNet top-1 accuracy of the ImageNet classifiers using the stochastic variant of PEA, the reported results are the average of 5
runs, and all networks are trained for 120 epochs. We report the results of trainings with both the longer and the shorter transition phase,
ending at epochs 115 and 90 respectively. All trained networks use ReLU activations only.

Network Baseline PEA-GELU PEA-Swish PEA-Mish

115 90 115 90 115 90

AlexNet-BN 60.74% 61.19% 61.29% 61.21% 61.02% 61.14% 61.15%
ResNet-18 70.31% 70.51% 70.48% 70.40% 70.49% 70.41% 70.38%
ERFNet 66.35% 66.61% 66.70% 66.65% 66.70% 66.62% 66.60%
MobileNet-0.25 51.17% 51.62% 51.71% 51.46% 51.55% 51.73% 51.77%

Table 3. ImageNet top-1 accuracy of the ImageNet classifiers using the weighted variant of PEA, the reported results are the average of 5
runs, and all networks are trained for 120 epochs. We report the results of trainings with both the longer and the shorter transition phase,
ending at epochs 115 and 90 respectively. All trained networks use ReLU activations only.

Network Baseline PEA-GELU PEA-Swish PEA-Mish

115 90 115 90 115 90

AlexNet-BN 60.74% 61.54% 61.57% 61.49% 61.30% 61.35% 61.48%
ResNet-18 70.31% 70.45% 70.51% 70.25% 70.38% 70.17% 70.35%
ERFNet 66.35% 66.54% 66.59% 66.55% 66.69% 66.37% 66.59%

Table 4. Top-1 accuracy of the ImageNet classifiers, the reported
results are the average of 5 runs. The training setup of our pro-
posed PEA trained ReLU networks are indicated in the brackets,
i.e. the first character indicates the ensemble method (Weighted
or Stochastic), the second is the activation used in the ensemble
(GELU, Swish, or Mish). The end epoch of the transition phase
is 90 in all cases. The Upper limit denotes the best performing
network using SOTA activation.

Network ReLU ReLU PEA Upper limit

AlexNet-BN 60.74 61.57 (WG) 62.35 (G)
ResNet-18 70.31 70.51 (WG) 70.89 (S)
ERFNet 66.35 66.70 (SG) 67.10 (M)
MobileNet-0.25 51.17 51.77 (SM) 53.40 (S)

In Tab. 4 our results are summarized and are compared to
the ReLU baseline network and to the network using SOTA
activation (denoted by Upper limit). The PEA configura-
tions in the bracket denote the training setup starting with
the ensemble either Weighted or Stochastic, followed by
the activation function GELU, Swish, or Mish. In our eval-
uations we selected the best performing model from the fi-
nal phase of PEA, i.e. where the network uses the ReLU
activation only.

4.1.1 Improving Large Networks

Although our main goal was to improve the performance of
compact ReLU networks, we also evaluated the proposed
methods on a larger ResNet-50 network. Apart from in-
creasing the training epochs from 90 to 120, we did not
modify the ResNet-50 configuration in the Image Classifi-
cation repository of the TensorFlow Model Garden1. First,
we trained our ReLU baseline five times, and our average
top-1 accuracy was 76.81%, while 75.99% is reported in
the public repository of the authors2. Next, we trained the
network with PEA, and we successfully improved the ac-
curacy to 77.04% using the stochastic ensemble and the
Swish activation. We observed performance gain with both
the weighted and the stochastic variants, and the latter per-
formed slightly better. In general, the Swish activation was
clearly superior in both ensemble variants. Mish performed
the worst in all configurations, and in one case it decreased
the accuracy by 0.05%. Overall the shorter transition phase
worked slightly better for both ensemble variants. We sum-
marize our results in Tab. 5.

4.2. Cityscapes Segmentation

We demonstrate our proposed methods on semantic seg-
mentation, where the task is to classify each pixel into a
set of categories. In our experiments we used the compact
ERFNet segmentation network [35], and evaluated on the



Table 5. ImageNet top-1 accuracy improvements of the ResNet-50 networks using the PEA training, the reported results are the average of
5 runs, and all networks are trained for 120 epochs. We report the results of trainings with both the longer and the shorter transition phase,
ending at epochs 115 and 90 respectively. All trained networks use ReLU activations only.

Method PEA-GELU PEA-Swish PEA-Mish

115 90 115 90 115 90

Weighted +0.08% +0.18% +0.13% +0.21% -0.05% +0.12%
Stochastic +0.15% +0.21% +0.23% +0.22% +0.13% +0.20%

Cityscapes dataset [3] using the suggested 19 semantic cat-
egories. The authors proposed several tricks to boost the
performance of their final model, e.g. pre-training the back-
bone on ImageNet, a training procedure composed of mul-
tiple stages, and tuning the class weights in the loss func-
tion. We decided not to use any of these tricks, because
we were interested in the performance gain obtained by us-
ing the proposed PEA training. Therefore, we performed
single-stage from-scratch trainings using random initialized
weights, standard cross-entropy loss, and an input size of
512 × 256. To train our networks we slightly modified the
settings of [35]: batch size is increased to 25, and the ini-
tial learning rate to 1e-3, we use weight decay 1e-4, but
we kept the dropout rate 0.3 proposed by the authors. We
trained the models for 500 epochs from scratch, using the
RAdam optimizer [24] and a cosine learning rate sched-
ule with a linear warm-up period of one epoch. For data
augmentation we used random translation and horizontal
flip as proposed by the authors. Similarly to our ImageNet
experiments, we also repeated the Cityscapes experiments
five times, and computed their average mIOU score. With
this setup we achieved mIOU=58.26% on the validation
set, which is comparable to the result of mIOU=58.37% re-
ported in [35] using the same input resolution (see Table III
in their publication).

Next, we replaced the ReLU with the SOTA activations,
and repeated our evaluations, while keeping other parame-
ters intact. The GELU and Mish activations increased the
average performance to mIOU 58.62% and 58.84% respec-
tively, but with the Swish we observed performance degra-
dation of mIOU 57.88%, so we decided to remove Swish
from further experiments. This improved mIOU score is
considered as the Upper limit, which can be obtained by
simply replacing the ReLU with a better activation function.

Finally, we evaluated the proposed PEA training method
using GELU and Mish. As for the parameter scheduling we
evaluated two settings for the duration of the final phase,
where the network contains ReLU activations only. In the
first setup this phase consists of the last 50 epochs, while
in the second one it is increased to 150 epochs. With the
proposed PEA training we successfully improved the per-

formance of the network by 0.34% mIOU. In general, the
weighted ensemble variant was superior, and it improved
the performance in all settings. In Tab. 6 we compare our
best performing model to the ReLU baseline and to the Up-
per limit model using the Mish activation.

Table 6. Performance of the ERFNet segmentation network on
the Cityscapes validation set, the reported results are the average
of 5 runs. We used single-stage trainings, and random initialized
weights. The training setup of the proposed PEA trained ReLU
networks are indicated in the brackets, i.e. the first character indi-
cates the ensemble method (Weighted or Stochastic), the second
is the activation used in the ensemble (GELU or Mish), and the
number denotes the end epoch of the transition phase. The Upper
limit denotes the best performing network using SOTA activation.

Network mIOU

ReLU baseline 58.26%
ReLU with PEA (WM450) 58.60%
Upper limit (M) 58.84%

5. Conclusions
In this paper we proposed Progressive Ensemble Activa-

tion or PEA, a training method to improve the accuracy of
ReLU networks for free. During network training PEA cre-
ates an ensemble activation composed of the ReLU and an
efficient SOTA activation (e.g. GELU, Swish, Mish). The
coefficients of the ensemble are progressively updated by
a scheduler, such that initially only the SOTA activation is
used, and then the network is slowly adapted to the ReLU
activation in a transition phase, where its coefficient is in-
creased. Finally, network training is finished with ReLUs
only, and the other SOTA activations are disabled. This
means that in the final network the ensemble activation can
be replaced by a ReLU, and the network can be executed
in environments where only the ReLU is supported, such
as embedded AI accelerators. First, we evaluated PEA on
the ImageNet classification task, and we applied it to four



different compact network architectures using three SOTA
activation functions. According to our benchmark, the im-
provements are in the range of 0.2–0.8% top-1 accuracy.
We also applied our method to a larger ResNet-50 network,
and improved its top-1 performance by 0.23%. Finally, we
applied the proposed method to improve the performance of
a compact segmentation network, and on Cityscapes we ob-
served a performance improvement of 0.34% mIOU. The
advantage of the proposed method is that both ensemble
variants are relatively simple, they do not increase the train-
ing time and the memory footprint drastically, which means
the method can also be applied to improve larger networks.
In our experiments we used training parameters (e.g. learn-
ing rate) which were tuned to the original ReLU network.
As these are usually not optimal for other SOTA activations,
the proposed method might be further extended such that it
takes these differences into account, e.g. by progressively
adapting the learning rate, or using a Swish parameter op-
timized for a given network architecture, or by using alter-
native scheduling of the coefficients. Another possible re-
search direction would be to use the two ensemble variants
jointly, for example by selecting the optimal setup for each
network layer separately. As the proposed method is com-
plementary to other previous for-free methods, it would also
be interesting to see the benefits of combining them during
training.
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