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Abstract

Although deep neural networks enable impressive visual
perception performance for autonomous driving, their ro-
bustness to varying weather conditions still requires at-
tention. When adapting these models for changed envi-
ronments, such as different weather conditions, they are
prone to forgetting previously learned information. This
catastrophic forgetting is typically addressed via incremen-
tal learning approaches which usually re-train the model
by either keeping a memory bank of training samples or
keeping a copy of the entire model or model parameters
for each scenario. While these approaches show impres-
sive results, they can be prone to scalability issues and their
applicability for autonomous driving in all weather condi-
tions has not been shown. In this paper we propose DISC —
Domain Incremental through Statistical Correction —a sim-
ple online zero-forgetting approach which can incremen-
tally learn new tasks (i.e. weather conditions) without re-
quiring re-training or expensive memory banks. The only
information we store for each task are the statistical pa-
rameters as we categorize each domain by the change in
first and second order statistics. Thus, as each task ar-
rives, we simply ‘plug and play’ the statistical vectors for
the corresponding task into the model and it immediately
starts to perform well on that task. We show the efficacy
of our approach by testing it for object detection in a chal-
lenging domain-incremental autonomous driving scenario
where we encounter different adverse weather conditions,
such as heavy rain, fog, and snow.

1. Introduction

In order to entrust safety-critical systems such as au-
tonomous vehicles with human lives, they must operate
robustly in widely different environments. While recent
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Figure 1. Robust object detection for autonomous driving across
varying weather conditions with DISC. We only require domain-
specific statistics (i.e. jup, i per weather condition ID) which are
inserted into a frozen detection model to achieve zero-forgetting,
i.e. the detection performance on previously encountered weather
conditions does not degrade over time.

deep learning-based approaches achieve very strong perfor-
mance, e.g. for object detection [8,37,55,56], they are usu-
ally only trained and evaluated on data collected mostly in
clear weather conditions [18,21,68]. However, a major real-
world challenge for autonomous vehicles is to encounter
deteriorating weather conditions while driving. As shown
in [7,47,48], even slightly changing weather conditions can
hamper the performance of object detectors considerably,
making them unsafe for use in safety-critical systems.

A simple way to address such changing environmental
conditions is to train different models for each individual
weather condition. However, this requires extensive data
collection, careful manual annotation and time-consuming
re-training. Additionally, all these models need to be saved
for future use which is sub-optimal because a significant
amount of their learned weights might be redundant.

Instead of training a separate model for each different
scenario, a better solution is to ideally have only a single



model which can work in all weather scenarios. However,
naively training a model for all weather scenarios individu-
ally can lead to a variety of problems, where the most crit-
ical is catastrophic forgetting [17,19,30,46]. This means
that as deep neural networks are trained for new domains
(e.g. weather conditions), they forget information from the
previous domain. For example, if an object detector trained
on clear weather conditions is re-trained with foggy weather
data, its performance improves for foggy weather but de-
grades for clear weather. This performance degradation dur-
ing such model adaptation is typically addressed via Incre-
mental Learning (IL) approaches [15, 44, 71]. These ap-
proaches learn a sequence of tasks (e.g. different weather
conditions), one at a time, without having access to data
from the previous tasks. They learn to perform good on
a new task while retaining the performance on previously
learned tasks. If performance does not degrade on previous
tasks at all, then they are termed zero-forgetting approaches.

Numerous approaches try to improve autonomous driv-
ing algorithms for degrading weather conditions. For ex-
ample, foggy weather conditions can be handled by fusing
multi-modal input data [6] or combining synthetic and real
data [13,60]. Similarly, several approaches address "driv-
ing in the wild", e.g. [1 1,12,69]. Although these approaches
often provide state-of-the-art results for the individual task
which they are specifically designed for, their applicability
to different tasks and, in fact, to different weather scenar-
ios is not yet clear. Furthermore, these approaches mostly
follow the domain adaptation paradigm which is different
from the incremental learning setup and are often prone to
issues like catastrophic forgetting.

We propose DISC, an efficient Domain-Incremental
learning approach which leverages Statistical Correction
for robust object detection under varying weather condi-
tions. DISC considers different weather conditions as dis-
tribution shifts and categorizes each condition according
to its statistical difference. We achieve zero-forgetting by
only retaining the weather-specific first- and second-order
statistics calculated by the detection model during training
and replacing these statistics when we encounter a weather
change, as shown in Figure 1.

As we only store the domain-specific statistics of the
model, our incremental learning approach is highly effi-
cient, both in terms of computational cost and memory con-
sumption, i.e. we neither need to store the entire model pa-
rameters nor any data samples from different domains. We
show the applicability of our method in a challenging on-
line setting where we let our system interact with multiple
changes in domains (i.e. weather conditions) and show its
effective zero-forgetting property.

Our contributions can be summarized as follows:

* We propose an incremental learning approach which
considers different weather conditions as distribution

shifts and thus, only needs to store the first and second
order statistics for each weather condition.

* We show that by replacing the weather-specific statis-
tics in an otherwise frozen model, we can efficiently
realize a system which achieves zero-forgetting.

* We demonstrate strong performance gains using our
DISC in both offline and online learning scenarios,
highlighting its effectiveness.

2. Related Work

As our work lies at the intersection of incremental learn-
ing, unsupervised domain adaptation and autonomous driv-
ing in varying weather conditions, we summarize the cur-
rent state-of-the-art in these research fields.

2.1. Incremental Learning

Incremental learning — learning a sequence of tasks one
after the other without access to previously learned tasks
— received increasing interest in recent years. Incremental
learning can be divided into three main scenarios [25,71]:
task-incremental learning [15], class-incremental learn-
ing [40,44] and domain-incremental learning [1]. Through-
out all these scenarios, existing approaches can be as-
signed to three main categories, namely replay-based,
regularization-based and parameter isolation approaches.

Replay-based approaches explicitly store samples from
previous tasks in a limited exemplar memory that can be
rehearsed during the training of new tasks [10, 27,54, 57].
Alternatively, some methods substitute the replay based on
an exemplar memory by learning a generative model which
is capable of describing previous distributions and sample
from them [5, 33,52, 65]. To counter the potential overfit-
ting to the replayed memories, some approaches propose to
constrain the interference between the new task and all pre-
viously learned ones [4, 9, 39].

Regularization-based approaches introduce extra regu-
larization terms in the training loss which limit the change
of important weights or large shifts on the activations. One
of the most common strategies is knowledge distillation,
which enforces the outputs of the network to shift as little
as possible for previously learned classes, while allowing
enough change to learn the new ones [28, 35, 53, 66, 78].
The second most common approach consists of calculating
the importance of each parameter in the network and penal-
izing their update based on that importance [2, 30,38, 77].

Parameter isolation approaches mostly assume no con-
straints on the model size. They usually isolate or freeze
important model parameters from previous tasks and allow
the models to introduce new parameters in order to exploit
strong connections and avoid forgetting [3,51,59,75]. Other
approaches enforce zero-forgetting by learning masks or



paths for each parameter or each layer representation [ 16,

,45,63].

Most of the incremental learning approaches are usu-
ally proposed for either task-IL or class-IL, and in general
are framed inside a classification problem. In this paper,
however, we demonstrate how to leverage domain-IL for
adaptation to varying weather conditions. To this end, we
propose DISC, a method which is designed for domain-IL
and which does not rely on replay memories, regularization
terms, or even long training sessions. Contrary to replay-
or regularization-based methods, it provides zero-forgetting
properties, and unlike parameter isolation models, it does
not require the computationally expensive training or calcu-
lation of masks and paths.

2.2. Correcting Domain Statistics

Adapting the batch normalization [26] statistics for the
target domain data has been extensively used for unsuper-
vised domain adaptation. For example, Li et al. [34] recal-
culate the first and second order statistics of the batch nor-
malization layer for domain adaptation, while Carlucci et
al. [43] learn hyper-parameters during training to optimally
mix the statistics from source and target domain. Other ap-
proaches, such as [50, 62, 67, 79] propose prediction-time
batch normalization in order to reduce the statistical dis-
crepancies between source and target domains. In addi-
tion to correcting the first and second order statistics for
the target domain, Wang er al. [72] also learn the scale and
shift parameters of the batch normalization layer by calcu-
lating the gradients from the entropy of predictions. Mirza
et al. [49] introduce DUA, a highly data-efficient method to
adapt the statistics in an online manner for the target domain
for unsupervised domain adaptation.

2.3. Autonomous Driving in Varying Weather

Improving the robustness of autonomous vehicles to
varying weather conditions also gained increased attention
in recent years. Recent works propose approaches for se-
mantic segmentation [13,60] and image defogging [76] dur-
ing night. Sakaridis et al. [61] improve semantic segmenta-
tion for foggy scenes using synthetic data. Bijelic et al. [6]
propose a multi-modal fusion architecture for driving in
foggy conditions. Chen et al. [11, 12] propose object de-
tection approaches for driving in the wild. RoyChowdhury
et al. [58] propose a self-training approach for adaptation
of object detectors to different weather conditions. Other
works, such as [29,64] propose image de-hazing approaches
in the context of autonomous driving.

Our work also focuses on driving in diverse weather con-
ditions. However, in contrast to other task- and weather-
specific approaches, e.g. [0, | 1-13, 60], which mostly fol-
low the domain adaptation paradigm, we propose a zero-
forgetting domain-incremental learning approach which

learns to drive in varying weather conditions as they are en-
countered while not reducing the performance on previous
conditions. We consider different weather conditions as dis-
tribution shifts and employ DUA [49] to learn the weather-
specific statistics. During testing we only need to replace
these weather-specific statistics which makes our approach
highly efficient and achieve zero-forgetting.

3. Domain-IL for Weather Conditions

In incremental learning scenarios, a sequence of tasks
is learned one at a time within their own training sessions,
without access to data from previously seen tasks. Follow-
ing most common incremental scenarios [15,44,71], we can
define an IL problem as the sequence of n tasks:

T = [(017D1)7(027D2)7 v(Cnan)]v (D

where the set of classes C* ={c}, ..., ¢!, } represents each

task ¢, learned with training data D*. The training data con-
sists of input features x € X (i.e. images in our setup) and
corresponding ground truth labels y (i.e. bounding box an-
notations and class labels in our case). Therefore, we have
Dt ={(z1,11), (x2,v2), .. , (zk,yx)} all available pairs
of input and label for a given task, where all y; € C*.

In this paper, we focus on the variant of domain-
incremental learning, where all tasks share the same classes,
ie. C'=ClVteT. As the sequence of tasks is learned,
the same objects have to be detected while their domain
and data distribution changes. At inference time, similar to
task-incremental learning [15], we have access to the task-
ID. For our use-case this means that we know the current
weather condition.

The properties from the proposed domain-incremental
learning scenario correspond to the real-world problem of
object detection under different weather conditions. We
aim to learn the same set of objects (classes) over different
weather conditions (domains), while having access to the
task-ID (current weather). A representation of the domain-
IL scenario we adopt is depicted in Figure 2.

4. Method

Before presenting our domain-IL approach DISC, we
first explore how correcting task-specific latent representa-
tion statistics can be used for domain adaptation.

4.1. Statistical Correction for Domain Adaptation

In deep neural networks, batch normalization [26] is a
strategy that aims to reduce the internal covariate shifts be-
tween each layer’s input distribution during training. Es-
sentially, it normalizes the input activations of each layer to
have a zero-centered mean and unit variance, such that

z —E[X]
Var[X] + ¢

i‘:
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Figure 2. Domain-incremental learning setting used in this paper. Different tasks correspond to different weather conditions which are
learned in the training phase. During inference, we evaluate the performance of the current task along with all the previously seen tasks.

where each input sample x is normalized by the mean and
variance calculated from the activations during training.
The parameters v and 8 denote the distribution scale and
shift, respectively, while € > 0 prevents division by zero.
The expected value E[X] is estimated by the running mean

fi = (1= p) - fik—1 +p - 3)

while the variance Var[X], i.e. the variability around the
expectation is estimated by the running variance

ok =(1—p)-63_1+p- o, )

where £ and o2 denote the mean and variance of the current
incoming batch of data samples, respectively. The running
mean and variance are updated with each new batch of data.
The momentum parameter p (default p = 0.1) controls the
balance between the previously accumulated statistics and
the effect of the current batch statistics.

By design, the behavior of batch normalization is inher-
ently different between training and inference phases. Dur-
ing training, since data is forwarded through the network
in batches, the statistics are updated by the batch normal-
ization layer via the running mean and variance (Egs. (3)
and (4)). However, at inference time, the statistics accu-
mulated during training are fixed and used for normaliza-
tion following Eq. (2). Batch normalization works best
when both train and test data are from a similar distribu-
tion [22,23,74]. However, when train and test data distri-
butions are not well aligned, batch normalization can cause
performance degradation [73].

Correcting the statistics when train and test data distribu-
tions are not aligned can be helpful for unsupervised domain
adaptation [34,49,50,62,72,79]. Existing approaches either
adapt or replace the statistics estimated by the batch nor-
malization layers during training for the out-of-distribution

test data, improving performance on the latter. Since differ-
ent weather conditions can also be considered as being out-
of-distribution w.r.t. the clear weather condition, we pro-
pose a similar technique for our domain-incremental learn-
ing through statistical correction approach. In particular,
we draw inspiration from DUA [49] due to its data-efficient
nature for domain adaptation.

4.2. DISC

Motivated by the promising results for domain adap-
tation, we leverage task-specific statistical correction for
domain-incremental learning. Specifically, we propose that
each time a new task from the sequence arrives, we freeze
the parameters of the model and only calculate the running
mean and variance at each batch normalization layer. While
DUA [49] calculates the statistics from a fraction of the data
for domain adaptation, for domain-IL we need to store task-
specific statistics to overcome catastrophic forgetting.

Since our DISC only requires a quick, efficient, zero-
forgetting storage of the statistics at each batch normaliza-
tion layer for each task in the sequence, we divide its usage
into two phases, namely adaptation & plug-and-play:

In the Adaptation phase, we require only a tiny frac-
tion of unlabeled data from each weather condition to adapt
the statistics estimated by the batch normalization layers
via DUA [49]. DUA adapts the statistics by directly us-
ing the out-of-distribution test data without requiring back-
propagation. It uses an adaptive momentum (p) scheme in
order to adjust the statistics by using less than 1% of test
data. After adapting to each of the weather conditions un-
til convergence (i.e. when the statistics become stable), we
store the weather-specific statistics calculated by this model
and discard the remaining model parameters. This means
that we only need to store the vectors of the running mean



fu and variance &2 for each batch normalization layer in the
model. In contrast to DUA, we do not use the test data to
adapt the statistics, but only use the training data collected
in degrading weather to calculate the statistics.

In the Plug-and-Play phase, we apply the weather-
specific statistics vectors to the initial model, which is only
trained on the first task. At inference, we replace the batch
normalization statistics in the initial model with the ones
learned for the current task (plug) and forward the data
through the network (play). We do not replace or modify
any other model parameters other than the running mean
and variance of the batch normalization layers. Thus, we
can exactly recover the model’s original performance on all
previous tasks, even after encountering new tasks. Conse-
quently, DISC belongs to the family of zero-forgetting in-
cremental learning approaches [16,41,42,45].

The proposed approach provides several advantages.
First, the lack of update on the model parameters com-
pletely avoids catastrophic forgetting when learning new
tasks, effectively turning our proposed approach into a zero-
forgetting one. Second, only having to calculate the statis-
tics means that we do not need computationally expensive
training sessions. In particular, only a single forward pass
through the model with a fraction of the current unlabeled
training data is sufficient. This makes our approach ex-
tremely efficient and easily adaptable. Third, the storage
of the statistics for each layer grows linearly with the num-
ber of tasks, but it is still quadratically more efficient than
storing parameters for each weight or a memory of exem-
plars, as most IL methods do. Next, since the estimate of the
statistics is only based on the available samples from D?,
our method can be compared under both online and offline
domain-IL scenarios. Finally, our approach only relies on
the x; samples from the data, without the need for the labels
y; —except for the starting task model of the sequence which
might require supervised training. This allows our method
to be applicable in practical scenarios where the subsequent
tasks in the sequence (i.e. after the first), can be learned in
an unsupervised manner.

A requirement of DISC and the proposed domain-IL sce-
nario is to have access to the task-ID during inference, as it
is done in task-incremental learning approaches [15]. How-
ever, especially for weather conditions, this task-ID can eas-
ily be inferred by either training a separate classifier, or sim-
ply querying additional sensors available in modern cars,
such as (typically infrared-based) rain sensors. We also pro-
vide results for using incorrect task-IDs in Sec. 6.2.

5. Experimental Setting

In this section, we first introduce the dataset and tasks
on which we evaluate our domain-incremental learning ap-
proach. Then, we provide details about the experimental
protocols and the baselines we compare to.

car van truck ped sit cyc tram misc| sum

train | 12884 1307 475 1905 101 688 258 398 | 18016
val | 1381 150 54 262 16 83 34 67| 2047
test | 14477 1457 565 2320 105 856 219 508 |20507

Table 1. Annotated instances of classes for the different dataset
splits of KITTI used in our experiments.

5.1. Dataset and Tasks

We conduct all our experiments on the widely used
KITTI [ 8] autonomous driving dataset. The KITTI dataset
consists of 8 object classes manually annotated for training
both 2D and 3D object detectors. The dataset consists of
real-world driving scenes captured in Germany in both ru-
ral and urban areas. Separate training and testing splits are
provided for the KITTI dataset. However, publicly available
annotations are only provided for the training split, whereas
the testing split is used for the KITTI object detection chal-
lenge which is evaluated through their private server.

Thus, we follow the common protocol [31,32] and divide
the 7,481 images in the KITTI training dataset into train
(3,740 images) and test (3,741 images) splits. Further, we
use 10% of this train split as validation split during train-
ing to optimize hyper-parameters. Details about the exact
number of instances present for each class in each split is
provided in Table 1. These splits are fixed for both training
and inference across all experiments and methods.

Recently, several works introduced approaches to change
the input images realistically to simulate driving in dif-
ferent weather scenarios, such as fog [20], rain [70], and
snow [24]. We use these approaches to create differ-
ent weather scenarios for our domain-incremental learning
setup. Thus, we define the following four-task scenario:

Task 0 - Clear: The initial task in our incremental learning
setup is driving in clear weather. Since the KITTI dataset is
recorded almost exclusively in bright daylight conditions,
we use the original KITTI data as input for this task.

Task 1 - Fog: The second task in the sequence is driv-
ing in foggy weather. Halder er al. [20] introduce realistic
physics-based rendering of fog. In particular, they use the
depth information from the LiDAR sensor, re-projected into
the camera view to simulate 7 different fog levels. The fog
severity is categorized by the visibility in meters and varies
from 30 m, corresponding to the most severe fog, to a vis-
ibility of 750 m, corresponding to the least severe fog. For
this task, we apply their method to simulate fog on KITTI
at the maximum severity level, i.e. 30 m visibility.

Task 2 - Rain: The third task to learn is the rainy weather
condition. Tremblay et al. [70] propose a physics-based rain
model to simulate photo-realistic rain at 8 different levels of
severity. They also leverage the re-projected LiDAR-based



depth measurements and apply a particle simulation frame-
work [14] to approximate the real-world dynamics of rain-
drops. The degradation severity can be specified on the ba-
sis of rain intensity measured in mm/hr, ranging from light
rain at 1 mm/hr to heavy rain at 200 mm/hr. For a challeng-
ing scenario, we use the highest severity level at 200 mm/hr
in all our experiments to simulate heavy rain on KITTI data.

Task 3 - Snow: The final task we address in our se-
quence of weather conditions is snow. Hendrycks and Di-
etterich [24] evaluate the robustness of various deep neural
networks in several different scenarios. In their benchmark,
they also introduce an approach to simulate snow on images
which we use to superimpose snow on the KITTI images.

5.2. Implementation Details

Throughout all experiments we use the open source Py-
Torch implementation' of the YOLOV3 [55] object detector.
For statistical correction of the batch normalization layers
in YOLOV3 we use the official DUA implementation®. We
use the default settings from the implementations except for
the learning rate and batch sizes. For training all models we
use a batch size of 16 while learning rates are handled by
an early-stopping criteria. When the validation error does
not improve for 5 epochs, we decrease the learning rate by
a factor of 3. If the validation error still does not improve
after 3 learning rate changes, we stop training the model
further. The initial learning rate value is 0.01.

5.3. Experimental Protocols and Metrics

For all experiments we report the mean average precision
(mAP) over all object classes, evaluated at 50% intersection
over union (IOU). We follow this setting for reporting all
object detection results unless stated otherwise.

In IL, it is common to provide metrics which evaluate
over all the tasks seen so far while advancing through the
sequence of tasks. Thus we adopt this protocol. In most IL
setups, a weighted average over the task is provided, since
the amount of classes and data might be variable. How-
ever, in our experimental setting we have the same amount
of samples per weather condition (task), therefore a simple
average over all seen tasks mAPs is sufficient.

Since our proposed domain-IL scenario is task-aware
(i.e. we know the weather condition present in each image),
we allow all compared methods to use this information and
thus, apply or replace the corresponding task-specific parts
of each model. For example, for Freezing we use the de-
tector head trained for the specific weather condition. In
Sec. 6.2, we additionally analyse how well weather-specific
statistics or models can perform across the different weather
conditions.

Thttps://github.com/ultralytics/yolov3, commit: d353371
Zhttps://github.com/jmiemirza/DUA, commit: 7a0240c

5.4. Baselines

We propose to compare with several baselines which can
be implemented in two distinct categories: offline and on-
line. While offline approaches are allowed to train until
convergence on each new task, online approaches are only
trained for a single epoch on the new task. Thus, for offline
approaches we can generally expect a better performance
on the newest task, with an increased amount of forgetting
of previous tasks. On the other hand, as online approaches
are optimized only for a single epoch on the new tasks, it is
expected that they maintain a stronger stability and reduced
amount of forgetting. We evaluate all baselines in both on-
line and offline settings. The baselines we consider are:

Source-Only maintains the initial model trained on clear
weather data completely fixed throughout all tasks. This
baseline does not perform any adaptation, modification or
replacement to its parameters and serves as a lower bound.

Freezing only allows to update the parameters for the three
YOLOV3 heads — which are specialized on detecting objects
at different spatial resolutions — while keeping the represen-
tations learned by the remaining layers frozen. To train the
separate sets of heads for each of the tasks, we use the learn-
ing rate at which the training for the initial task terminated.
Similar to DISC, freezing is also a zero-forgetting approach.

Disjoint trains a separate model for each task. During in-
ference, the model which matches the corresponding task-
ID is used. To train this baseline, we initialize each of the
disjoint YOLOv3 models with weights pre-trained on the
MS COCO [36] object detection dataset and fine-tune for
the corresponding weather condition until convergence.

Fine-tuning learns each task incrementally in a fully-
supervised manner. When a new task arrives, the current
model will be fine-tuned on the task-specific training data
until convergence. The learning rate used is the one at
which the initial task terminated.

Joint-training trains the model with all data from all tasks
seen so far in a fully-supervised manner, breaking one of
the key incremental learning properties and thus, provides
an upper bound. The objective is to provide a comparison to
a model which can learn a weather-invariant representation
which performs well under all weather conditions.

6. Results

We now present detailed results comparing DISC to dif-
ferent baselines, for both offline and online training.

6.1. Comparison in the Four-Task Scenario

First, we evaluate the four different weather conditions
(introduced in Sec. 5.1) when presented in the domain-
incremental learning setting (described in Sec. 3). The re-
sults are summarized in Table 2.


https://github.com/ultralytics/yolov3/tree/d353371
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Method clear — fog — rain — snow

Method clear — fog — rain — snow

Source-Only | 91.7 — 589 — 61.9 — 51.8

Source-Only | 91.7£0.0 — 58.94+0.0 — 61.9£0.0 — 51.8+0.0

Freezing | 91.7 — 61.4 — 63.7 — 54.0 Freezing | 91.740.0 — 60.8+0.9 — 63.64:0.3 — 53.6:£0.4
Disjoint 91.7 —56.7 — 66.9 — 71.4 Disjoint | 91.740.0 — 38.4:£1.0 — 66.0+1.2 — 57.3+1.0
Fine-tuning | 91.7 — 59.4 — 80.0 — 76.2 Fine-tuning | 91.740.0 — 34.0+3.9 — 67.641.3 — 39.6+1.1
DISC | 91.7 — 66.2 — 68.8 — 59.7 DISC | 9L.7+0.0 — 66.2:£0.0 — 68.840.0 — 59.7-£0.0

Joint-training | 91.7 —95.3 —97.2 — 97.2

Joint-training ‘ 91.7£0.0 — 79.7£1.4 — 85.4+0.6 — 84.94+0.7

(a) Offline

(b) Online

Table 2. Mean Average Precision (mAP@50) on KITTI averaged over all object classes. Following the common IL protocol, we report the
results as the mean over the current and all previously seen tasks. (a) Offline setting, where all baselines are optimized until convergence.
(a) Online setting, where all baselines are only trained for a single epoch. We report the mean and standard deviation over 10 runs.

In Table 2a we compare the offline setting, where all
baselines are trained in a supervised manner until conver-
gence. Results show the mAP @50 averaged over all object
classes, with DISC obtaining the best results after learning
the fog task, and Fine-tuning obtaining the best results after
the remaining tasks of the sequence. DISC obtains better
results than the other zero-forgetting approach, Freezing,
across all the sequence, showing that adapting the inter-
mediate layer representations is better than freezing them.
Due to our challenging adverse weather simulation settings,
there is a notable gap between all approaches and the up-
per performance bound (i.e. Joint-training), which opens the
door for further improved strategies in the future. Note that
the performance gap in comparison to the Disjoint and Fine-
tuning baselines after the rain and snow tasks is expected,
because in contrast to DISC, both baselines can fully adapt
the detection model. DISC, however, provides a simple and
efficient way to notably improve the initial model perfor-
mance in varying weather conditions, without requiring ex-
tensive re-training or memory banks.

In Table 2b, we provide results for the online setting,
where all baselines are trained for a single epoch on sub-
sequent tasks. To ensure a fair comparison in this setting,
all models are initialized with a model pre-trained on the
clear weather condition. In this case, DISC obtains the best
results across all tasks and throughout the whole sequence.
This demonstrates that DISC is well suited for the practical
online scenario, since it only needs to store the statistics af-
ter forwarding the samples through the network, and does
not need any other training for subsequent tasks. Compar-
ing all methods to the lower bound (i.e. Source-Only) shows
that this learning setting is not trivial: Without using exem-
plars or any other technique to avoid catastrophic forgetting,
both Fine-tuning and Disjoint degrade significantly at the
most challenging fog and snow conditions.

6.2. Interaction between Tasks

To investigate how different the weather condition tasks
are, we conduct an experiment where we use the task-

specific statistics/models on all other tasks. For DISC, we
use each weather-specific statistics and evaluate the perfor-
mance under all other weather conditions. Similarly for
Disjoint, we evaluate each of the separate weather models
on all weather tasks. Through this experiment we want to
observe how good the learned representations are when pre-
sented with a significant domain shift, which could happen
by incorrectly estimating the current weather task-ID.

The results of this experiment are presented in Fig. 4.
The diagonal entries show the results obtained when using
the methods with the correct task-ID, while the first row
contains the results corresponding to the Source-Only base-
line. In all cases, using the statistics/models for the weather
condition they are trained on provides the best results. For
both DISC and Disjoint, we can observe that fog and snow
are the most challenging weather conditions, most likely
due to some objects becoming barely visible in the deep
fog/heavy snow. The Disjoint results demonstrate that, ob-
viously, a weather-specific model has a clear advantage on
highly adverse conditions (especially snow). This can be
attributed to the large visual appearance gap (e.g. consider
clear weather vs. almost "white-out" snow scenario) which
seemingly requires different feature representations to be
learned by the detection model.

Considering the DISC results in this cross-task experi-
ment, we see that the statistics learned from rain and snow
conditions seem to have good transferability, as the per-
formance is always comparable or better than using the
initial clear weather statistics (i.e. Source-Only results).
Fog statistics, on the other hand, perform significantly bet-
ter than clear weather statistics only when evaluated on
fog data. For both DISC and Disjoint, we see that us-
ing fog-specific statistics/model on snow data, the perfor-
mance decreases. This degradation is especially significant
for Disjoint. In general, it seems that Disjoint models are
very good at solving the weather condition they have been
trained on, while mostly having less transferability to other
domains than DISC.
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Figure 3. Mean Average Precision (mAP@50) for the three most common traffic participant classes, i.e. cars, pedestrians, and cyclists.
We show the results for all baselines for both online and offline training. We follow the common IL evaluation protocol and report the
performance at a particular task as the mean over this task and all previously seen tasks.

6.3. Results for Individual Classes

Following the common evaluation protocol for object de-
tection in autonomous driving scenarios, e.g. [31,32,49], we
separately analyse the results for the three most frequently
occurring traffic participants, i.e. cars, pedestrians, and cy-
clists. From Fig. 3 we can observe several trends: In gen-
eral, the performance for all classes drops after adjusting to
fog. Moving to the next weather change (rain), we see that
the performance of the zero-forgetting methods (DISC &
Freezing) stays more or less the same, whereas offline ap-
proaches improve (as they can adjust the model until con-
vergence) and competing online approaches degrade even
further. Finally, when encountering the challenging snow
scenario all approaches — except for the offline Disjoint vari-
ant — drop in performance. Overall, these results also con-
firm that a realistic and practical online learning scenario is
significantly more challenging than the offline setting.

While this behaviour is similar to the previously ob-
served results in Table 2a and 2b, here we can observe
some object class-specific differences. When driving in
deep fog, reliably detecting cyclists is most challenging for
all approaches, indicated by the large performance drops for
this class. Furthermore, considering the upper performance
bound (i.e. Joint-training), future research should focus on
pedestrian detection in adverse weather conditions to enable
robust and safe autonomous driving systems.

7. Conclusion

We proposed a novel zero-forgetting domain-
incremental learning approach to efficiently address
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Figure 4. Cross-task evaluation using mAP@50 averaged over all
classes. We apply (a) DISC’s weather-specific statistics and (b) the
per-weather optimized models on all different weather conditions.
Entries along the diagonal show results at the condition for which
the corresponding statistics/models were trained for.

varying weather conditions in autonomous driving sce-
narios. By only correcting the weather-specific domain
statistics when encountering weather changes, we achieve
robust object detection even in adverse weather condi-
tions. Our evaluations on challenging consecutive weather
changes show promising results of our DISC approach for
both online and offline learning scenarios.
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