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Color Invariant Skin Segmentation

Xu, Han

(ABSTRACT)

This work addresses the problem of automatically detecting human skin in images without

reliance on color information. Unlike previous methods, we present a new approach that

performs well in the absence of such information. A key aspect of the work is that color-

space augmentation is applied strategically during the training, with the goal of reducing the

influence of features that are based entirely on color and increasing more semantic under-

standing. The resulting system exhibits a dramatic improvement in performance for images

in which color details are diminished. We have demonstrated the concept using the U-Net

architecture, and experimental results show improvements in evaluations for all Fitzpatrick

skin tones in the ECU dataset. We further tested the system with RFW dataset to show

that the proposed method is consistent across different ethnicities and reduces bias to any

skin tones. Therefore, this work has strong potential to aid in mitigating bias in automated

systems that can be applied to many applications including surveillance and biometrics.



Color Invariant Skin Segmentation

Xu, Han

(GENERAL AUDIENCE ABSTRACT)

Skin segmentation deals with the classification of skin and non-skin pixels and regions in a

image containing these information. Although most previous skin-detection methods have

used color cues almost exclusively, they are vulnerable to external factors (e.g., poor or

unnatural illumination and skin tones). In this work, we present a new approach based on

U-Net that performs well in the absence of color information. To be specific, we apply a

new color space augmentation into the training stage to improve the performance of skin

segmentation system over the illumination and skin tone diverse. The system was trained and

tested with both original and color changed ECU dataset. We also test our system with RFW

dataset, a larger dataset with four human races with different skin tones. The experimental

results show improvements in evaluations for skin tones and complex illuminations.
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Chapter 1

Introduction

1.1 Motivation

Semantic image segmentation, as an important part of image understanding in computer

vision, has become increasingly prominent and popular in the industrial world and in current

academic research. Semantic segmentation is classification at the pixel level and has been

widely applied in geographic information systems [48], automatic driving, medical image

analysis, robots and other various fields. The main task of semantic segmentation is shown

in Figure 1.1a.

Before deep learning was applied to the field of computer vision, image segmentation was

performed based on low-level visual cues of the pixels [16, 34]. Since early segmentation

methods do not have an algorithm training stage, the computational complexity is often not

high, but its segmentation effect is not satisfactory on more difficult segmentation tasks (if

artificial auxiliary information is not provided). More recently, deep learning methods have

achieved great success in semantic segmentation. Initially, patch classification is a commonly

used deep learning method, which uses image blocks around each pixel to separate pixels into

corresponding categories. The main reason for using image patches is that the classification

network usually has a fully connected layer, and its input needs to be a fixed-size image patch.

In 2015, the fully convolutional network (FCN) [50] was born. FCN replaced fully connected

layers of the network with convolution, so that input of any image size is possible, and the

1



speed is much faster than the patch classification method. Then, a kind of encoder-decoder

architecture (e.g., Segnet [6] and U-Net [62]) and dilated convolutions [85] were proposed to

solve the problem of missing dimensions and detailed information of the restoration space

in pooling layers. The Conditional Random Field (CRF) [14, 15] method is usually used

in post-processing to improve the segmentation effect. The CRF method is a graph model

that performs “smooth” segmentation based on the pixel intensity of the underlying image.

Points with similar pixel intensity are marked as the same category at runtime. Adding the

conditional random field method can increase the final score value by 2%.

Skin segmentation refers to the process of identifying pixels that correspond to human skin

within image data or video data as shown in Figure 1.1b. Automated skin detection can

play an important role for applications such as face detection and recognition (e.g., [45, 49]),

facial expression recognition, gesture recognition [3], content-based image retrieval, filtering

of objectionable content [22, 27], skin rendering in computer graphics [7, 21], and virtual

reality.

Although the last two decades have seen many efforts related to skin detection and skin

modeling [39, 89], it is interesting that almost all techniques for image-based skin detection

depend heavily on the use of color information. (Extensive surveys are provided by Mah-

moodi and Sayedi [51] and Kakumanu et al. [42].) In order to incorporate other features

in skin detection algorithms, researchers have augmented their color-based approaches by

incorporating cues related to texture and region shape [17, 28, 38], or by combining two

color spaces [80]. In contrast, Sarkar et al. [66] provided an image-specific skin detection

algorithm that does not depend on color cues, but instead learns local texture descriptors

from skin regions using one-shot methods. However, most of these methods use traditional,

hand-crafted feature extractors. Skin modeling, on the other hand, takes into consideration

physics-based models of skin reflectance, albedo, and color, but often these models fail to



(a)

(b)

Figure 1.1: The main task of semantic segmentation (a) and skin segmentation (b). In
semantic segmentation, pixels of different categories are classified in different colors. In skin
segmentation, pixels are only classified into two categories. Image credit: (a): [25].



generalize well [89]. A consequence of over-reliance on color cues is the potential to introduce

bias into the system. Bias can result from many perspectives, particularly because the ap-

pearance of skin in an image depends on many intrinsic and extrinsic factors. These include

the skin tone of the person [64], the environment in which the image was captured (e.g.,

indoor vs. outdoor), ambient illumination source (sunlight, fluorescent light, neon light),

imaging situation (low-light condition, shadows, overexposure to sunlight), scale (distance

from the camera), and other factors. Additionally, imaging methods may also introduce vari-

ability, including spectral range of sensor arrays (grayscale, near-infrared, RGB) and creative

filtering in photography applications (e.g., sepia tones in movies, or Instagram filters).

If all such variations are considered, the appearance of skin covers a much broader operating

space that previously considered [24, 41]. Therefore, practically all previous skin-detection

systems have been limited to a subspace of possible appearances. Figure 1.2 shows that

different skin appearances result in various performances of skin detection systems. For

example, an approach based on U-Net [62] predicted redundant false positive results between

the neck and arm area in the second row of group (a). In the second row of group (b), the

U-Net approach almost failed when the skin areas are covered by shadows.

Apparently, the outdoor environment has a significant impact on human skin, thus changing

the color cues in the images. Figure 1.3 shows heatmap distributions of skin pixels in HSV

color space. These heatmap distributions show that when human skin is exposed to different

light conditions, the appearance of skin pixels in the images varies. Though the changes in

group (b) may seem small, significant changes have been shown in group (a). In this case,

skin detection systems will obtain different color features and make unexpected predictions.

Thus the accuracy will decline.

In addition to the external factors such as sunlight and shadows, internal factors will also

change the appearance of skin pixels in the image, which is what we call “skin tone”. The



(a) (b)

Figure 1.2: Example results from skin detection systems working in different environments.
Group (a) refers to white and yellow bulb lights in the indoor environment. Group (b) refers
to the outdoor environment with intense sunlight and shadow. Left to right: Input image;
ground truth; U-Net output before training with our augmentation approach; U-Net output
after training using our novel augmentation approach.

Figure 1.3: Heatmaps of skin pixels in HSV color space. The second to fourth columns in
each group refers to the distribution in Saturation-Hue, Saturation-Value, and Value-Hue
dimensions respectively.



Figure 1.4: Examples of Fitzpatrick [26] skin tones, which is a commonly used system to
describe a person’s skin type in terms of response to ultraviolet radiation (UVR) exposure.
Image credit: [5].

skin is composed of a dermis layer and a thin epidermal layer covering it. Light is absorbed

by melanin in the epidermis, while absorption and reflection occur in the dermis at the same

time. The difference in skin color of individuals is mainly manifested as brightness changes

caused by different concentrations of melanin in the dermis. Fitzpatrick [26] proposed a

commonly used system to describe a human’s skin type. He divided the human skin type

into six classes in terms of response to ultraviolet radiation (UVR) exposure as shown in

Figure 1.4. It was widely used to report how human skin responded to sunlight. It also

expanded to a broader range of skin types. We will use it to classify human skin types in

the dataset. As a result, many skin detection methods fail not only for images obtained “in

the wild” and in other unconstrained situations, but may also inadvertently introduce biases

due to ethnic and racial differences. Studies [9, 10, 69] have shown that this physiological

bias influences computer vision algorithms to some extent. We illustrate the heatmap from

the testing set of the ECU dataset in Figure 1.5 to interpret how skin tones [26] affect the

appearance of skin pixels. We first classified the testing set in the ECU dataset into six skin

tones according to [26]. Every image in the testing set was converted into HSV color space,



(a)

(b)

(c)

Figure 1.5: Heatmaps from ECU dataset in three dimensions: (a) Saturation-Value, (b)
Saturation-Hue, (c) Value-Hue. The first six columns mark the skin pixels distributions of
Fitzpatrick [26] skin tones I-VI. The last two columns refer to the skin pixel distribution of
the training set before (W/O) and after (W) our color space augmentation.

and its skin pixels were allocated into different bins according to the (S, V), (S, H), and (V,

H) value pairs. These heatmaps demonstrate the distribution of skin pixels of different skin

tones in HSV color space. The changes in color cues will lead the skin detection system to

make unexpected predictions. Take the S-V dimension (Row 1) as an example. From skin

tone 1 to skin tone 6, with the skin going darker, the maximum of value channel rises, and

the center of the saturation channel moves left. The heatmap in column seven shows that

the training set cannot adapt to these changes. So typical skin detection systems will output

results with lower accuracy.

To address such problems, our work introduces a new technique for human skin detection

that significantly reduces reliance on color information and focuses much more on texture

and contextual information to detect the skin pixels in an image. A significant aspect of the

system is that color-space augmentation is applied strategically to the training set so that a



Figure 1.6: Change the HSV values of the image and move the heatmap cloud to desired
location.

resulting deep neural network suppresses the system’s dependence on color cues. As shown

in Figure 1.6, the heatmap clouds can be moved to desired locations by changing the HSV

values of the image. In this case, we can enlarge the training set by using multiple (H,S,V)

value groups as data augmentation. The augmented training set has a larger heatmap cloud

covering more areas. In this way, the influence of various appearances of skin pixels in the

images will be eliminated. Hence, our high-level strategy has been to guide the training

procedure away from color cues and toward features related to visual texture and context.



We demonstrate our procedure by training the U-Net architecture [6, 62] using ECU [58]

datasets, and do testing on both ECU [58] and RFW [79]. The ECU dataset is a common

benchmark dataset for skin detection. We have further annotated the ECU dataset by skin

tone (Type I through Type VI following Fitzpatrick’s method), and we demonstrate that our

method performs almost uniformly across all skin types. The RFW dataset contains face

images with annotations representing four ethnic groups. We have used the RFW dataset

to show that our new algorithm shows virtually no bias to any ethnicity and skin tone.

1.2 Main Contributions

The primary contributions of this work are as follows.

1) Color invariance. We describe an approach to automated detection of human skin

that does not depend on the color appearance of the skin. The approach does not require

additional costly datasets or annotations.

2) Universality. The resulting system therefore has potential to operate in environments

with relatively unconstrained illumination conditions, including extreme cases of over- and

underexposed images, grayscale images, and systems that utilize creative filters (such as

Instagram). As such, the system is intended for operation “in the wild,” and can relax

requirements and reduce costs related to camera selection.

3) Little or no racial bias. In our experimental results, we have systematically evaluated the

performance of our algorithm for subjects with different skin tones. Using cross-database

testing, we have shown that our new algorithm performs virtually uniformly across all of

the available annotated skin tones. It is our hope that our color-augmentation strategy for

training and testing can be applied widely to other domains, in order to address problems

related to racial and social bias.



1.3 Thesis Organization

The whole thesis is organized in the following manner:

1. Chapter 1 presents the motivation of this work. It emphasizes that human skin perfor-

mance in the image significantly impacts skin detection systems relying on color cues. It

also introduced how the proposed method weakens this impact.

2. Chapter 2 sheds more light on the color space and the evolution of skin detection. It first

introduces the widely-used color spaces and then covers three main types of methods in skin

detection area.

3. Chapter 3 explains what color space augmentation is and how it works with U-Net.

4. Chapter 4 shows the details of our experiments. It first introduces the dataset and eval-

uation methods used in the experiments and then presents the experimental results.

5. Chapter 5 discuss the future work and usage of our methods.



Chapter 2

Literature Review

2.1 Color Space

A color space is a model to represent properties of visible light. There have been hundreds

of color spaces, most of which are dedicated to a certain research field. Here we consider

three popular color spaces.

2.1.1 RGB Color Space

The RGB color space (Figure 2.1) is very common in which pixel values of an image can be

represented by the combination of three channels, namely red, green and blue. It is the most

basic, commonly used, and hardware-oriented color space in image processing and is easier

Figure 2.1: RGB color cube. Image credit: [1].
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to understand. Any other colors can be described as (R, G, B) triples. For example, (255,

0, 0) refers to red and (255, 255, 255) refers to white.

Unfortunately, the RGB model has some disadvantages when it is used for image processing.

One problem in the RGB model is that its three components are susceptible to brightness

changes. As long as the brightness changes, the three components will change accordingly,

which makes color tracking and analysis an extraordinary task. However, there is no more

intuitive way to express this kind of alternative relation. In addition, the sensitivity of

the human eyes to these three color components is different. Levine and Shefner [46] and

Schwartz [67] have proved that human eyes are more sensitive to green light. If the simi-

larity of colors is directly measured by Euclidean distance, the result will have a significant

deviation from human vision. It is difficult for us to infer more accurate values of the three

components for a particular color. In summary, the RGB color space may not be the best

for the analysis in this thesis.

2.1.2 YCbCr Color Space

The YCbCr space is the color space recommended by the MPEG digital video coding stan-

dard. Y refers to the luminance component, Cb refers to the blue chrominance component,

and Cr refers to the red chrominance component. The human eyes are more sensitive to

the Y component of the video, so after sub-sampling the chrominance component to reduce

the chrominance component, the naked eyes will not notice the change in image quality. It

has become the most popular color space for analyzing human skin because we can directly

analyze its color attributes in the video compression domain without decompression. The



transformation from RGB color space to YCbCr color space is shown below [57].

Y = 0.299×R + 0.587×G+ 0.114×B

  Cb = (R− Y )× 0.713 + 128

  Cr = (B − Y )× 0.564 + 128

(2.1)

In the case of the YCbCr color space, compared with HSV, the conversion and effective

separation of color and intensity information becomes easier. This color space is effective

and efficient for separating image pixels according to colors in a color image. Therefore, the

YCbCr color space can be applied to complex color images with uneven illumination [68].

2.1.3 HSV Color Space

HSV color space (Figure 2.2) is a cylindrical coordinate representing the points in Carte-

sian coordinates based on RGB color space using another set of three components: hue,

saturation, and value. Hue is measured by angle, with a value range of 0-360 degrees, and

represents color information or the position of the spectrum. Typically, 0 or 360 degrees

represent the red color, 120 degrees represents the green color, and 240 degrees represents

the blue color. Saturation, valued from 0 to 100, indicates the purity of the color. Generally

speaking, it represents the amount of white mixed with pure hue color. The higher the

saturation is, the smaller amount of white is mixed. The value determines the lightness and

darkness of the color in HSV color space, ranging from 0 to 100. A higher value means a

brighter color, and vice versa. The value channel will change when the images taken from

the natural environment are affected by the illumination. However, the hue and saturation

tend to change slightly [56]. So most image segmentation systems prefer HSV color space.

Ganesan and Rajini [29] listed more reasons for using HSV color space in semantic segmen-



Figure 2.2: HSV color cylinder. Image credit: [83].

tation. The transformation equation from RGB color space to HSV color space are shown

below [83].

M = min(R,G,B)

V = max(R,G,B)

H =



0, if R = G = B

60× G−B
V−M

, if V = R

60× B−R
V−M

+ 120, if V = G

60× R−G
V−M

+ 240, if V = B

S =


0, if V = 0

V−M
V

, otherwise

(2.2)



2.2 Skin Detection

Skin detection refers to the process of selecting pixel regions corresponding to human skin in

an image or a video. It has become a popular technique for the wide range of applications

in various areas such as face detection and recognition [45, 49], facial expression recognition,

gesture recognition [3], Internet pornographic content filtering [27], and content-based image

retrieval. Researchers have devoted significant effort to skin detection techniques. We would

like to group the skin detection systems into three categories according to the different

methods they use.

2.2.1 Threshold Based Methods

Threshold based skin detection methods are fast, straightforward, and not affected by

changes in the shape of objects or viewpoints. It is an active research direction in the

field of skin detection. Different from most background colors, the skin forms a small and

compact cluster in the color space [41]. Angelopoulou [4] and Jablonski and Chaplin [40]

have pointed out that individuals from different races, genders, and ages have good correla-

tion and consistency of skin color. The use of color features for skin detection has a robust

statistical and physical foundation.

The traditional threshold based skin detection methods always define the exact boundaries

of skin pixels in some color space. They delineate skin areas by controlling the range of values

for each component. For example, a set of widely-used thresholds for RGB color space was



defined by Kovac et al. [45] as the following:

R > 95 and G > 40 and B > 40 and

max{R,G,B} − min{R,G,B} > 15 and

|R−G| > 15 and

R > G and R > B

(2.3)

Tsekeridou and Pitas [77] and Chai and Ngan [13] put forward the boundaries in HSV color

space and YCbCr color space respectively:


0◦ ≤ H ≤ 25◦ and 335◦ ≤ H ≤ 360◦

0.2 ≤ S ≤ 0.6 and V ≥ 0.4

(2.4)

or

133 ≤ Cr ≤ 137 and 77 ≤ Cb ≤ 127 (2.5)

Despite these examples, many researchers have devoted themselves to skin detection via color

space models and used different thresholds to distinguish skin and non-skin pixels [81, 84].

In addition, various color spaces have been combined for the same goal of skin detection.

Garcia and Tziritas [30] proposed a novel scheme for detecting human faces in color images

under unconstrained scene conditions (for example, the presence of complex backgrounds and

uncontrolled lighting) using YCbCr and HSV color spaces. Considering the illumination,

Kolkur et al. [44] proposed novel threshold values under the combination of RGB-HSV-

YCbCr color spaces and achieved promising results.

Although these methods are very convenient and have achieved excellent results, their com-

mon shortcomings are indeed evident. There may be a clear overlap between skin pixels and



non-skin pixels in the color space. This similarity will lead the system to make misjudgments.

2.2.2 Traditional Machine Learning Methods

Machine learning aims at using certain algorithms to help the computer build an appropri-

ate model with known data and use this model to make judgments about new situations.

Traditional techniques refer to constructing the models in a statistical way that summarizes

the relationship between data.

Histogram: One of the best ways to do data analysis is to plot the data. The histogram is

a valuable way to demonstrate data graphically, counting each value that occurs in the data

set and plotting the numbers out. Each vertical bar in the chart represents a unique value

in the data set. The frequency distribution of the histogram is regarded as the probability

distribution. A higher bin means a larger probability that it is a skin pixel. Pixels with

higher probabilities than the designed threshold will be classified as skin pixels, otherwise

set as non-skin pixels. Gomez [33] and Jones and Rehg [41] described probability calculation

in RGB color space:

P (rgb|skin) = Histskin[r, g, b]

Totalskin[r, g, b]

P (rgb|nonskin) = Histnonskin[r, g, b]

Totalnonskin[r, g, b]

(2.6)

A pixel which can be labeled as skin should satisfy a given threshold:

P (rgb|skin)
P (rgb|nonskin)

≥ θ (2.7)

Since images perform differently in different color spaces, the drawing of the histogram and

the parameters corresponding to the skin pixels may be different. Though the calculation



process is similar, the results may vary. Zarit et al. [86] has shown that histogram methods

perform best in HSV color space since its intensity and chromaticity are separate. Based on

this, Soriano et al. [70] solved the problem on normal illumination by adjusting the histogram

tracking with skin locus. Liu and Peng [49] apply morphological and blob analysis for further

optimization. Histograms are also used in combination with other techniques [11, 73, 78]

and get better results.

Gaussian Mixture Model: The Gaussian distribution, sometimes called the normal

distribution, is the most common form of distribution that exists in nature. The probability

density function (PDF) of Gaussian distribution is as follows:

f(x|µ, σ2) =
1√
2σ2π

exp(−(x− µ)2

2σ2
) (2.8)

where µ is the mean and σ is the standard deviation.

The Gaussian mixture model (GMM) is a probability model that represent the K sub-

distributions in the overall distribution. In other words, the mixed model represents the

probability distribution of the observation data in the population. It is a mixture of K

sub-distributions. The mixture model does not require the observation data to provide

information about the sub-distribution to calculate the probability of the observation data

in the overall distribution. The probability distribution of the Gaussian mixture model is:

p(x|θ) =
K∑
k=1

αkϕ(x|θk) (2.9)

where αk is the weight of the kth model, and ϕ(x|θk) is the Gaussian distribution density

function of the kth sub-model. Its expanded form is the same as the single Gaussian model

introduced in (2.8). The iterative method of expectation maximization (EM) is usually used

to estimate the fitting parameters during the training of GMM. The GMM model has the



characteristics of a simple evaluation process and low memory cost, which has attracted much

attention. Zhu et al. [88] proposed a new GMM-based skin color segmentation algorithm.

Experiments show that the algorithm can effectively and quickly segment the moving target

and has strong robustness. Hossain et al. [37] proposed a method using GMM to extract

facial skin color by estimating the illumination changes in images. The experimental results

show that this method is suitable for practical applications compared with the traditional

GMM-based skin color segmentation method.

However, the calculation process of GMM is long, and the algorithm has limitations. The

comparative study of the performance of Gaussian distribution by Caetano et al. [12] shows

that the hybrid model only improves the performance in the relevant operating area, and

increasing the number of cores does not effectively improve the model efficiency.

Bayesian Classifier: Among various classifiers, the Bayesian classifier has the most

negligible probability of classification error and the slightest average risk in the case of a

predetermined cost. It uses the Bayesian formula to calculate the posterior probabilities of

an object that belongs to different classes. Then, it classify the object to the class with the

highest posterior probability. The conditional probability density function of an input to be

classified as skin can be expressed as the following Bayes rules:

p(skin|x) = p(x|skin)p(skin)
p(x|skin)p(skin) + p(x|non-skin)p(non-skin) (2.10)

On the basis of this, a pixel will be classified as skin pixel if its conditional probability is

larger than the threshold θ.

p(skin|x)
p(non-skin|x) > θ (2.11)

Brand and Mason [8] evaluated the performance of three pixel-level human skin color detec-



tion methods, in which the Bayesian detection rate is as high as 95%. It proves the accuracy

of the Bayesian classifier in estimating the skin color probability. Experiments [61] show

that the accuracy of the Bayes classifier decreases sharply when the training set becomes

smaller.

2.2.3 Neural Network Methods

A neural network is a mathematical or calculation model that imitates the structure and func-

tion of a biological neural network (animal’s central nervous system, especially the brain).

More recently, researchers have applied deep neural network to the problem of skin segmen-

tation.

One outstanding neural network was Fully Convolutional Network (FCN), introduced by

Long et al. [50] in 2015, which is a pioneering network model using deep learning for image

segmentation and is one of the earliest semantic segmentation models. It replaced the final

full-connected layers of the classic CNN classification model with convolutional layers. The

training parameters were reduced but the accuracy was not lost. Subsequent CNN-based

image segmentation models are mostly improved based on it. Zuo et al. [90] introduced an

new end-to-end network for human skin detection by integrating the recurrent neural network

(RNN) into FCN and enhanced the skin detection power under complex environments. He

et al. [36] proposed a new data-driven skin detection method to achieve robust skin detection

combined with human body mask and achieve semi-supervised training address the problem

of insufficient samples.

Another well-known network is Regions with Convolutional Neural Network (R-CNN). Gir-

shick et al. [32] designed the R-CNN framework by using region proposal and CNN instead

of sliding window and hand-designed features in traditional target detection, which made a



huge breakthrough in target detection. The next year, Girshick [31] improved the R-CNN by

adding a ROI pooling layer and applying multi-task to overcome its serious speed bottleneck

caused by the repeated calculations when the computer performs feature extraction on all

regions. While it still took plenty of time for the network to do selective search. Ren et al.

[60] then designed region proposal network for extracting candidate regions to take the place

of time-consuming selective search, which greatly improved the detection speed. He et al.

[35] extended the Faster-RCNN by adding a new branch for prediction the object mask on

the bounding box recognition branch in parallel and designed Mask R-CNN. It runs more

efficiently and can also be easily generalized to other tasks. Benefit from the progress in

R-CNN family, skin detection systems also develop quickly. Roy et al. [63] used an R-CNN-

based approach to reduce the number of false positives by adding a CNN based skin detector

and shown a substantial improvement over a baseline of using R-CNN only. Nguyen et al.

[54] integrated a mean shift tracker into Mask R-CNN and reported improvements of 5% to

9% in detection accuracy compared by the original Mask R-CNN based method.

Refering to the FCN structure, researchers also built a set of encoder-decoder models. Seg-

net [6] is a typical encoder-decoder based segmentation network. It is a symmetric network

composed of encoder and decoder. The encoder classifies and analyzes the low-level local

pixel values of the image to obtain high-level semantic information. The decoder up-samples

the reduced feature image and then performs convolution processing on the up-sampled im-

ages to make up for the loss of detail caused by the shrinking of the object by the pooling lay-

ers in the encoder. The encoder and decoder work together to make the prediction. Nguyen

et al. [55] modified the original SegNet architecture by increasing the number of decoders,

thereby allowing each encoder to perform multiple tasks at the same time which discriminate

skin components in hand area more accurately. U-Net is another typical encoder-decoder

based segmentation network and was introduced by Ronneberger et al. [62]. It includes a



contracting path to capture context and a symmetrical expanding path to restore spatial

resolution. It use a series of cross-layer connections to fuse low-level detailed information and

high-level semantic feature to achieve precise positioning. Topiwala et al. [76] has shown that

U-Net stands out among the frequently-used skin detectors on their dataset of human ab-

domen with different skin colors. Tarasiewicz et al. [74] refined the U-Net architecture [62]

by considering large-scale contextual features, using inception blocks and dense blocks to

reduce occurrences of false positives significantly while doing skin detection.

2.3 Algorithmic bias

This work has been motivated in part by the need to promote demographic fairness in auto-

mated systems, particularly relating to differences in skin tones that result from ethnicity,

race, gender, age, and other respects. For tasks such as face recognition, techniques have

been developed recently to evaluate bias within algorithms and datasets [9], and to improve

fairness with respect to such differences [23]. To eliminate the bias, Steiner et al. [71] pro-

posed a face verification method based on the spectral remission intensities of the different

skin tones in the short-wave infrared (SWIR) range. They can reliably distinguish real

human skin from other materials, regardless of skin type. More generally, Mehrabi et al.

[52] have surveyed the Machine Learning field and have developed a taxonomy of problems

that affect bias and fairness within automated systems. Most bias-mitigation systems fo-

cus on two types of biases: dataset bias, and task bias. This paper is concerned with the

former, which refers to datasets having classes are not represented as well as others within

the dataset. Researchers recently have focused on invariant feature learning for protected

variables (here, the skin color appearance), and perform database repair to eliminate the

representation error [2, 47, 65].



Chapter 3

Methods

In this chapter, we talk about our approach to solving skin detection problems as introduced

in Chapter 1.1. We propose a deep learning module that contains a unique data prepro-

cessing called color space augmentation, followed by a traditional neural network to do skin

segmentation and output the final results. Our system is based on the U-Net [62] archi-

tecture and stands out among the frequently-used neural networks on skin detection tasks

[76]. We have used the U-Net architecture to demonstrate the novel skin-detection approach

presented here.

3.1 System Architecture

The architecture of our proposed method is shown in Figure 3.1. The design is quite similar

to the traditional skin detection system with the training stage and testing stage. Before

the training stage, we added a new stage called color space augmentation to enhance the

classification ability of the system under different illumination conditions. We use images

with different HSV values to simulate colored lighting and occlusions on human skin during

the testing stage. In this work, the U-Net structure is identical to the one introduced in [62]
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Figure 3.1: The entire process of our method. The training set will be color augmented and
then trained by U-Net with its corresponding groundtruth. The output will be the binary
images where skin pixels are denoted as 1, and non-skin pixels are denoted as 0.

3.1.1 Color Space Augmentation

Data augmentation has been widely used in computer vision, especially for the purpose of

regularizing the network [53, 82]. The augmentation techniques are also useful for reducing

generalization error [53, 75], which includes noise augmentation [19], color augmentation [75],

pose augmentation, etc. In this work we adopt the color based data augmentations that can

create artificial images to mimic alternate representations of the image, in this case, the

appearance of the skin. We have implemented the color augmentation in the HSV (Hue,

Saturation, Value) space, as illustrated in Figure 3.2.

Suppose the dataset has the training set D and its corresponding ground truth G. For

every image I in the training set D, {H,S, V } represents its original hue, saturation and

value. We choose a new set of hue (H = {H1, H2, ..., Hn}), saturation (S = {S1, S2, ..., Sm})

and value (V = {V1, V2, ..., Vl}) across its respective range and then transform image I in

the training set and validation set. So the transformed image Inew = T (I,H,S,V). As

an example, if only the hue channel is changed, then the new image is represented as:



Figure 3.2: Color space augmentation in HSV space containing hue rotation, saturation
decay and value change.

I i
new = {Hi, S, V } and formatting a new set of training images Dh = {D1

h, D
2
h, ..., D

n
h}. In

saturation and value channel the images are changed in the way Ij
new = {H,Sj, V }, Ik

new =

{H,S, Vk} and we get another two new sets of training images Ds = {D1
s , D

2
s , ..., D

m
s },Dv =

{D1
v, D

2
v, ..., D

l
v}. In this way, one training image will become multiple training images which

enlarges the training set and provides more features with skin areas covered by different

masks and improve the performance of the skin detection model. Then we send the training

set {D,D1
h, ..., D

n
h , D

1
s , ..., D

m
s , D

1
v, ..., D

l
v, G} to neural network in the training stage. The

images before feeding to the network are again transformed to RGB color space. Note that

each image in the dataset generates m+ n+ l additional images. Figure 3.3 shows example

of the augmentation. We have used m = n = l = 5 model.



(a) (b) (c)

Figure 3.3: Example of color based augmentation across hue (a), saturation (b), and value
(c). The first column of each group shows the changed images Inew. The second columns
show the skin segmentation results without color space augmentation. The third columns
show the results with color space augmentation. The input images are rotated at every 60
degrees in hue channel in group (a). For group (b), the saturation of images are decayed at
the ratio of 0.8, 0.6, 0.4, 0.2, and 0.0. For group (c), the value of the images are changed at
the ratio of 1.0, 0.8, 0.6, 0.4, and 0.2.. The normal image is on the top of each group.



Figure 3.4: An example of the structure of U-Net as shown in [62].

3.1.2 Network Structure

We use a traditional U-Net structure to carry on the training and testing stage in our

experiments. The U-shaped structure of the network is shown in Figure 3.4. The network is

a classic fully convolutional network (that is, there are no fully connected operations in the

network). The left side of the network (red dotted line) is composed of convolution and max-

pooling layers. A series of downsampling operations are formed, and this part is called the

contracting path in the paper. The contracting path consists of four blocks. Each block uses

three effective convolutions and one max-pooling downsampling. After each downsampling,

the number of feature maps is multiplied by two, as shown in the figure. Finally, a feature

map of size 32× 32 is obtained.

The right part of the network (the green dotted line) is called the expanding path in the

paper. It is also composed of four blocks. Before the start of each block, the size of the



feature map is multiplied by two through deconvolution, and the number is halved (the

last layer is slightly different). Then the expanding path is merged with the symmetrical

contracting path on the left. Since the size of the feature map of the contracting path on the

left and the expanding path on the right are different, U-Net normalizes them by clipping the

feature maps of the contracting path to the exact size of the feature maps in the expanding

path. The convolution operation of the extended path still uses the effective convolution

operation, and the size of the finally obtained feature map is 388 × 388. Since this task is

a two-class task, the network has two output feature maps.



Chapter 4

Experiments and Results

4.1 Dataset

In this work, we have used three datasets. The training and initial evaluation were performed

using the benchmark ECU [58] dataset. It contains images with diverse attributes including

gender, age, skin type, skin-like background, indoor and outdoor images, and images with

shadows. The dataset contains 4000 RGB images with manually annotated skin pixels as

binary images (see Figure 4.1 as an example). These images are divided into 1600 images

for training, 400 for validation, and 2000 for testing. Note that each of these images is used

for color space augmentation (18 total). Hence, we have a total of 30400 images for training.

To demonstrate the color invariance of the algorithm, we also transformed the test images

to augmented

Racial bias is another critical attribute in skin detection systems. To evaluate such bias in

our system, we have experimented with six skin types following the Fitzpatrick scale [64]

and one ‘mix’ group. The ECU dataset was divided into 7 groups manually according to

the skin tone shown in each image. Images with multiple skin tones will be divided into the

‘mix’ group. Figure 4.2 shows the distribution of images containing individuals with skin

types of Type I (less melanin concentration) to Type VI (high concentration of melanin).

The figure clearly shows the representation bias of the ECU dataset that can bias any ML

algorithm to Type I and Type II.
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Figure 4.1: Results from the ECU dataset. The first row shows the original images. The
second row shows the corresponding ground truth containing skin and non-skin pixels. The
third row shows output from the proposed algorithm. Results shown for different back-
grounds, different numbers of people, various genders, skin tones and gestures.

(a) (b)

Figure 4.2: Distribution of skin types in the ECU dataset. Labels I-VI refer to the six skin
tones described by Fitzpatrick [26]. The group “mix” refers to several skin tone categories
in a single image.



Figure 4.3: Results from the RFW dataset. Faces are divided into four groups: African,
Asian, Caucasian and Indian. The first row shows the original images. The second row
shows the skin detection output results of our methods.

For further evaluation, we selected the RFW (Racial Faces in the Wild) dataset [79] for cross

dataset validation of our algorithm in order to test whether the proposed algorithm exhibits

bias for ethnicity or skin tones. RFW is a standard test database used to study racial bias

in face recognition (see Figure 4.3 as an example). Four test subsets are provided, namely,

Caucasians, Asians, Indians, and Africans. Each subset contains about 3000 people and

6000 image pairs for face verification. For our work, RFW dataset provided 10415 African

faces, 9688 Asian faces, 10196 Caucasian faces, and 10308 Indian faces, which shows a good

balance between skin tones.

Finally, we created a small dataset of 20 pictures with extreme illumination variations. These

images were selected to contain either colored neon illumination or artificial filters, as shown

in Figure 4.12. Then we performed manual annotation using SuperAnnotate [72] to identify

the skin pixels and non-skin pixels. We conducted extensive testing using this dataset and

made pixel-wise evaluations using our ground-truth annotations.



Table 4.1: Confusion matrix.

Predicted as skin Predicted as non-skin
Ground truth Skin TP FN

Ground truth Non-skin FP TN

4.2 Evaluation

For the ECU dataset, we used five measures to evaluate the performance: precision, recall,

accuracy, F1 score, and IoU. The confusion matrix (Table 4.1) is a situation analysis table

that summarizes the prediction results of the classification model in data science, data analy-

sis, and machine learning. In the skin detection problem, there are two types of records in the

data set, positive and negative category, so the classification model may make positive judg-

ments (judgment records belong to the positive category) or negative judgments (judgment

records belong to the negative category). Therefore, the confusion matrix is a 2×2 situation

analysis table that shows the number of the following four sets of records: positive records

with correct judgments (true positives), positive records with wrong judgments (false neg-

atives), negative records with correct judgments (true negatives) and negative records with

false judgments (false positives). Table 4.1 shows the structure of the confusion matrix. The

classification model correctly classified the true-positive and true-negative record groups on

the diagonal of the confusion matrix and misjudged the false-positive and false-negative

record groups on the anti-diagonal line. A confusion matrix is an essential tool for the per-

formance evaluation of classification models. Various evaluation indicators such as accuracy,

precision, and recall can be calculated from the confusion matrix.

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

Precision =
TP

TP + FP
(4.2)



Figure 4.4: The calculation of IoU. It is also can be calculated with the help of confusion
matrix.

Recall =
TP

TP + FN
(4.3)

F1 =
Precision×Recall

Precision+Recall
(4.4)

Intersection over Union is another standard for measuring the accuracy of detecting corre-

sponding objects in a specific data set. It equals dividing the overlapping part of the two

regions by the combined part of the two regions. This standard is used to measure the

correlation between reality and prediction. The higher the correlation, the higher the value.

Figure 4.4 shows how IoU is calculated.

For the RCW dataset, we do not have the ground truth skin annotation. Hence we developed

a different method to evaluate the performance. We first used a face detector to get the face

area in the image (as shown in Figure 4.5a). Then we run the skin detection algorithm

trained on the ECU dataset to get the prediction. Finally, we identify the number of skin

pixels in the face boundary (as shown in Figure 4.5b) as an evaluation tool.

Skin/Face =
Skin pixels detected

Total pixels in face rectangle
(4.5)



(a) (b)

Figure 4.5: One example from ECU dataset of skin/face evaluation. In first image, we use
face detector to detect face boundary. In second image, we move the face box into the
results from the skin detector to calculate the skin/face and shows the performance of the
skin detection system.



Figure 4.6: An example from ECU dataset of colorjitter. The brightness, saturation, and
contrast of the image are changed randomly.

4.3 Training segmentation networks

The experiment uses NVIDIA GeForce RTX 2070 SUPER GPU with 16 GB GPU memory.

The algorithm is trained and tested with U-Net [87] and FCN [20]. The U-Net is working

under Python 3.8.5 and Tensorflow 2.3.1 environment with no pre-trained models. The FCN

is working under Python 3.8.5 and Pytorch 1.70 with a pre-trained VGG-16 network. We

train the networks with a fixed learning rate of 10−4, and each epoch takes around 79s when

batch size is set to 8. The network will use a module ImageDataGenerator [43] in the Keras

to do geometric data augmentation, which includes image rotation, width shift, height shift,

shear, zoom, and horizontal flip with nearest fill mode. We used binary cross-entropy loss:

L = − 1

N

N∑
i=1

[yi log(f(yi)) + (1− yi) log(1− f(yi))] (4.6)

where N is the number of segmentation classes. The symbol yi is the label and f(yi) is

the predicted probability of the points belonging to the ith class. The original output of

the network will be from 0 to 1. Since the pixels should belong to either skin category or

non-skin category, we use the function below to make the output O binary where 1 refers

to skin pixels. The threshold δ we set is 0.5. To make the experiments more convincing, we



also draw precision-recall curve.

O =


1 if f(yi) ≥ δ

0 if f(yi) < δ

(4.7)

Despite normal augmentation methods, we also apply colorjitter as a kind of color aug-

mentation to make a comparison. Figure 4.6 shows an example of colorjitter. Colorjitter

augment the training set by randomly change the brightness, saturation, and contrast of

training images. For a given image I, its brightness, contrast, and saturation will be jittered

uniformly from [max(0, 1− θ), 1 + θ]. In the following experiments, we choose θ = 0.5 when

using colorjitter, and each image will be augmented into 4 images using colorjitter.

4.4 Results

4.4.1 Images in the wild

We compared our method with some state-of-the-art skin segmentation systems, including

three traditional methods and one FCN based method. Kolkur et al. [44] and Dahmani

et al. [18] are two thresholding methods which establish some rules in several color spaces

to classify a pixel is skin or not. Jones and Rehg [41] is a naive Bayes based method, which

predicts the probability of a pixel to be skin after training with given skin masks. The

problem behind these traditional methods is the lack of high level features during detection

tasks, resulting in the weak robustness against light changes, complex backgrounds or skin

color diversity. For both FCN based methods and our U-Net based method, we trained

three models, one without color augmentation, one with colorjitter and another with color

augmentation to confirm the effectiveness of color augmentation.



Table 4.2: Test results for several skin segmentation methods with the ECU dataset. Our
results using U-Net are significantly better than previous methods. For both FCN and
U-Net, our use of color-based augmentation improved overall performance of the system.

Methods Accuracy Precision Recall F1 IoU
Kolkur et al. [44] 83.73 57.00 88.38 69.31 53.03

Dahmani et al. [18] 85.95 63.12 77.91 69.74 53.54
Jones and Rehg [41] 89.51 78.23 68.58 73.09 57.59

FCN before aug. 95.78 92.32 86.93 88.66 79.63
FCN colorjitter 96.40 91.50 91.12 91.31 84.01
FCN after aug. 95.89 92.14 87.70 89.87 81.60

U-Net before aug. 95.59 89.56 89.15 89.35 80.76
U-Net colorjitter 94.99 82.95 95.56 88.81 79.87
U-Net after aug. 96.33 92.99 89.04 90.97 83.44

We first trained the U-Net model with the original RGB images in the ECU dataset (with

and without augmentation) and evaluated the performance with the original test set. The

precision and recall are shown in Table 4.2. With augmentation, this system yielded a

precision of 92.99% and recall of 89.04%, which significantly outperforms the methods of

Kolkur et al. [44], Dahmani et al. [18], and Jones and Rehg [41] (Naive Bayes). The FCN

model achieves a precision of 92.14% and a recall of 87.70%. For this part of experiment,

models with colorjitter reach the highest accuracy.

In Figure 4.7 we show qualitative comparisons, where the examples cover various skin colors,

similar colors in the background, and complex illumination. The first row is a girl lying on

the grass with her arms open. The second row is a boy holding a cat, and some of his skin

areas are covered by shadow and the cat. The third row is an image of three children with

dark skin. The fourth row is a man with a large beard area on his face. These challenging

conditions make other methods fail or perform poorly. Dahmani et al. [18] and Jones and

Rehg [41] fail in the first and third rows. Kolkur et al. [44] classified a large area of background

as skin pixels in the fourth row. U-Net (B) works better but still performs poorly in the

third row. In contrast, our approach overcame most of the difficulties as stated above, and



Figure 4.7: Testing results on the ECU dataset, by various skin segmentation methods in-
cluding Kolkur et al. [44], Dahmani et al. [18], Jones and Rehg [41], FCN before augmentation
(B), using colorjitter (CJ), and after (A) augmentation, and U-Net before augmentation (B),
using colorjitter (CJ), and after (A) augmentation (Columns 3 to 11). Input and ground
truth are shown in columns 1 and 2. Our approaches (marked by “(A)”) achieve superior
results for different backgrounds, genders, poses, and skin tones.

produced accurate and robust results.

We have set the threshold of predicted probability to be 0.5 to classify the image pixels as skin

or non-skin pixels and convert the sigmoid output from the deep learning model to binary.

To make the experimental testing results more convincing, we illustrate the precision-recall

curve [59] in Figure 4.8.

4.4.2 Across races and skin tones

In order to detect the skin tone bias in the ECU dataset, we further tested the algorithms

on different skin tones. Table 4.3 and Table 4.4 show the testing results on different skin

tones in the ECU dataset. Among the three baseline methods, Jones [41] shows the best

performance for most of the skin types, but all the methods particularly fail for Type VI

(dark skin category). Even deep learning skin segmentation methods show an apparent

decline in this dark skin category. This also happens to models with colorjitter, which reach



Figure 4.8: Precision-recall curve from testing experiments on the ECU dataset.

the highest F1 and IoU shown in the tables. Our method consistently shows around 90%

F1 score and more than 75% IoU for all skin types, which shows its robustness against skin

tone changes.

Moreover, the standard derivations in the last column show that deep learning models have

more substantial stability over skin tone bias after color augmentation. The standard devi-

ation demonstrates how consistent an algorithm is across the different skin categories. An

ideal system should have same IOU and F1 score for every skin category; hence, very little

variation (low std). These two tables show that our approach was more effective than all

previous systems in reducing bias across skin types. Although models with colorjitter seem

to reach the higher F1 and IoU, they appear to have larger standard deviation values, which

means models using colorjitter has larger skin tones bias.

As shown in Figure 4.2, one of the significant problems in the ECU dataset is the imbalance

in the images for each skin type. To further understand the robustness of our method, we



Table 4.3: F1 scores (%) for the ECU dataset across different skin types. The labels I-VI
refer to the six skin tones described by Fitzpatrick [26]. The “mix” column refers to single
images containing several individuals with multiple skin categories. The σ column refers to
standard derivation of the F1 scores for all columns.

Methods I II III IV V VI mix σ
Kolkur et al. [44] 67.61 69.96 70.27 70.44 67.61 46.90 72.42 8.14

Dahmani et al. [18] 66.10 70.52 71.95 71.01 70.46 56.45 70.45 5.07
Jones and Rehg [41] 64.65 75.89 73.99 74.00 73.28 46.82 77.61 9.99

FCN before aug. 89.03 89.90 90.03 89.56 89.59 83.41 87.37 2.20
FCN colorjitter 91.21 91.49 91.60 91.36 91.97 85.86 89.32 2.02
FCN after aug. 90.06 90.06 90.34 89.93 90.06 82.98 85.69 2.70

U-Net before aug. 87.16 89.58 90.38 90.99 91.98 84.72 88.82 2.29
U-Net colorjitter 88.96 88.86 88.69 88.56 91.42 81.77 89.58 2.80
U-Net after aug. 90.88 91.34 91.21 90.55 89.35 86.05 89.60 1.84

Table 4.4: IoU values (%) for the ECU dataset across different skin types. The column labels
are the same as in the previous table.

Methods I II III IV V VI mix σ
Kolkur et al. [44] 51.07 53.80 54.16 54.36 51.07 30.64 56.76 8.22

Dahmani et al. [18] 49.37 54.47 56.19 55.05 54.39 39.33 54.38 5.50
Jones and Rehg [41] 47.77 61.15 58.72 58.72 57.83 30.56 63.41 10.60

FCN before aug. 80.24 81.66 81.87 81.09 81.15 71.54 77.57 3.44
FCN colorjitter 83.84 84.32 84.50 84.09 85.14 75.22 80.70 3.27
FCN after aug. 81.92 81.91 82.38 81.70 81.91 70.92 74.97 4.22

U-Net before aug. 77.24 81.13 82.44 83.47 85.16 73.50 79.89 3.68
U-Net colorjitter 80.12 79.95 79.68 79.47 84.20 69.16 81.13 4.33
U-Net after aug. 83.28 84.06 83.84 82.73 80.75 75.52 81.16 2.97



Table 4.5: Skin/face ratios (%) for the four race groups with different skin tones of the RFW
dataset respectively. The last ‘Overall’ column means data are collected from the whole
RFW dataset.

Methods Caucasian Asian Indian African Overall
Kolkur et al. [44] 62.34 62.21 64.31 36.78 56.27

Dahmani et al. [18] 60.02 59.19 60.95 49.79 57.44
Jones and Rehg [41] 47.29 45.49 48.45 20.05 40.19

FCN before aug. 67.24 65.78 67.36 64.37 66.20
FCN colorjitter 73.88 70.16 72.80 74.92 73.00
FCN after aug. 73.35 70.59 72.73 73.99 72.71

U-Net before aug. 65.47 65.76 69.82 68.39 67.40
U-Net colorjitter 82.80 78.52 81.63 84.15 81.84
U-Net after aug. 75.07 71.85 73.49 72.98 73.37

test with the RFW dataset, which has a balanced dataset across ethnicity. Since RFW

dataset does contain manual labels, we only compute the skin/face ratio in this part (see

Figure 4.5 and Function 4.5). Table 4.5 shows the evaluated skin/face result of RFW dataset.

The model is trained on the ECU dataset using data augmentation. The results show that

other methods have different degrees of decline in the “African” group, while our method

is stable among races with different skin tones. Also, our method is significantly better in

all the categories compared to the three baselines. Compared the results shown in the last

four rows, color augmentation shows its effectiveness on improving the performance of the

models.

We have noticed that U-Net trained with colorjitter has extremely high skin/face values.

Although this skin/face ratio can reflect the ability of the detection system, larger values do

not mean better prediction entirely. Skin segmentation systems may make over prediction

and conduct more false positive pixels, which will increase the skin/face values but have no

contribution to accuracy. In Figure 4.9, we extract the skin/face values from various groups

of predictions to make it more convincing. In this section, we plot skin/face ratio curve to

evaluate the performance of the skin segmentation models. The skin/face ratio curve refers



Table 4.6: Kullback–Leibler divergence between the standard probability distribution and
that from estimated methods. Results are from the three U-Net models with different groups
and the whole RFW dataset.

Cau Asian Ind Afr Overall
Before Aug. 2.19 1.84 1.87 1.85 3.27
Colorjitter 1.98 1.67 1.89 2.31 3.20
After Aug. 1.70 1.59 1.68 1.83 3.03

to the probability distribution of the skin/face values from the results.

First, we plot skin/face ratio curve using the annotated ECU dataset and its corresponding

ground truth, which will be regarded as a sample or a standard. Then, we plot the exact curve

of the results from U-Net before and after color augmentation with RFW dataset. The curves

are shown in Figure 4.9. We calculate Kullback–Leibler divergence (DKL) to measure the

difference between the standard probability distribution and that from estimated methods.

We expect the resulting curve from a better model to be more relevant to the standard curve,

that is, has smaller DKL to the standard distribution. The DKL values are listed in Table

4.6. It demonstrates that model after color augmentation is more relevant to the standard

distribution in all groups since they have the smaller DKL. This also happens in the whole

RFW dataset. Although U-Net has higher skin/face values as listed in Table 4.5, it has

lower DKL. Combined the distribution curves in Figure 4.9, we conclude that U-Net trained

with colorjitter conducted more over prediction pixels when tested on RFW dataset, which

means it has lower accuracy than our proposed method in fact.

From Figure 4.9, we find that there is a peak at point “0” for the model before augmentation

in every group, which does not appear in the standard curve. These peaks indicate that the

model does not detect any skin pixels from the face area, which is incorrect. After color

augmentation, the model works well, and these peaks disappear. This explains a lot why

skin/face ratio increase after color augmentation.



(a) Caucasian (b) Asian

(c) Indian (d) African

(e) Overall

Figure 4.9: Skin/face ratio distributions curves for overall RFW dataset (e) and the four
races with different skin tones in RFW dataset (a to d). Blue curves refer to the sample
distribution curve we get from the annotated ECU dataset. Orange and red curves refer to
the distribution from testing results before and after color augmentation respectively. Green
curves refer to the distribution from the testing results with colorjitter.



Figure 4.10: Experimental results from the RFW dataset using several skin segmentation
methods. Left to right: Kolkur et al. [44], Dahmani et al. [18], Jones and Rehg [41], FCN
before augmentation (B), using colorjitter (CJ), and after (A) augmentation, and U-Net
before augmentation (B), using colorjitter (CJ), and after (A) augmentation. Rows 1 to 4
show sample results for the RFW ethnic groups: Caucasian, Asian, Indian, and African.

Figure 4.10 shows some qualitative results containing both various skin colors and complex

illuminance. The first row is a Caucasian man with background of color similar to his skin.

The second row is an Asian woman with one shoulders in the dark. The third row is an

Indian man with strong light on his top head. The fourth row is an African woman with her

face in shadow. We find that the three baseline methods in columns 2 to 4 are fully confused

by the background in the first row. U-Net (B) fails to detect the skin area with intense light

in the fourth row. In contrast, our method works better and outputs accurate and complete

results.



(a) (b) (c)

Figure 4.11: Comparison of models that use color augmentation (After Aug) and the one
does not use color augmentation (Before Aug) to test robustness for image filtering in the
color space. Augmentation shows their effectiveness for all three dimentions (a) Hue, (b)
Saturation, and (c) Value.

4.4.3 Unconstrained illuminations and filters

In order to further test the robustness of the algorithm under different illumination and

creative filter, we ran experiments by testing images transformed by HSV color space aug-

mentation (similar to the training set). We trained two skin segmentation algorithms: One

without color augmentation and one with color-based augmentation. Then we tested them

with the color augmented test set. Figure 4.11 shows the comparison between the results.

For the model without color augmentation, the accuracy falls immediately as they are tested

with image sets that have been modified by hue (Figure 4.11a), saturation (Figure 4.11b), or

value (Figure 4.11c). The accuracy remains consistent for the model that was trained with a

color augmented set of images. This ablation study shows explicitly the effectiveness of our

proposed model. Figure 3.3 shows qualitative examples of how even with drastic changes

in the color, the output of our algorithm remains consistent across all the filters. Finally,

to test the performance under ambient light across the spectral, we selected random images

from the web and tested them.

Figure 4.12 shows the robustness of our methods against the drastic illumination changes.

The model without color augmentation fails to detect a single skin pixel in the second and



Table 4.7: Augmentation improves the performance of both U-Net and FCN when tested on
images with unconstrained illumination and filters from our self-made dataset.

IoU before aug. IoU colorjitter IoU after aug.
FCN 12.05 31.55 64.92
U-Net 11.76 18.19 35.85

third rows, even colorjitter doesn’t conduct any help in some images, while our method

(with augmentation) successfully detects skin pixels in most cases. Qualitative evaluations

in Table 4.7 shows this improvement. Both colorjitter appplied models and models without

color augmentation have poor performance on the extreme illumination images. IoU increase

sharply after color augmentation is applied to skin segmentation systems.

4.4.4 Grayscale images

We also conducted tests using grayscale images only. In this part, we used images from

the ECU dataset and converted them to grayscale format. Then we performed testing with

the U-Net model and the FCN model, with and without color space augmentation. The

results are listed in Table 4.8. The table shows that the FCN model without color-space

augmentation yields very poor performance, and the resulting IoU is low. For U-Net without

augmentation, IoU declines to approximately 0, indicating that the model detected hardly

any skin pixels. The performance improves significantly for both of these models, when

colorjitter was applied. IoU for the FCN model returned to over 70% and IoU for U-Net

returned to over 60%. The saturation part in the colorjitter helps the skin segmentation

model perform better on grayscale images. Our proposed methods help the skin segmentation

gain more IoU on this basis. The IoU of the FCN model reached 77% and the IoU for U-Net

model reached nearly 70%.

Qualitative results are illustrated in Figure 4.13. FCN (B) can detect only a small area of skin



Figure 4.12: Testing results on our self-made dataset by deep learning models FCN and
U-Net. The label (B) on the top of the images refers to the results from the model before
color augmentation and the label (CJ) refers to the results from mode using color jitter.
In comparison, label (A) refers to the model with color augmentation. Input images and
ground truth are shown in columns 1 and 2 in each group.



Table 4.8: Augmentation improves the performance of both U-Net and FCN when tested on
grayscale images from the ECU dataset.

IoU before aug. IoU with colorjitter IoU after aug.
FCN 47.13 71.76 77.20

U-Net 0.55 60.45 69.42

pixel in grayscale image but U-Net (B) fail to detect any skin pixels. Although improvements

are obvious after colorjitter is applied to the network, our methods still output better results

with more details. Models with color augmentation work well and correctly detected skin

pixels for grayscale images.



Figure 4.13: Testing results on grayscale images from the ECU dataset by deep learning
models FCN and U-Net. The label (B) on the top of the images refers to the results from
the model before color augmentation. In comparison, label (A) refers to the model with
color augmentation. Input images and ground truth are shown in columns 1 and 2 in each
group.



Chapter 5

Conclusions

This work has introduced a new approach for automated detection of skin in images. The

system leverages recent innovations involving encoder-decoder networks like U-net. The

color-based data-augmentation step strategically reduces dependence by the system on color-

based cues and removes racial bias. This in turn addresses problems related to illumination

differences (e.g., indoor/outdoor situations, harsh shadows, unnatural lighting), variations

in skin tone (especially ethnic/racial variations), and different sensor parameters (e.g., color,

monochromatic, varying spectral sensitivities).

To our knowledge, the system presented here is the first to apply deep methods to the problem

of skin detection that can be generalized across the color spectrum. Further, this work is the

first to directly assess the skin tone bias in skin detection systems. Experimental results are

presented using two datasets. Our approach has demonstrated better precision and recall

for each of the six annotated skin types than three alternative skin-detection systems for

the ECU dataset. Compared with the other color augmentation method, colorjitter, our

method still has the smaller skin tone bias and performs better in the grayscale and extreme

illumination testing. The experiments on the other network, FCN, also show improvement

in skin detection. We anticipate that similar approaches can be applied more broadly to

other Computer Vision techniques and tasks.
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Appendix A

Additional Results

This section will supply more output results from the skin detection systems mentioned in

the main thesis. We illustrate another six examples in Figure A.1. The first row is a girl

wearing a skin color-like cloth. The second and third rows contain backgrounds that have

similar colors as the people in the image. The fourth row is a girl with brown cloth. The

fifth row is a baby with strong lights on his head. The sixth row contains multiple people

in various poses and skin colors These challenging conditions make other methods fail or

perform poorly. The three baseline methods all fail to classify the skin color-like ground

in the first and second rows. U-Net (B) works better, but there is still some false positive

noise in rows 1 to 5. Moreover, it fails to detect the people on the right in the last row.

In contrast, our approach overcame most of the difficulties mentioned above and produced

accurate and robust results. Compared with results before color augmentation, models with

color augmentation make less false positive and false negative judgments. For example, the

FCN (A) does not detect the baby’s hair as skin pixels in the fifth row, and it does not make

noise as FCN (B) does in the second row. In this part of view, our method outperforms the

traditional skin segmentation methods, and color augmentation helps deep learning methods

work better.

We demonstrate more results from the RFW dataset in Figure A.2. The three traditional

skin segmentation methods still misclassify the color-like background to be skin pixels. For

example, the background of the door is classified as skin areas in the third row by the three
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Figure A.1: Additional results on the ECU dataset, by various skin segmentation methods
including Kolkur et al. [44], Dahmani et al. [18], Jones and Rehg [41], FCN before augmenta-
tion (B), using colorjitter (CJ), and after (A) augmentation, and U-Net before augmentation
(B), using colorjitter (CJ), and after (A) augmentation (Columns 3 to 11). Input and ground
truth are shown in column 1 and 2.



Figure A.2: Testing results on the RFW dataset, by various skin segmentation methods
including Kolkur et al. [44], Dahmani et al. [18], Jones and Rehg [41], FCN before (B) and
after (A) augmentation, and U-Net before (B) and after (A) augmentation (Columns 2 to 8).
Input are shown in column 1. Result shown for races with different skin tones: Caucasian,
Asian, Indian, and African (Row 1 to 4).

baseline methods. On the opposite, in the second row, glasses covered area is not classified

as skin areas. What’s more, the skin area covered by other items is detected as non-skin

pixels. Compared with results after color augmentation, models without color augmentation

are more likely to make false-positive judgments. Moreover, in the darker skin group, models

after color augmentation can detect more skin pixels. For example, the result from FCN (A)

has less false positive noise than that from FCN (B) in the first row. U-Net (A) detects more

skin pixels on the man’s head in the fourth row.
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