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Abstract

The increasing availability of high-resolution satellite
imagery has enabled the use of machine learning to support
land-cover measurement and inform policy-making. How-
ever, labelling satellite images is expensive and is available
for only some locations. This prompts the use of transfer
learning to adapt models from data-rich locations to others.
Given the potential for high-impact applications of satel-
lite imagery across geographies, a systematic assessment of
transfer learning implications is warranted. In this work,
we consider the task of land-cover segmentation and study
the fairness implications of transferring models across lo-
cations. We leverage a large satellite image segmentation
benchmark with 5987 images from 18 districts (9 urban
and 9 rural). Via fairness metrics we quantify disparities
in model performance along two axes – across urban-rural
locations and across land-cover classes. Findings show that
state-of-the-art models have better overall accuracy in ru-
ral areas compared to urban areas, through unsupervised
domain adaptation methods transfer learning better to ur-
ban versus rural areas and enlarge fairness gaps. In analy-
sis of reasons for these findings, we show that raw satellite
images are overall more dissimilar between source and tar-
get districts for rural than for urban locations. This work
highlights the need to conduct fairness analysis for satel-
lite imagery segmentation models and motivates the devel-
opment of methods for fair transfer learning in order not
to introduce disparities between places, particularly urban
and rural locations.

1. Introduction

Satellite imagery is becoming readily available with
around 1030 active satellites that are dedicated to earth ob-
servation [36]. Out of the different spectra of imagery avail-
able from such satellites, visible spectrum imagery is partic-
ularly relevant for many applications based on the extremely

high resolution and according ability to resolve specific ob-
jects of interest [5]. Consequently, satellite images com-
bined with semantic segmentation, the task of clustering
parts of an image together which belong to the same ob-
ject class, can be used to detect objects ranging from natu-
ral features (water bodies, forests) to human land-use types
(buildings, roads). The extracted information is being ap-
plied in a wide range of settings including urban planning
[34], modelling disease spread [1], aiding disaster relief
efforts [16, 57], and detecting and mapping environmental
phenomena [24,55]. However, because segmentation mod-
els employ supervised learning, availability of ground truth
data is a major bottleneck for their training. Annotation for
the segmentation task is particularly labor intensive as it re-
quires fine-grained labels at the level of pixels which results
in incomplete or noisy ground truth data [45]. In such sit-
uations, generalizing existing models to non-annotated data
by transfer learning is a widely applied solution [43, 48].

Transfer learning uses knowledge learnt from the same
or related tasks to improve learning on the task at hand (see
Pan and Yang [39] for a survey). We will focus on a type of
transfer learning setting called domain adaptation, where
we have a single task but the train and test domains may
differ. The key challenge here is the discrepancy in data
distributions between domains. In the case of satellite im-
agery, the discrepancies commonly result from transferring
models to new geographies where the landscapes are dis-
similar to where the model was trained. For example, Islam
[22] finds that a well-trained seagrass detection model from
satellite images fails when tested at other locations with dif-
ferent seagrass density. To mitigate the degrading effects of
domain discrepancies on segmentation accuracy, previous
work has re-designed network architectures [28], loss func-
tions [18,50], and batch normalization methods [38] to im-
prove model generalization. Other approaches include us-
ing labels at a coarser granularity for the target domain (e.g.
image-level labels) as weak supervision [21] and learning
latent representations shared between source and target do-



mains to help in adaptation [26, 29].
Simultaneously, while machine learning approaches

have been used to improve prediction in a variety of tasks,
recent studies have highlighted concerns towards model
fairness, exhibited by performance disparities across sen-
sitive groups based on geography, demographics, and eco-
nomic indicators [31,58]. A push for model fairness aligns
with the ideal of equity defined by World Health Organiza-
tion as “Equity is the absence of unfair, avoidable or reme-
diable differences among groups of people, whether those
groups are defined socially, economically, demographically,
or geographically or by other dimensions of inequality (e.g.
sex, gender, ethnicity, disability, or sexual orientation).”
Real-world examples have demonstrated the harmful effects
of unfair machine learning models, such as facial recogni-
tion software that performs worse on darker women [4] and
advertisement systems that deliver economic opportunity-
related ads less often to women than men [25]. Indeed,
discriminatory issues persist even in state-of-the-art learn-
ing methods [32]. Expanding types of data used in ma-
chine learning tasks, such as satellite imagery, enables in-
creased use in a wide range of daily-life applications and
ever-increasing social impacts. Accordingly, broader as-
pects and viewpoints of performance, such as fairness, need
to be ascertained in multiple machine learning subareas.

In this work we study the fairness impacts of transfer
learning with satellite imagery. To accomplish this goal,
we test multiple semantic segmentation models across dif-
ferent geographies. We then assess if such models made
fair predictions on both the source and the target data. We
focus on differences between urban and rural areas (i.e. ur-
ban/rural categorization is the sensitive attribute) due to per-
sistent and striking disparities between urban and rural ar-
eas, especially for poor populations [2, 3]. The unfairness
criterion in this work is based on differences in error rates
across protected groups where the error rate is computed
using Intersection-over-Union (IoU), a standard segmenta-
tion metric. We also examine model performance disparity
across different land-cover classes. Results show that ex-
isting domain adaptation methods do not maintain fairness
properties on transfer, either across protected groups or fea-
ture classes. This work serves as a valuable demonstration
of fairness being an critical issue in transfer learning using
a large freely-available satellite imagery dataset.

Important takeaways are as follows.

• Studied models have better overall accuracy (via mean
IoU over the 7 classes) on rural districts as compared to
urban districts.

• For common unsupervised domain adaptation methods,
transfer accuracy is improved, but at the cost of fairness;
the performance gap between rural and urban group is
enlarged indicating the need to design new methods that

transfer well for both the groups.

• Investigating reasons for the above findings, we find that
images from rural districts differ more across locations
than those of urban districts.

2. Related Work
Before discussing prior work on transfer learning for

satellite images, we describe some of the alternative ways
to address label scarcity and their shortcomings. Lastly, we
summarize work in the nascent area of fair transfer learning.

Approaches to tackle annotation burden for satellite
images Given the difficulty in labelling data for semantic
segmentation of satellite images, Schmitt, et al. [45] de-
veloped weakly-supervised learning methods, where noisy,
limited, or imprecise data sources are used to provide su-
pervision signal. Previous work has leveraged the spatial
context to develop unsupervised losses which, for exam-
ple, penalize nearby pixels with different predicted labels
[35, 50]. In another approach, Castillo-Navarro, et al. [6]
proposed auxiliary losses based on self-supervised image
reconstruction to improve the performance on the main task
of image segmentation. To improve efficiency of label-use,
Wang et al. [53] transferred classification models trained
with image-level labels to image segmentation tasks and
achieved high accuracy. While these approaches demon-
strate successful combination of labeled and unlabeled im-
ages, they assume that the images are from the same domain
(or distribution). However, the assumption of a consistent
domain is not realistic for problems involving satellite im-
ages which are often from different geographies. Thus, such
approaches are not straight-forwardly applicable in our set-
ting.

Transfer learning for satellite images Transferability
of satellite image segmentation models across different ge-
ographic locations has been studied in Ghorbanzadeh et
al. [14]. Using train and test sets across 3 different ge-
ographies (Taiwan, China, and Japan), they show consis-
tent decrease in evaluation scores upon transfer. Previous
work has incorporated domain adaptation methods to deal
with the challenge. For instance, Tran et al. [49] pro-
posed a two-stage transfer learning structure which gen-
erated pseudo-ground truth segmentation labels for target
data. Algorithms to improve the quality of such pseudo la-
bels were studied in [33,59]. Data augmentation is another
strategy for domain adaptation. Ji et al. augments images
to simulate perturbations due to atmospheric radiation and
demonstrate improved generalization of CNN-based mod-
els [23]. These studies show the promise of adapting mod-
els to data from different locations. But, the transfer is only
evaluated based on overall accuracy for the domain, such as
using Intersection-over-Union (IoU) to measure the over-
lap between predicted segmentation maps and ground-truth



masks. Past work does not study fine-grained measures of
model performance on transfer, like how is the performance
for different subgroups in the domain (based on sensitive
attributes or land-use types) impacted. The risk that dis-
crepancy between domains in transfer learning may impact
subgroups unfairly remains unexplored.

Fairness in transfer learning Following the work in fair
machine learning literature [32], we will narrowly classify
the study of performance differences between subgroups
as model fairness analysis. Compared to fairness analysis
within the same domain, little work has studied transfer of
fair models across domains. The two objectives–improving
transfer accuracy and maintaining fairness–can be at odds
with each other [47, 56]. Schumann et al. [46] formalized
the problem of fair transfer learning which sets the learn-
ing objective to improve accuracy as well as fairness in the
target domain. Multiple approaches to fair transfer learning
have been proposed [8, 27, 30, 37, 41, 42, 47] that make var-
ious assumptions on how the domains differ and what data
is available. Even when labels are not available for the tar-
get domain, like in our setting, methods typically make the
covariate shift assumption which says that the labeling rule
remains the same between the domains and only the fea-
ture distribution changes. In this setting, Coston et al. [8]
propose a method for fair transfer even in cases where sen-
sitive attributes are absent from one of the domains. Other
approaches do not require access to target domain data al-
together and instead either make causal assumptions on the
discrepancy [47] or hypothesize a set of target domains and
optimize against them [10, 30]. Finally, Szabó et al. [19]
conduct a fairness evaluation of segmentation methods as-
suming a single domain.

However, none of the existing works study fair transfer
learning for semantic segmentation models. The task differs
considerably from the above settings as the input data is
high-dimensional, and the model output and loss function
for segmentation are different. We take the first step in this
direction by demonstrating the need for such methods via a
thorough empirical study on a relevant application.

3. Dataset
We use the publicly available, high spatial resolution

land-cover dataset called LoveDA [52] in this study. Com-
pared to other popular satellite image datasets, such as
Zurich Summer [50], DeepGlobe [9], and DSTL [20], the
recently released LoveDA has more annotated images and
includes images from diverse locations. The dataset con-
sists of 5987 images of size 1024×1024 and spatial reso-
lution 0.3m. The images are collected from 18 adminis-
trative districts from three cities in China, namely Nanjing,
Changzhou, and Wuhan. Out of these, there are 9 urban dis-
tricts and 9 rural districts, categorized based on their popu-
lation density and level of economic development. We use

Figure 1. Sample images from urban and rural scenes. For each
scene, one image from source domain districts, one from target
domain districts, and the network’s segmentation predictions (Seg-
map) for the 7 land-cover classes on that target image are shown.

satellite images from the 12 districts for which ground-truth
masks are available: Gulou, Qinhuai, Qixia, Yuhuatai, Jin-
tan, and Jianghan (urban); Pukou, Lishui, Liuhe, Huangpi,
Gaochun, and Jiangxia (rural). The remaining 6 districts
are not availanble as they are held out for the benchmark
challenge. The dataset contains segmentation masks, which
are pixel-level labels, for 7 land-cover classes: Background,
Building, Road, Water, Barren, Forest, and Agricultural.
The Background class consists of any pixel not belonging
to the other classes. Statistics of the dataset, given in Figure
3 in [52], show that the pixel counts across the 7 classes are
imbalanced. Further, distribution of classes and of building
scales differ between urban and rural scenes. Thus the rural
and urban groups of images, which we use in our fairness
analysis, have different characteristics.

4. Methods

We study three tasks, namely semantic segmentation
within the same domain, across districts, and across rural-
urban areas. Next, we describe the setup for each task.



4.1. Task A - Semantic segmentation

Our task is to train multi-class semantic segmentation
models for detecting the 7 land-cover classes from a given
image. Sample images and predicted segmentation maps
are shown in Figure 1. Same as the models studied in
the LoveDA study [52], we use two commonly used deep
learning-based segmentation methods – U-Net [44] and
DeepLabV3+ [7] network, both with pre-trained ResNet50
[17] as the backbone model for the encoder [13].

4.1.1 Training-testing details

Images from the 12 districts with labeled data are shuffled
and split into training (≈ 80%) and testing sets (≈ 20%).
Training set has 3148 images with a mix of 1377 urban and
1771 rural images, and the rest of the images comprise the
testing set with a mix of 368 urban images and 473 rural
images. Images are augmented during training by mirroring
and rotation. Dimension of the input image to the network is
512×512×3 where 3 indicates the RGB bands. The output
dimension of the network is 512×512×7, where 7 repre-
sents the probability of each pixel belonging to each land-
cover class. We use cross-entropy (CE) loss, and stochastic
gradient descent (SGD) as the optimizer with a momentum
of 0.9 and a weight decay of 10−4. The batch size is set to
16 and the total training iterations are 15000, during which
the learning rate is decayed using a polynomial learning rate
scheduler implemented in PyTorch [40].

4.1.2 Evaluation metrics

We test the models on either the whole test set or the ur-
ban and rural subsets in the test set separately, and evaluate
model performance using the following metrics:

Accuracy metrics: Intersection-over-Union (IoU), also
called Jaccard index, is used to measure segmentation ac-
curacy which is a common method to evaluate the quality
of image segmentation [11, 54]. IoU for a class is defined
as the intersection of class-wise ground-truth masks and the
predicted segmentation divided by their union,

IoU :=
TP

TP + FP + FN
,

where TP , FP , and FN are pixel-wise true positives, false
positives, and false negatives. We report IoU score of the
model on each land-cover class as well as mean over class-
wise IoU (referred to as Mean) over the 7 classes.

Fairness metrics: Besides looking at IoU on the rural
and urban subsets and comparing the two values, we de-
vise three additional metrics that quantify how accuracy is
distributed across the classes. The metrics have been used
in existing fairness analysis of segmentation models [19].
These are:

1. Class-std. Standard deviation of IoUs across the 7
classes;

2. Worst. IoU of the worst-performing class (Worst);

3. Sorted 30% (bottom, top). Mean of the bottom 30%
and top 30% classes of the sorted class IoUs. In our
case, 30% is 2 classes out of 7.

Next, we describe the setup for the two transfer tasks.

4.2. Transfer learning

As mentioned earlier, we consider the setting of unsu-
pervised domain adaption (UDA) that is we have a single
task (image segmentation) on the two domains. We assume
access to images and labels for the source (train) domain
and only the images for the target (test) domain. This is
a practical setting in satellite imagery since collecting im-
ages is inexpensive due to advancements in remote sensing,
however, annotating the segmentation labels is expensive.
Thus, we want to be able to use the labelled source images
to segment known but as yet unlabelled target domain.

We consider two UDA methods which performed the
best on the LoveDA benchmark [52] – class-balanced self-
training (CBST) [59] and instance adaptive self-training
(IAST) [33]. CBST optimizes the generation of pseudo-
labels used during self-training to be more balanced among
the classes by using class-wise confidence scores. IAST
adaptively adjusts the pseudo-label generation to improve
the diversity of pseudo-labels and saves useful information
from hard instances. We also use a natural method which
ignores transfer learning and trains only with data from the
source domain (No adaptation).

For all transfer learning experiments, we use a
DeepLabV3+ [7] network with ResNet50 encoder. An
Adam optimizer is used with a momentum of 0.9. The batch
size is 8 and the total training iterations are 15000. Other ex-
perimental setup parameters are the same as in the semantic
segmentation task.

4.2.1 Task B - Transfer across districts

First, we consider the scenario where a model is transferred
across different geographical locations, which in our case
are administrative districts. Source domain comprises of
8 districts: Gulou, Qinhuai, Qixia, Jinghan (urban), and
Pukou, Gaochun, Lishui, Jingxia (rural); and Target do-
main has 4 districts: Yuhuatai, Jintan (urban), and Liuhe,
Huangpi (rural). The ”No adaptation” and two UDA meth-
ods (CBST, IAST) are applied to train the network on the
source domain, and are tested on urban and rural images
from the unseen target domain, separately. The same accu-
racy and fairness metrics listed in Section 4.1.2 are used for
evaluation.



Mean Class-std
Model rural urban rural − urban (%) rural urban rural − urban (%)

UNet 0.639 0.595 0.044 (6.9%) 0.106 0.0946 0.0114 (10.8%)
DeepLabV3+ 0.632 0.597 0.035 (5.5%) 0.0982 0.0896 0.0086 (8.8%)

Worst Sorted 30% (bottom, top)
Model rural urban rural − urban (%) rural urban rural − urban (%)

UNet 0.453 0.474 −0.021 (-4.4%) (0.491, 0.742) (0.480, 0.705) (0.011 , 0.037)(2.2%, 5.0%)
DeepLabV3+ 0.473 0.473 0 (n/a) (0.504, 0.740) (0.489, 0.706) (0.015, 0.034)(3.0%, 4.6%)

Table 1. Task A: Evaluation on single-domain semantic segmentation. Two networks, UNet and DeepLabV3+, are tested on rural and
urban districts from the same domain as training set. For metrics, Mean, Class-std, and Worst, the better performing group (between rural
and urban) is in bold. The difference in performance between rural and urban is shaded. Typically, performance is better for rural than
urban.

Mean Class-std
Method rural urban rural − urban (%) rural urban rural − urban (%)

No adaptation 0.364 0.486 −0.122 (−25%) 0.200 0.135 0.065 (33%)
CBST 0.374 0.523 −0.149 (−28%) 0.215 0.105 0.110 (51%)
IAST 0.376 0.493 −0.117(−24%) 0.223 0.135 0.088 (39%)

Worst Sorted 30% (bottom, top)
Method rural urban rural − urban (%) rural urban rural − urban (%)

No adaptation 0.0609 0.244 −0.183 (−75%) (0.098, 0.581) (0.317, 0.630) (−0.219, −0.049) (−69%, −7.7%)
CBST 0.0172 0.362 −0.345 (−95%) (0.0943, 0.609) (0.398, 0.647) (−0.304, −0.038) (−76%, −5.9%)
IAST 0.0304 0.232 −0.202 (−87%) (0.0772, 0.598) (0.327, 0.640) (−0.250, −0.042) (−76%, −6.6%)

Table 2. Task B: Evaluation of transfer across districts. Three methods (No adaptation, CBST, IAST) are trained source districts, and
evaluated on target rural and target urban districts. For the metrics, Mean, Class-std, and Worst, the better performing group (between rural
and urban) is in bold. The differences in performance between rural and urban are shaded. Models have high unfairness upon transfer.

4.2.2 Task C - Transfer across urban and rural areas

Second, we consider the scenario where the segmentation
model is transferred either from urban to rural areas or from
rural to urban areas. The source and target domain consists
of data from the same set of districts. So for this task, the
only source for domain discrepancy is rural and urban dis-
crepancy. The no- adaptation method and two UDA meth-
ods are trained on the source domain, and tested on the tar-
get domain. Evaluation metrics are the same as earlier.

5. Results

We summarize results for the single-domain in Table 1.
Both the networks (UNet, DeepLabV3+) have better over-
all accuracy, shown with Mean IoU over the 7 classes, for
the rural districts compared to the urban districts. Fairness
metrics such as IoU of the worst class and mean IoU of
30% bottom classes are comparable between rural and ur-
ban. The worst class is Barren for both rural and urban. The
30% bottom classes include Barren and Road for rural, and
Barren and Forest for urban (see Table A.1 in Appendix
for class-wise results). Rural results show higher mean IoU

Figure 2. Task B: Mean IoU upon transfer across districts.
Mean IoU on the union of rural and urban data from the source
(S-overall) and target (T-overall), urban data from the source (S-
urban) and target (T-urban), rural data from the source (S-rural)
and target (T-rural) is plotted when transferring models across dis-
tricts. No adaptation is the source-only method, CBST and IAST
are UDA methods. While overall accuracy drops on transfer, UDA
methods have smaller accuracy drop.



Sub-task Method Mean Class-std Worst Sorted 30% (bottom, top)

No adaptation 0.437 0.108 0.301 (0.322, 0.566)
Rural→Urban CBST 0.469 0.123 0.326 (0.332, 0.617)

IAST 0.443 0.175 0.205 (0.211, 0.638)

No adaptation 0.426 0.108 0.226 (0.271, 0.531)
Urban→Rural CBST 0.467 0.129 0.228 (0.283, 0.599)

IAST 0.454 0.120 0.229 (0.307, 0.592)

Table 3. Task C: Evaluation of urban-rural transfer. Three methods (No adaptation, CBST, IAST) are trained on rural districts and
evaluated on urban districts, and vice versa. Results with the most improvements are marked in bold. UDA methods improve Mean IoU
compared to No adaptation but increase standard deviation of IoUs across classes.

from top 30% classes than urban results, but higher class-
wise standard deviation. Overall, we observe rural-urban
disparities in all four metrics.

For Task B on transfer learning across districts, we sum-
marize the results in Figure 2 and Table 2. Figure 2 visual-
izes the mean IoU metric for both source and target districts.
Based on the first two bar plots (dark and light orange) for
No adapation, CBST, and IAST, we conclude that UDA
methods improve overall segmentation accuracy on the tar-
get domain (T-overall) compared to No adaptation (a de-
crease of 22% and 24% vs that of 26%). Similar trend is ob-
served for each of the source-target pairs for rural and urban
separately. However, the performance gap between the ru-
ral and urban data from target (T-rural and T-urban) remains
large. For instance, from Table 2 we observe that CBST ob-
tains mean IoU of 0.523 on urban area which is better than
the ”No adaptation” 0.486, and IAST obtains 0.376 on rural
area better than the ”No adaptation” 0.364. However, the
networks remain unfair across rural-urban groups after the
transfer (large values in the rural − urban columns). UDA
methods further lower fairness: CBST increases the differ-
ence of mean IoU between urban and rural by 22% (-0.122
to -0.149), increases the difference of standard deviation by
69% (0.065 to 0.11), and increases the difference of worst-
performing class’ IoU by 89% (-0.183 to -0.345).

Next, we examine Task C on transfer learning from ur-
ban domain to rural domain and vice versa. Results are
summarized in Table 3. For both the transfer directions,
the two UDA methods improve the overall accuracy, shown
as higher mean IoU, higher IoU on the worst-preforming
class, and higher mean IoU on bottom and top 30% classes.
However, compared to ”No adaptation”, UDA methods dis-
perse model performance across the classes, measured by
higher standard deviation. For example, CBST increases
Class-std from 0.108 to 0.123 on rural to urban transfer and
from 0.108 to 0.129 on urban to rural transfer. Looking
more closely into the CBST method which obtains the best
overall transfer accuracy (0.469 and 0.467), its performance
on each class is visualized in Figure 3. We observe that
the IoU changes for each class upon transfer are highly un-

Figure 3. Task C: Mean IoU upon transfer across rural-urban.
Mean IoU for 7 landscape classes on source and target domain
when transferring from rural area to urban area, and from ur-
ban area to rural area, with the UDA method CBST. Performance
changes vary substantially by class.

equal. For example, in transferring from Rural→Urban, the
network retains accuracy on the Water and Road classes, but
lost significant accuracy (53%) on the Forest class. In trans-
ferring from Urban→Rural, accuracy drops significantly on
Road, Water, and Barren classes, but increases by 33% on
the Forest class.



6. Discussion
For the locations included in this study, segmentation re-

sults showed a disparity in performance between rural and
urban areas. Though the two groups obtain similar accu-
racy on the respective bottom 30% performing land-cover
classes, rural areas obtain better accuracy on the top 30%
performing classes. Moreover, performance distribution
across classes are different between rural and urban im-
ages. Specifically, the segmentation model detects Forest
and Agriculture classes well in their rural form, and detects
Road and Water classes well in their urban form (detailed
results are reported in Table 5 in the Appendix). Due to ur-
banization, rural and urban areas have clear landscape dif-
ferences. For example, roads are typically wider in the ur-
ban scenes and narrower in rural scenes and water takes on
larger shapes like lakes in urban scenes, and smaller shapes
like ditches in rural scenes [52]. This may explain why the
networks show advantages in urban images on Road and
Water classes. Moreover, agricultural land covers large area
and is continuously distributed in rural scenes. The per-
centage of pixels with Agriculture and Forest elements is
also higher [52]. This can facilitate learning on these two
classes in rural areas as compared to urban areas.

We considered two practical transfer learning tasks with
satellite images and assess network fairness while trans-
ferring across geographical locations, and across rural and
urban areas. Broadly, we observed that when transferring
across districts, networks made more unfair predictions on
data from the new domain than data from the same domain
as training. For the network trained without any adapta-
tion, the mean IoU accuracy difference between rural and
urban images on the target domain is around 64% higher
than the difference reported in the single-domain task. Sim-
ilarly, all other fairness metrics show much higher differ-
ences between groups on transferring to the target domain.
Notably, when applying UDA methods, CBST and IAST,
transfer accuracy was improved, but at the cost of fairness
damage. These methods further enlarged the performance
gap between rural and urban groups measured in all four
metrics. These findings indicate a need for new domain
adaptation methods that tackle the challenge of fair trans-
fer learning.

One of the possible reasons why the network can bet-
ter adapt to urban images than rural images is the unequal
domain discrepancy. To estimate how similar the source
and target images are in the rural and urban groups, we use
two metrics – Proxy-A-distance (PAD) [12] and Maximum
mean discrepancy (MMD) [15]. Both measure the dissim-
ilarity between data distributions of different domains. We
randomly sample 100 images from each domain at a time
and ran 30 trials to compute the two measures. The mean
and standard deviation of distance across the trials are re-
ported in Table 4. We observe that the raw satellite images

Group Source Target PAD MMD

Urban Gulou Yuhuatai 0.26 0.207
Qinhuai Jintan (±0.12) (±0.0235)
Qixia

Jinghan

Rural Pukou Liuhe 0.64 0.262
Gaochun Huangpi (±0.21) (±0.0437)

Lishui
Jingxia

Table 4. Shift in raw image distribution. Measurement of
source-target domain distance using two metrics – Proxy-A-
distance (PAD) and Maximum mean discrepancy (MMD). The
implementation is based on the online codebase in [51]. Rural
images shift more than urban images.

Figure 4. Shifts in class distribution. Class distribution in terms
of proportion of pixels per class is plotted for urban images from
source domain (S-urban), urban images from target domain (T-
urban), rural images from source domain (S-rural), and rural im-
ages from target domain (T-rural). Class distribution is substan-
tially different for all subsets.

are overall more dissimilar between source and target dis-
tricts for rural than for urban, which is a likely cause of
the unequal transfer learning performance between the two
groups. Figure 1 illustrates example images from both do-
mains and the segmentation predictions our network made
on the target. We see that Buildings across source and tar-
get districts are of similar shape and arrangement for urban,
but they are disordered and dissimilar for rural. Accord-
ingly, the model segmentation map shows that the model
segments urban buildings well but fails to detect most of
the rural buildings. This observation indicates the impor-
tance of checking class differences besides overall differ-
ences across the whole image.

Along these lines, we define pixel-wise class distribu-
tion as the proportion of pixels belonging to each class. We
assess shifts in the class distribution between source and
target for both rural and urban images. Class distributions
are shown in Figure 4. For urban locations, the Water and



Agriculture classes have the largest shifts from source to
target. For rural, the Background and Forest classes have
the largest shifts. Indeed there are large class shifts between
source and target for both the urban and rural data. For
example, the class distribution of urban target data seems
more rural-like with an increased proportion in the Agricul-
ture class. This emphasizes the internal variation in rural
and urban categories. Moreover, as our data consists of im-
ages from just one set of locations, data from different loca-
tions are needed for more generalizable conclusions. How-
ever, based on the selection of classes examined in our data
which are common land-use classes globally, some results
(such as in Table 4 indicate common threads that can be
applicable to rural-urban disparities in general.

In the second transfer learning task, the networks show
unfairness on rural to urban domain transfer. Differences
between rural and urban scenes provide explanation for
why almost all classes lost accuracy on the target do-
main. Some classes show opposite transfer performance
in the two sub-tasks of Task C. The Road class lost only
4% accuracy on Rural→Urban transfer but lost 41% ac-
curacy on Urban→Rural transfer. The Water class shows
similar patterns, whereas the Forest class lost 53% accu-
racy on Rural→Urban transfer but gains 33% accuracy on
Urban→Rural transfer. These observations indicate that for
some classes, the features learnt by the networks from rural
scenes can be easily adapted to interpret urban scenes, and
some classes have the opposite case. From this perspective,
features of different classes can have very different general-
ization ability, which will cause the transfer performance to
be highly unequal across classes. This feature-specific char-
acteristic may be leveraged in the design of future transfer
learning methods.

7. Conclusion
Transfer learning models for semantic segmentation are

often evaluated based on overall accuracy metrics. Here,
we expand the scope of their evaluation by conducting a
systematic fairness evaluation when models are transferred
across domains. We examine the performance of two unsu-
pervised domain adaptation methods on a large-scale public
satellite imagery dataset. Model fairness is evaluated be-
tween rural and urban locations as the models are trained
and tested across administrative districts. Based on the ex-
periments, we conclude that the domain adaptation meth-
ods we study can be improved in terms of retaining model
fairness across rural and urban data. Domain adaptation im-
proves overall accuracy at the cost of decreasing fairness on
test domain. Further, more shifts in the raw image distri-
bution and pixel-wise class distribution result in more per-
formance drop. Broadly, our findings demonstrate potential
fairness problems when working with satellite image data
sourced from different locations. Also, the findings indicate
the need for developing methods focused on fair transfer

learning, such as through new model architectures or loss
functions.
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Appendix
A. Semantic segmentation results on single

classes
In this section, we provide complete IoU result of the

model on each land-cover class, for the semantic segmenta-
tion task and two transfer learning tasks in experiments.

A.1. IoU on each land-cover class in the single-
domain satellite image semantic segmenta-
tion task

UNet DeepLabV3+
Class Rural Urban Rural Urban

Background 0.6044 0.5843 0.6126 0.5912
Building 0.6678 0.6188 0.5965 0.5912

Road 0.5297 0.5937 0.5341 0.6021
Water 0.7501 0.7801 0.7453 0.7711
Barren 0.4526 0.4742 0.4732 0.4729
Forest 0.7345 0.4859 0.7356 0.5049

Agriculture 0.7324 0.6291 0.7194 0.6411

Table 5. Intersection over Union (IoU) of network UNet and
DeepLabv3 on land-cover classes on testing images from rural dis-
tricts and urban districts.

A.2. IoU on each land-cover class in the across-
districts transfer learning task

Rural Urban
Class Source Target Source Target

Background 0.4981 0.5517 0.6324 0.3898
Building 0.4774 0.4536 0.5392 0.5760

Road 0.4445 0.2440 0.5749 0.5596
Water 0.7022 0.6105 0.7217 0.6835
Barren 0.4674 0.1352 0.4761 0.2437
Forest 0.7503 0.0609 0.4876 0.5175

Agriculture 0.7607 0.4907 0.4767 0.4305

Table 6. Intersection over Union (IoU) of network DeepLabv3,
using No adaptation, on each land-cover class on testing images
from source domain and target domain when transferring model
across geographical locations, evaluated on rural districts and ur-
ban districts, seperately.

Rural Urban
Class Source Target Source Target

Background 0.4794 0.5823 0.6397 0.4339
Building 0.4687 0.4042 0.5055 0.5741

Road 0.4504 0.2593 0.5846 0.5484
Water 0.7004 0.6313 0.7703 0.7188
Barren 0.4775 0.1713 0.4867 0.3620
Forest 0.7453 0.01723 0.4333 0.4858

Agriculture 0.7449 0.5509 0.5340 0.5406

Table 7. Intersection over Union (IoU) of network DeepLabv3,
using UDA method CBST, on each land-cover class on testing
images from source domain and target domain when transferring
model across geographical locations, evaluated on rural districts
and urban districts, seperately.

Rural Urban
Class Source Target Source Target

Background 0.4767 0.5850 0.6417 0.4218
Building 0.5004 0.4930 0.4766 0.5702

Road 0.4353 0.2340 0.5545 0.5280
Water 0.6939 0.6107 0.7657 0.7101
Barren 0.4627 0.1240 0.4878 0.2319
Forest 0.7505 0.0304 0.4580 0.4778

Agriculture 0.7514 0.5556 0.5247 0.5138

Table 8. Intersection over Union (IoU) of network DeepLabv3,
using UDA method IAST, on each land-cover class on testing
images from source domain and target domain when transferring
model across geographical locations, evaluated on rural districts
and urban districts, seperately.

A.3. IoU on each land-cover class in the crossing
rural-urban transfer learning task

Rural → Urban Urban → Rural
Class Source Target Source Target

Background 0.6172 0.4681 0.5976 0.4989
Building 0.5868 0.4220 0.5639 0.4153

Road 0.4499 0.4082 0.5793 0.3148
Water 0.7199 0.6643 0.7454 0.4634
Barren 0.4566 0.3008 0.5175 0.2264
Forest 0.7066 0.3431 0.4752 0.5337

Agriculture 0.7495 0.4491 0.6366 0.5277

Table 9. Intersection over Union (IoU) of network DeepLabv3,
using No adaptation, on each land-cover class on testing images
from source domain and target domain when transferring model
Rural → Urban and Urban → Rural.



Rural → Urban Urban → Rural
Class Source Target Source Target

Background 0.5968 0.5085 0.5618 0.5130
Building 0.6126 0.4324 0.5963 0.4605

Road 0.4585 0.4424 0.5692 0.3380
Water 0.7190 0.7193 0.7611 0.5301
Barren 0.4793 0.3381 0.4613 0.2281
Forest 0.6890 0.3260 0.4239 0.6339

Agriculture 0.7109 0.5152 0.6315 0.5646

Table 10. Intersection over Union (IoU) of network DeepLabv3,
using UDA method CBST, on each land-cover class on testing
images from source domain and target domain when transferring
model Rural → Urban and Urban → Rural.

Rural → Urban Urban → Rural
Class Source Target Source Target

Background 0.5968 0.5085 0.5618 0.5130
Building 0.6126 0.4324 0.5963 0.4605

Road 0.4585 0.4424 0.5692 0.3380
Water 0.7190 0.7193 0.7611 0.5301
Barren 0.4793 0.3381 0.4613 0.2281
Forest 0.6890 0.3260 0.4239 0.6339

Agriculture 0.7109 0.5152 0.6315 0.5646

Table 11. Intersection over Union (IoU) of network DeepLabv3,
using UDA method IAST, on each land-cover class on testing
images from source domain and target domain when transferring
model Rural → Urban and Urban → Rural.


	1 . Introduction
	2 . Related Work
	3 . Dataset
	4 . Methods
	4.1 . Task A - Semantic segmentation
	4.1.1 Training-testing details
	4.1.2 Evaluation metrics

	4.2 . Transfer learning
	4.2.1 Task B - Transfer across districts
	4.2.2 Task C - Transfer across urban and rural areas


	5 . Results
	6 . Discussion
	7 . Conclusion
	A . Semantic segmentation results on single classes
	A.1 . IoU on each land-cover class in the single-domain satellite image semantic segmentation task
	A.2 . IoU on each land-cover class in the across-districts transfer learning task
	A.3 . IoU on each land-cover class in the crossing rural-urban transfer learning task


