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Abstract

The growing use of deep neural networks (DNNs) in
safety- and security-critical areas like autonomous driv-
ing raises the need for their systematic testing. Coverage-
guided testing (CGT) is an approach that applies muta-
tion or fuzzing according to a predefined coverage metric
to find inputs that cause misbehavior. With the introduc-
tion of a neuron coverage metric, CGT has also recently
been applied to DNNs. In this work, we apply CGT to
the task of person detection in crowded scenes. The pro-
posed pipeline uses YOLOv3 for person detection and in-
cludes finding DNN bugs via sampling and mutation, and
subsequent DNN retraining on the updated training set. To
be a bug, we require a mutated image to cause a signifi-
cant performance drop compared to a clean input. In ac-
cordance with the CGT, we also consider an additional re-
quirement of increased coverage in the bug definition. In
order to explore several types of robustness, our approach
includes natural image transformations, corruptions, and
adversarial examples generated with the Daedalus attack.
The proposed framework has uncovered several thousand
cases of incorrect DNN behavior. The relative change in
mAP performance of the retrained models reached on av-
erage between 26.21% and 64.24% for different robustness
types. However, we have found no evidence that the investi-
gated coverage metrics can be advantageously used to im-
prove robustness.

1. INTRODUCTION
Deep neural networks (DNNs) are increasingly used in

safety- and security-critical areas. During operation, misbe-
havior of these systems can lead to fatal consequences for
humans. Several test procedures such as fuzzing and cov-
erage metrics from traditional software development have
been adapted to the functionality of DNNs in order to iden-
tify bugs before deployment. Nevertheless, the suitability
of coverage metrics for the detection of intended and unin-
tended misbehavior of DNNs remains questionable.

Figure 1. We propose repeated discovery of DNN bugs and sub-
sequent model retraining to robustify DNNs for person detection
against intended and unintended malfunctioning.

This work aims to explore whether coverage-guided test-
ing can adequately identify and fix DNN bugs. For this,
we propose a pipeline, which includes finding DNN bugs
and retraining the analyzed model on a training dataset, en-
hanced with found bugs. By adding coverage criteria to our
definition of a DNN bug or excluding them, we can find out,
whether coverage metrics correlate with DNN robustness.
Differently from previous work on coverage-guided DNN
testing, we focus on person detection as a use case. The
proposed pipeline helped to find several thousand cases of
incorrect behavior. Retraining the model on the enhanced
dataset helped to increase mAP by up to 64.24 percent
points. We have however observed no robustness improve-
ment when various types of neuron coverage were taken
into account during bug finding.

To the best of our knowledge, our work is the first to
study the necessity of neuron coverage metrics in CGT for
object detection models.



2. RELATED WORK
DNN testing is a method aiming to reveal faulty behavior

like adversarial examples or to provide assurance cases [7]
by examining the model with a large set of test cases that are
generated according to a predefined coverage metric and es-
tablished techniques like input mutation or fuzzing [13]. In
order to apply coverage-guided testing, which is one of the
established methods of software testing, to DNN systems, it
is crucial to define a set of suitable coverage criteria.

2.1. Coverage Criteria

One of the first metrics for the systematic testing of
DNNs is the neuron coverage introduced by Pei et al. [14].
It expresses the ratio of the number of unique activated neu-
rons for all test inputs to the total number of neurons in the
DNN.

Tian et al. [20] took up the idea of the neuron cover-
age metric and used it to generate tests for DNN-based au-
tonomous driving cars. For this, domain-specific natural
image transformations such as translation or blurring and
metamorphic testing [2] were applied, which made the need
for multiple DNNs obsolete and allowed the testing of a sin-
gle DNN.

Ma et al. [10] extended the neuron coverage metric in
two different ways to increase its granularity. First, they
proposed k-multi-section coverage by partitioning the range
of output values of each neuron at the training stage into
equal sections. The k-multi-section neuron coverage met-
ric then measures, how thoroughly neuron coverage is dis-
tributed over the sections. Second, for neuron boundary
coverage, Ma et al. gauged how many regions beyond the
defined output range have been covered. In addition, Ma et
al. have demonstrated that their proposed coverage criteria
scale well to practical-sized DNN models and are able to
detect erroneous behavior triggered by state-of-the-art ad-
versarial attack generation techniques.

Picking up modified condition / decision coverage
(MC/DC) [6], Sun et al. proposed a variant in [17] and fur-
ther refined it in [18]. For the test case generation, they
used linear programming in [17], a gradient descent search
algorithm in [18] and concolic testing in [19]. Concolic
testing is an alternative software testing that varies between
concrete and symbolic execution. The core idea of MC/DC
is that all possible conditions that contribute to a decision
must be tested. Adapted to DNNs this means that not only
the presence of a feature needs to be tested but also the ef-
fects of fewer complex features on a more complex feature
must be tested.

2.2. Fuzzing for DNNs

Fuzzing is a model examination with many inputs, which
are generated according to a coverage metric and data mu-
tation technique.

TensorFuzz, proposed by Odena et al. [13], was one of
the first applications of coverage-guided fuzzing on neural
networks. For the sampling of test data, a random selec-
tion and a sophisticated heuristic were used. The latter was
motivated by the idea, that recently sampled and already
mutated inputs that have been added back to the test suite
are more likely to achieve higher coverage. The proposed
mutator only applied additive white noise to the input im-
ages. Moreover, no coverage metrics were used, but neu-
ron activations associated with a test input were stored and
checked using an approximate nearest neighbors algorithm,
to determine, whether other individuals or sets of already
stored neuron activations are within a predefined distance.

DeepHunter by Xie et al. [22] is a coverage-guided grey-
box DNN fuzzer, which is similar to TensorFuzz. Its ma-
jor components are metamorphic mutation, DNN feedback,
and batch pool maintenance. The goal of the proposed mu-
tation strategy is to ensure that the semantics of the mutated
and original images are the same for the viewer and that
the resulting images are diversified and plausible. Coverage
metrics used by Xie et al. include a classical neuron cover-
age metric and metrics from DeepGauge [10]. To demon-
strate the scaling ability of DeepHunter, the fuzzing tech-
nique was applied to practical-sized data sets like ImageNet
and DNN models.

Pei et al. [14] approach for detecting misbehavior in
DNNs requires multiple DNNs for cross-referencing, re-
sulting in an inability to scale to state-of-the-art networks.
Guo et al. [4] proposed a similar approach that requires a
single DNN. The presented mutation algorithm applies a
tiny perturbation to a test image, which is visibly indistin-
guishable. If the original and mutated test images are clas-
sified into different class labels, the prediction of the DNN
is treated as incorrect behavior. The mutation algorithm is
completed by solving a joint optimization problem of both
maximizing neuron coverage and the number of incorrect
behaviors. Furthermore, Guo et al. use several strategies
for selecting neurons that are more likely to improve cover-
age.

2.3. Criticism

Despite the initial success of coverage-based testing ap-
plied to DNNs, doubts also arose about the permeability of
neural networks and the effectiveness of a true robustness
improvement. Li et al. [9] criticized the use of coverage
metrics for the generation of adversarial examples, as these
do not offer any advantage or information gain compared to
conventional methods such as FSGM. Li et al. further argue
that these structural coverage criteria may be too coarse for
adversarial inputs and at the same time too fine for misclas-
sified natural inputs. The reasons include specific distribu-
tion of the adversarial examples in the data manifold and
also the fact that the misclassified natural inputs are rare.



Moreover, the experiments by Li et al. with natural inputs
showed no correlation between the number of misclassified
inputs in a test set and its structural coverage on the corre-
sponding neural networks.

The negative criticism of the coverage metrics was taken
up by Dong et al. [3] in a large study with 100 DNNs for an
image classification task using MNIST and CIFAR datasets.
Dong et al. examined the relationship between coverage
and robustness for DNNs. However, they only considered
intentional attacks with FGSM, JSMA, and C&W. Various
coverage metrics [8, 10, 14] were applied. In order to mea-
sure the robustness of the models, Dong et al. use the global
Lipschitz constant and the CLEVER score. The correlation
analysis concluded that if a model achieves high coverage
of a metric accordingly, it is not necessarily robust and vice
versa. Nor could it be claimed that retrained models, which
then have higher coverage, have necessarily become more
robust. Nevertheless, Dong et al.could show that the differ-
ent coverage metrics do correlate with each other.

Two recent concurrent works [5] and [23] also demon-
strated that increased coverage does not necessarily lead
to better model quality. Harel-Canada et al., in particular,
demonstrated in [5], that taking neuron coverage into con-
sideration actually led to less test inputs found. The evalu-
ation in the latter works is restricted to MNIST and CIFAR
datasets. In contrast, our work focuses on a more real-life
use case of object detection.

3. CGT CONCEPT

The proposed CGT pipeline consists of the following
stages: (1) sampling random data for CGT, (2) mutating
sampled data to generate bugs, (3) constructing a new train-
ing dataset and retraining the DNN. In the following, we
describe all stages.

3.1. Dataset Split

To ensure fair evaluation of the retrained models and
clear separation of CGT and training data, we define new
subsets for training, validation, and testing (see Figure 2).

For a given dataset with train val and test splits,
we define new subsets as following. First, we randomly
sample 2/3 of the original train val – this subset (new
train val) will be further used to train and validate base-
lines. The remaining 1/3 is reserved for CGT and is abbre-
viated as cgt data set.

For the original test data set partition, a copy of
the data is maintained as clean test data. Then, an
adversarial image is generated for each original test im-
age resulting in a set called adv test data. Finally,
corruptions data subset is created by applying cor-
ruptions proposed in Michaelis et al. [12].

3.2. Bug Definition

According to Ma et al. [11], DNN bugs can be divided
into two categories: the first type is caused by subopti-
mal model structures, such as the number of hidden layers
in a DNN model or the number of neurons in each layer,
whereas the second type is caused by the misconducted
training process (e.g. by using distorted training inputs).
We further concentrate on the second type of DNN bug.

For the object detection use case, we apply the mean
average precision (mAP) metric to measure DNN perfor-
mance on clean (xorig) and mutated (xmut) inputs. We fur-
thermore introduce a manually set parameter αmAP to con-
trol bug severity. A set of bugs is then defined as follows:

bugs = {x|x ∈ cgt data,
mAP (xmut)

mAP (xorig)
≤ αmAP } (1)

Tian et al. were able to demonstrate empirically in
their work that changes in neuron coverage correlate with
changes in the state of DNNs [20], so coverage metrics can
be used as a guiding mechanism for the systematic investi-
gation of DNN states and behavior. We further extend the
bug definition to incorporate the condition that the cover-
age metric achieved by the mutated input should be higher
compared to the coverage achieved by the original input:

bugs = {x|x ∈ cgt data,
mAP (xmut)

mAP (xorig)
≤ αmAP ,

Cov(xorig) < Cov(xmut)},
(2)

where Cov(x) stands for neuron coverage achieved on input
x.

We use three options for Covx: neuron coverage
(NC) [14], neuron boundary coverage (NBC) [10] and
strong neuron activation coverage (SNAC) [10].

For a DNN input x and a set of all neurons N in a DNN,
an activated neuron is the one for which activation act(n, x)
on a given input x exceeds some predefined threshold t. NC
is then defined as a ratio of activated neurons:

NC(x) =
|ActivatedNeurons(x)|

|N |
, where

ActivatedNeurons(x) = {n|act(n, x) > t}
(3)

For NBC, the range of output values for each neuron
n ∈ N is monitored on the training set ( newtrain val
in our case) to define its upper (highn) and lower (lown)
boundary output values. NBS for input x is then defined as
a ratio of neurons whose output values belong to their upper
and lower corner regions for x:

NBC(x) =
|UpperN(x)|+ |LowerN(x)|

2 ∗ |N |
, where

UpperN(x) = {n ∈ N |act(n, x) ∈ (highn,+∞)}
LowerN(x) = {n ∈ N |act(n, x) ∈ (−∞, lown)}

(4)



Figure 2. Dataset split with the corresponding evaluation metrics

SNAC measures how many corner case regions above
the major function region have been covered by a single test
image:

SNAC(x) =
|UpperN(x)|

N
(5)

3.3. Pipeline Overview

CGT starts with a baseline model, trained on new
train val. Baseline performance is evaluated and stored
for reference. In addition, neuron coverage metrics are com-
puted on clean test data and adv test data. To
complete the initial evaluation, corruptions metrics mPC and
rPC as defined in [12] are measured on corruptions
data.

Next, images are randomly sampled from cgt data
set. Natural image transformations are used for the sim-
ulation of unintended malfunctioning whereby adversarial
examples are used for the simulation of intended malfunc-
tioning. The detailed process of performing natural image
transformations is described below. The sampled and mu-
tated test inputs are at this point fully qualified to be used
for coverage-guided testing.

To study intended misbehavior of a network, we attack it
with adversarially mutated images during the testing phase.
The adversarial images are created in advance to use them
in combination with CGT. This is done to reduce the time
required for the test process itself. There is no need for the
second stage of testing for adversarial images, as enough
errors are already exposed at the first stage.

For both test techniques each original clean image from
the cgt data set is first passed to the network. Afterward,
the mutated image is passed in order to calculate the rela-
tive performance change, and also the neuron coverage for
both inputs. Subsequently it could be determined whether
an image triggered misbehavior as defined in Equation 1 or
in Equation 2 if neuron coverage is used. If misbehavior is
observed, the input is added to the set of already encoun-
tered bugs.

Once all rounds are passed through, the retraining data

is constructed with found bugs and a new train val data
set. When retraining the model, it is crucial to use the same
training procedure along with the hyperparameters as used
for the baseline. In this way, it can be ruled out that possi-
ble performance increases are achieved by changing train-
ing parameters.

In the last step, the performance is re-evaluated. If the
results of the re-evaluation meet the performance and ro-
bustness requirements of the detector, the CGT process is
terminated.

3.4. Generating Natural Transformations

To robustify the model against unintended misbehavior,
we incorporate a set of natural transformations in the muta-
tion process. Figure 3 presents an overview of the mutation
process for the CGT using natural image transformations.

First, we apply a randomly selected subset of image op-
erations from the set {brightness, contrast, color, sharp-
ness}. Each of these operations takes an enhancement fac-
tor parameter between 0.0 and 1.0. A parameter value of
1.0 returns the original image. A parameter value of 0.0 re-
turns a black image in the case of the brightness operation,
a grey image in the case of the contrast operation, a black
and white image in the case of the color operation, and a
blurred image in the case of the sharpness operation.

After textural enhancement, a randomly selected sub-
set of filter operations {detail, edge enhance, smooth,
sharpen} is applied. An edge enhancement filter has the
effect of increasing the contrast of pixels around specific
edges so that after filter application edges are distinctively
more visible. Smoothing filter operations are used to reduce
noises present in the image and produce a less pixelated im-
age. The sharpening filter emphasizes transitions between
different regions in an image rather than being smooth. As
an image passes through the sharpening filter, brighter pix-
els are amplified relative to adjacent pixels.

Next, horizontal flipping is applied. Retraining the DNN
with horizontally flipped images can help to increase the in-
variance with respect to the orientation of an object [15].



Once the image is flipped, translation is applied. An image
is randomly translated by 0-2 pixels since YOLOV3 em-
ploys 3 × 3 convolutions. Retraining the network with im-
ages that have been translated pixel by pixel and triggered a
bug causes the network to view objects from different posi-
tions and thus does not always produce the same activations
in the first layer [15].

After textural and geometric transformations, an accep-
tance test for the mutations is applied. This is necessary
to prevent the network from being tested with images that
have lost their semantics due to the previous mutation pro-
cess. At this point, there is the challenge to find a balance
between mutated, but still recognizable images and a strong
variety of mutations. Slightly mutated images also have a
lower probability of triggering a bug. We apply the accep-
tance test proposed in [22] and adapt it for our mutations
sequence.

If the mutation passed the acceptance test so that the
previous mutation is metamorphic, the image is stretched
and cropped in the very last step. Retraining with randomly
scaled images that have triggered a bug, enables the model
to see different scales of each object and improves network
invariance with respect to different image resolutions. Ran-
dom scaling is performed equally between 0.5 and 1.0 times
the native resolution. Furthermore, the images are cropped,
which has the same effect on the retrained model as translat-
ing the images. The now successful mutated image is saved
and made available for the next step of CGT.

In the case of an unsatisfactory mutation, i.e. a failed
acceptance test, the image is run through the mutation se-
quence again. In the event of an unsuccessful mutation,
further runs are started for an image. If still no successful
mutation was found for that image, the image is discarded
for this test round.

3.5. CGT with Natural Transformations

To discover malfunctions, the network is presented a pair
of images: the original unmodified image and the mutated
counterpart. The complete process of testing with uninten-
tional attacks is divided into two stages.

The first stage of the testing process is organized as fol-
lows. For each round i of a run through the CGT process, n
images are sampled from cgt data set. Next, the sample
is mutated and the corresponding adapted annotations are
created. The testing loop starts by picking the head element
of the list and predicting the bounding boxes for the origi-
nal image. Once the prediction is completed, coverage and
average precision are computed for the original test input.
After completing the original input, both steps are repeated
for the mutated image. The average precision ratio is then
computed and the difference between both coverage values
is obtained. If the ratio of average precision is less than or
equal to αmAP as well as the value of neuron coverage by

Figure 3. Overview of the mutation process

the mutated image was greater than that of the original im-
age, there is a bug according to Equation 2 and the mutated
and original images are both added to the set of all found
bugs. Otherwise, CGT continues with the next image of
the sample. After testing the network for in total n rounds
with n samples per round i, the first stage of coverage-
guided testing with naturally mutated inputs is completed.

The second stage uses the entire data set resulting from
the first stage as a test suite instead of sampling images from
the cgt data set. In each round the complete test suite is
mutated, i.e. no samples are taken from the test suite.

We assume, that errors found at the first phase are par-
ticularly useful and valuable for identifying network mal-
functions. There is a possibility that images, which already
caused an error at the first stage, could trigger another error
after a new mutation at the second stage. Similar intuition
was applied in [13], where it was also assumed that inputs
that have already been mutated once and have revealed mis-
behavior of the DNN are more likely to exhibit further dif-
ferent types of bugs of the DNN.

The acceptance test for mutations from the second stage
is performed with the mutated image from the first stage as
the original image to be referenced.



(a) Clean input (b) Mutated image at stage 1 (c) Mutated image at stage 2

Figure 4. Baseline predictions for the clean input and the corresponding bugs found via CGT with natural mutations

4. EXPERIMENTS
In the following, we present the evaluation of the pro-

posed CGT pipeline on the person detection use case.

4.1. Baseline and Models

Experiments are performed on the CrowdHuman [16]
dataset with 15K train/val and 4370 test images. This
dataset focuses on crowded scenes in indoor and out-
door environments. The dataset splitting is performed
as described above. Train/val data is split to 10K new
train val data and 5K cgt data images. For
the test subset, the further test datasets clean test
data, adv test data and corruptions data of
the same size are created. Performance is measured with
the standard mAP50 metric. The mAP measured on the
clean test data is denoted mAPclean, mAP mea-
sured on the adv test data – mAPadv .

For the baseline model, we used the pretrained Dark-
net53 weights, the evaluation was on the new train val
data. The retrained model is trained on new train val
with bugs added. The baseline reaches 43.45% mAPclean

and 28.71% mAPadv . On corruptions data the
baseline reached 25.32% mPC and 58.41% rPC. Note
that we further report only relative improvement in mAP
with respect to the indicated baseline performance.

Neuron coverage was evaluated with t ∈
{0.25, 0.5, 0.75} and tsingle = 0.5 at clean test
data, adv test data and cgt data. Table 1 shows
the results for the baseline. The highest neuron coverage
was achieved on the set of adversarially mutated images.

For natural mutations, we train nm- models as follows:
three rounds with 1000 sampled images each at stage 1 and
five rounds with a set of bugs from the first stage at stage
2. Figure 4 shows examples of bugs generated at different
stages and baseline predictions for them.

For adversarial mutations, we train the am- models with
three rounds of 500 sampled adversarial images each. We
use the Daedalus attack [21], which is in turn based

Dataset t = .25 t = .5 t = .75

clean test data 64.81 56.44 2.55
adv test data 69.27 57.04 3.38

corruptons data 63.66 56.10 2.49

Table 1. Neuron coverage NC achieved by the baseline

Model / αmAP nm-models am-models
Metric clean adv clean adv

None 0.6 25.81 58.34 26.94 68.41
None 0.3 26.04 68.58 27.38 65.97

NC 0.6 26.37 50.89 26.76 61.93
NC 0.3 26.41 54.89 24.38 64.23

SNA 0.6 26.14 63.67 26.07 62.56
SNA 0.3 26.25 58.79 26.74 64.68

NB 0.6 26.25 60.68 27.57 65.97
NB 0.3 26.41 66.00 26.30 63.29

NB+SNA 0.6 26.18 65.97 26.46 62.14
NB+SNA 0.3 26.39 61.09 26.51 63.18

Table 2. Relative change in mAP performance on clean and ad-
versarial data for models retrained with naturally (nm-) and ad-
versarially (am-) mutated images compared to the baseline

on the C&W attack [1]. The Daedalus attack aims to
achieve an extremely dense false positives rate by triggering
a malfunctioning of the Non-Maximum Suppression (NMS)
component in an object detection system.

Overall, for each mutation technique (natural and adver-
sarial), we obtain 8 retrained models with coverage metric
and 2 models without coverage metric.

4.2. Robustness Improvement Results

Table 2 demonstrates relative change in mAP perfor-
mance for the nm- and am- models. Unexpectedly, the
model retrained with natural bugs achieves a significant im-



Model / αmAP nm-models am-models
Metric αmAP mPC rPC mPC rPC

None 0.6 41.07 11.92 35.39 6.28
None 0.3 37.60 9.76 36.61 7.24

NC 0.6 32.46 4.81 36.18 7.41
NC 0.3 33.49 5.60 35.07 8.58

SNA 0.6 39.22 10.37 35.74 7.34
SNA 0.3 35.82 7.69 36.65 7.82

NB 0.6 37.09 8.58 37.24 7.57
NB 0.3 38.74 9.72 35.27 7.10

NB+SNA 0.6 39.45 10.51 36.53 8.03
NB+SNA 0.3 37.40 8.63 34.76 6.52

Table 3. Relative change in mPC and rPC performance for mod-
els retrained with naturally (nm-) and adversarially (am-) mutated
images compared to the baseline

provement in robustness against adversarial images. More-
over, higher αmAP led to better results, meaning that it is
more beneficial to include in retraining more bugs, which
are less severe. Also, no significant difference is gained
when the coverage metric is excluded. As for the am-
models, they exhibit greater enhancement of the robustness
against adversarial attacks, as expected. Overall, CGT has
managed to improve DNN robustness against natural and
adversarial perturbations. Figures 5 and 6 further illustrate
the enhanced performance of the retrained models.

We further report results on robustness against corrupted
inputs in Table 3. Apparently retraining DNNs with natu-
rally mutated images helps to enhance this type of robust-
ness. Also, the mean relative change of mPC performance
for nm-models is greater than the corresponding mean rela-
tive change of mAP performance on clean data of the same
models, indicating stronger robustness against corruptions
of retrained models. For am- models, the improvement in
robustness against corruptions is minimally lower compared
to mean values of nm-models. Nevertheless, the increase
remains remarkable considering that the bugs that were in-
cluded in their retraining only contained adversarially per-
turbed images. Again, there is no significant difference by
excluding the coverage metric.

4.3. Impact of Neuron Coverage

Next, we evaluate the impact of neuron coverage on in-
creasing the robustness. Table 4 shows mean relative mAP
changes for models with and without coverage metric in-
volved in testing. No significant gain could be achieved via
the usage of coverage metrics. The analysis regarding ro-
bustness against corruptions (see Table 5) is also consistent
with these findings.

Furthermore, we have assessed the neuron coverage of
the retrained models by comparing it to that of the base-

Models mAPclean mAPadv

cov no cov cov no cov
nm- 26.29 25.93 60.25 63.46
am- 26.35 27.16 63.50 67.19

Table 4. Mean relative change in mAP performance for mod-
els retrained with and without coverage metrics on clean test
data and adv test data

Models mPC rPC
with cov no cov with cov no cov

nm- 36.71 39.34 8.24 10.84
am- 35.93 36.38 7.55 7.24

Table 5. Mean relative change in mPC and rPC performance for
models retrained with and without coverage metrics

Robustness against ... nm-models am-models
naturally mutated data 26.21 26.51

corrupted data 37.24 35.90
adversarial data 60.89 64.24

Table 6. Mean relative improvements in mAP (in %) averaged
over all nm- and all am- models

line. We have observed, that the greatest relative deviations
(positive and negative) from baseline occur for accumulated
coverage with a threshold value of t = .75. Overall, most
models have demonstrated the drop of the neuron coverage.
However, this decrease was not consistent with the mea-
sured model robustness – some models have still demon-
strated higher neuron coverage compared to the baseline.
These results are consistent with the work by Dong et al. [3],
which also demonstrates that increased network robustness
does not necessarily correlate with lower neuron coverage.

Finally, Table 6 depicts the mean improvements of the
different types of robustness achieved by applying the pre-
sented framework without distinction on the coverage met-
ric usage. The best results were achieved for the adversarial
attacks and models trained with adversarially mutated data.
Overall, all three types of robustness have improved con-
currently, the differences due to the nature of bugs involved
in the training were not significant.

5. CONCLUSION
In this work, we have applied coverage-guided testing

(CGT) to the task of person detection using deep neural net-
works. For this, we have proposed a method to find bugs by
introducing natural and adversarial mutations to the inputs,
randomly sampled from a dedicated subset of the training



(a) Baseline prediction for the clean input (b) Baseline prediction for the mutation of the orig-
inal image at stage 2

(c) Prediction of the retrained model

Figure 5. Predictions for the clean input and a bug found via CGT using natural mutations

(a) Baseline prediction for the clean input (b) Baseline prediction for the adversarially mu-
tated input

(c) Prediction of the retrained model

Figure 6. Predictions for the clean input and a bug found via CGT using adversarial mutations

data. The discovered bugs were then included in the DNN
retraining process to enhance the robustness of the analyzed
models. We have considered two types of bugs: those which
lead to decreased performance and those which addition-
ally lead to increased coverage. The particular focus of the
work was on the necessity of including coverage metrics in
the bug definition. For this, three popular neuron coverage
metrics as well as a combination of them were considered.

We have evaluated the proposed fuzzer on the YOLOv3
model, trained on the CrowdHuman dataset. We could suc-
cessfully find numerous bugs both via natural and adversar-
ial perturbations. Models retrained on a dataset with bugs
have demonstrated enhanced robustness to naturally mu-
tated, corrupted, and adversarial inputs. Interestingly, the
robustness to several misbehavior types could be reached,
even though bugs used for retraining covered only one of

them. However, we could not prove the clear adequacy of
the coverage metrics. Our experiments have shown that ro-
bustness improvements can be achieved without the inclu-
sion of a coverage metric into the bug definition. This casts
doubt on the effectiveness of the coverage metrics in CGT
for object detection and is consistent with recent findings
for other computer vision tasks.
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