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Abstract

Current data analysis for the Canadian Olympic fenc-
ing team is primarily done manually by coaches and ana-
lysts. Due to the highly repetitive, yet dynamic and subtle
movements in fencing, manual data analysis can be inef-
ficient and inaccurate. We propose FenceNet as a novel
architecture to automate the classification of fine-grained
footwork techniques in fencing. FenceNet takes 2D pose
data as input and classifies actions using a skeleton-based
action recognition approach that incorporates temporal
convolutional networks to capture temporal information.
We train and evaluate FenceNet on the Fencing Footwork
Dataset (FFD), which contains 10 fencers performing 6 dif-
ferent footwork actions for 10-11 repetitions each (652 total
videos). FenceNet achieves 85.4% accuracy under 10-fold
cross-validation, where each fencer is left out as the test
set. This accuracy is within 1% of the current state-of-the-
art method, JLJA (86.3%), which selects and fuses features
engineered from skeleton data, depth videos, and inertial
measurement units. BiFenceNet, a variant of FenceNet that
captures the “bidirectionality” of human movement through
two separate networks, achieves 87.6% accuracy, outper-
forming JLJA. Since neither FenceNet nor BiFenceNet re-
quires data from wearable sensors, unlike JLJA, they could
be directly applied to most fencing videos, using 2D pose
data as input extracted from off-the-shelf 2D human pose
estimators. In comparison to JLJA, our methods are also
simpler as they do not require manual feature engineering,
selection, or fusion.

1. Introduction and background

There is a current need from national-level fencing teams
for the development of analytical tools to enhance perfor-
mance and training. The first step is to achieve a deeper
understanding of the physical, tactical, and technical de-
mands of fencing. Once these demands are better under-
stood, performance benchmarks can be created for different
skill levels to identify gaps and more accurately evaluate
athletes. This in turn contributes to athlete selection, skills

progression, and training interventions. The main bottle-
neck is the lack of a reproducible means to collect the high
quality, high resolution, objective data that is required to
create these benchmarks.

Recognizing the need for automated analysis of tech-
niques and motion in fencing, Malawski and Kwolek were
among the first to apply computer vision approaches to de-
tect and classify fine-grained actions in the sport. In [28,29],
they proposed a method to classify fencing footwork by ex-
tracting 4 feature sets from visual and inertial signals, de-
scribed below.

Joint dynamic (JD) features were proposed to describe
the changes in motion of a fencer during the action, rather
than the trajectory of motion. Skeleton data was split into
windows of different sizes, for which the first 3 coefficients
from the Short Time Fourier Transform computed for the
velocity and acceleration of each joint along the 2 axes of 3
planes were used as features. Local trace image (LTI) fea-
tures were proposed to represent the action as one image.
Similar to motion energy images [5] and motion history im-
ages [12], a person’s silhouette’s binary images during the
course of an action are superimposed, with a decay factor
to better capture temporal information. To minimize noise,
LTI crops out each joint, superimposes them separately,
then resizes and concatenates them back together. Joint mo-
tion history context (JMHC) descriptors were proposed to
capture local motion changes around joints. The absolute
difference in silhouettes from depth images between two
consecutive frames are described as histograms with each
joint as the center. Histograms are normalized then con-
catenated to form a joint motion context (JMC) descriptor.
The weighted sum of 3 consecutive JMC descriptors form a
JMHC descriptor. Accelerometric (Acc) features from the
time domain [39] were extracted from data captured by in-
ertial measurement units (IMU).

Next, a feature selection algorithm based on feature
ranking [8] was proposed to reduce the dimensionality of
each feature set. The reduced feature sets are then fused
with a decision-level fusion scheme [30] by training a sep-
arate support vector machine (SVM) [10] for each feature
set and concatenating the outputs, which are finally fed into
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Figure 1. Network architecture of FenceNet. The footwork classifier (a) consists of stacked TCN blocks shown in (b). When training on

2D skeleton data from FFD, the pose estimator step is omitted.

a multilayer perceptron [41] for classification. We refer
to this method as JLJA (JD+LTI+JMHC+Acc) moving for-
ward.

JLJA was trained and evaluated on the Fencing Foot-
work Dataset (FFD) [28] that contains 6 basic fencing foot-
work actions — stepping forward, stepping back, and 4 types
of lunges with similar motion trajectories but subtle differ-
ences in dynamics. JLJA is currently the best performing
method on FFD. However, the requirement of wearable sen-
sors and depth video limits the pool of athletes to which
JLJA can be applied.

To overcome this limitation, we propose a novel archi-
tecture, FenceNet, that takes only 2D skeleton data as in-
put for the same classification task, and achieves similar
accuracy to JLJA when evaluated on FFD. We also intro-
duce a variant, BiFenceNet, that outperforms JLJA while
using the same 2D skeleton data. This way, coaches and
analysts could extract information directly from videos, by
training FenceNet on 2D pose data extracted from an off-
the-shelf 2D pose estimator [6, 32, 51], as seen in Fig. 1.
FenceNet uses a skeleton-based human action recognition
approach [9, 23, 54] that incorporates temporal convolu-
tional networks (TCN) to capture temporal information.

The concept of a TCN was first introduced by Lea et
al. [19] for action segmentation and detection in videos.
TCNs are mainly characterized by the use of two types of
convolutions:

* causal convolutions to ensure no leakage of future in-

formation into the current time step.

* dilated convolutions to exponentially enlarge the re-
ceptive field.

Similar to recurrent neural networks (RNN) [16], TCN
models are able to take in a sequence of variable length and
produce an output of the same length as the input. In com-
parison to RNNs, TCNs are generally faster and require less
memory for training than RNNs. Since filters are shared
across layers, convolutions are done in parallel, which al-
lows TCNss to process the input sequence as a whole. On the
other hand, RNNs process the input sequentially and often
require more memory to store partial results. Performance-
wise, empirical evaluations from Bai ef al. [2] showed that
a TCN model was often able to achieve better results than
RNN-based networks of similar size on various sequence
modeling tasks.
FenceNet has the following advantages over JLJA:

* Transferability to competition videos. Requiring
only 2D skeleton data as input allows FenceNet to be
transferred and trained on competition videos, includ-
ing cases where access to additional data from wear-
able sensors and depth videos are unavailable. This al-
lows coaches and analysts to extract information from
fencers from other competition groups, other coun-
tries, and the past.

* Transferability to other techniques. Actions in fenc-
ing are highly composite. For example, an attack usu-



ally consists of a long sequence of varying movements
used to counteract and react to the opponent’s move-
ments. JLJA splits feature vectors into windows of
16 frames, which limits memory retention. In con-
trast, due to dilated convolutions, TCNs have access
to substantially longer memory, allowing FenceNet to
be trained to classify other techniques in fencing.

» Simplicity and automation. Unlike JLJA, FenceNet
does not require manual feature extraction, feature se-
lection, or feature fusion.

2. Related work

2.1. Computer vision in fencing

As described in Sec. 1, the majority of studies that in-
volve computer vision applications in fencing were done by
Malawski and Kwolek. In addition to their work on fenc-
ing footwork classification, they developed a model-based
filtering algorithm for fencing footwork detection and seg-
mentation on data acquired by a Kinect motion sensor [27].
In [26], Malawski proposed a method for blade tracking
based on a single RGB camera and active markers using
augmented reality.

Earlier work includes the analysis of the lunge move-
ment from video capture data [4,33]. Mantovani et al. clas-
sified weapon actions on kinematic data acquired from a
motion capture system [31].

More recent work includes the fencing tracking and vi-
sualization system developed from Rhizomatiks’ collabora-
tion with Dentsu Lab Tokyo [40]. The system uses deep
learning to detect sword tips without markers and real-time
augmented reality synthesis to visualize the trajectory.

2.2. Skeleton-based action recognition in sports

Although end-to-end models [3,7, 13,21,22,45,49,52]
dominate the literature in video action recognition, they are
often more suited for coarse-grained classification tasks.
Classification in sports are generally more fine-grained [43,

]. Being able to classify subtechniques, such as differ-
ent types of punches, is often more useful for analysis than
distinguishing between a punch and a kick. Skeleton-based
methods have been a popular approach for fine-grained ac-
tion recognition in sports. This method involves the use of
2D or 3D human pose as input in a human action recog-
nition task. Representing the human skeleton as a graph
with joint positions as nodes and modeling movement as
the change of these graph coordinates over time allows us
to capture both the spatial and temporal components of the
action. Non-deep learning based approaches have been ex-
plored in sports such as wrestling [34] and Tai Chi [53].

In addition to improved performance, deep learning of-
fers many advantages, such as automating feature engi-
neering and feature selection. RNNs were one of the

first networks used to model the temporal component of
human actions. Long short-term memory (LSTM) [14]
based RNNs specifically, were commonly used because tra-
ditional RNNs suffer from the vanishing/exploding gradi-
ent problem [14,37]. Variants that incorporate graph con-
volutional networks (GCNs) such as GT-LSTM [20] and
LSGM [15] were proposed to capture spatial information
for skeleton-based action recognition.

More recently, TCN architectures have been used in
place of RNN-based layers due to their ability to exhibit
longer memory [2]. In table tennis, Kulkarni and Shenoy
[18] used TCNs for stroke prediction and showed that their
TCN model outperformed their LSTM model.

3. Fencing videos

FenceNet is trained on FFD, a publicly available fencing
dataset that contains 10 intermediate to expert level fencers
performing 6 types of footwork actions (lunges and steps)
for 10-11 repetitions each in a practice setting, for a total of
652 videos. Czajkowski [ 1], known as one of the inventors
of modern fencing theory, grouped the fencing lunge into
4 categories. The 6 total actions, with descriptions of the
lunges by Czajkowski, are:

* rapid lunge (R): very fast, performed in relatively short
distances.

* incremental speed lunge (IS): slow at beginning, accel-
erates during action, useful for feint attacks.

* with waiting lunge (WW): short pause in first stage of
lunge while fencer observes reaction of opponent to
counter-action.

* jumping sliding lunge (JS): fencer jumps forward with
front leg to cover distance, back leg slides on the floor,
common in complex offensive actions.

e step forward (SF)

* step backward (SB)

Figure 2. Skeleton data overlayed on depth data from FFD. Only
2D skeleton data was used for this study.

FFD contains 3D skeleton data and 640x480 16-bit
depth data acquired by Kinect [I] at 30 Hz. 9 axis ac-
celerometer, gyroscope, magnetometer, and orientation data



were captured by an x-IMU sensor at 256 Hz. For this study,
we only use the x, y coordinates (see Fig. 2) of the skeleton
data.

When processing the FFD files, we noticed that the
skeleton data for the second repetition of SF for fencer 5'
was empty and thus removed for this study.

4. FenceNet

4.1. Preprocessing phase

From Tab. 1 we see that different actions have different
frame counts, with lunges being longer than steps. To al-
low for batch training, we sample 28 consecutive frames
from each video with a random starting point from the be-
ginning to the 20th frame. Each video is sampled at most
10 times (videos with fewer than 47 frames had less than 10
samples). We chose a window size of 28 since that is the
minimum frame count for all videos.

mean std min 25% 50% 75% max
R 535 57 40 50 53 57 68
IS 65.1 88 49 58 64 72 98
WW 704 87 52 64 70 76 92
JS 69.9 9 51 62 70 75 98
SB 41.1 8.1 28 33 41 48 62
SF 442 98 29 37 42 50 80

Table 1. Summary of frame counts for each action in FFD.

Since SF and SB had significantly fewer frames per video
than the lunge actions, sampling inevitably introduced some
class imbalance to our data, as seen in Tab. 2. However,
since the steps are the coarse actions, while the differences
in motion among lunges are subtle, this actually helped our
fine-grained action recognition performance via a form of
data augmentation. This is discussed more in Sec. 5.3.

Before sampling  After sampling

R 108 (16.7%) 1053 (18.3%)
IS 110 (16.8%) 1100 (19.1%)
WW  110(16.8%) 1100 (19.1%)
7S 109 (16.7%) 1090 (18.9%)
SF 107 (16.4%) 761 (13.2%)
SB 108 (16.5%) 660 (11.5%)
Total 652 5764

Table 2. Video counts for each action before and after sampling.

For each sampled subsequence, we subtract the fencer’s
nose’s position of the first frame from every joint coordinate
in each frame. Then each joint coordinate in each frame is
divided by the vertical distance between the head position

IFile name: 2016-01-09_12-51-53.Body.mat

and front ankle in the first frame. Letting p{’c be the position
of joint j on the c axis during time step ¢, the scaled position
Pl is given by:

) pj,c _ pN,c
~j,c __ t 0
t 7 N, A,c (1
Po —Po

where N and A represent keypoints for the nose and front
ankle, 0 < ¢t < 28, and ¢ € {x,y}.

We take the z, y coordinates of the front wrist, front el-
bow, front shoulder, both hips, both knees, and both ankles
as inputs to our classification model.

4.2. Footwork classifier

FenceNet consists of 6 TCN blocks followed by two
dense layers (see Fig. 1a). A TCN block (Fig. 1b) contains
two stacked 1D fully-convolutional layers [24], each em-
ploying causal convolutions and dilated convolutions [56].
Causal convolutions (Fig. 3b) ensure there is no leakage of
information from the future to the past, meaning predictions
made at time ¢ depend only on states during and prior to ¢.
To achieve this, for time step ¢ and kernel size k, we con-
volve from ¢t —k to t (as opposed to from ¢ — % tot+ % in the
acausal case). Let Ceyysal(P,t) denote causal convolution
at step ¢ for input p:

k—1

Ccausal(p7 t) = Z U}(’L) * Xt—g (2)

=0

where * is the cross-correlation operator and w is the filter.

Dilated convolutions allow us to exponentially increase
receptive field size in different ways, such as by increas-
ing the number of dilated convolutional layers, increasing
the dilation factor, or kernel size. In contrast, the recep-
tive field of regular convolution is linear to depth or kernel
size (Fig. 3a). Thus dilated convolutions provide better con-
trol over model size and complexity which can reduce the
risk of overfitting. Furthermore, dilated convolutions could
be used in place of pooling and upsampling to better retain
information between layers. Dilated convolutions are im-
plemented by skipping a fixed gap between time steps. For
example, given dilation factor d and kernel size k, when
combined with causal convolutions (Fig. 3c), at step ¢ we
have:

>
|
—

Cdilated causal (P7 t7 d) = U)(Z) *Pt—d-i (3)

%

Il
=)



Acausal (k = 3,d = 1)

00000
O O

Causal (k = 3,d = 1)
OO0O0O
OO

Uy up U ur

(a) (b)
Causal (k = 3,d = 2)

zero padding

Figure 3. Given input sequence u and output sequence v (both of
length T" = 5), kernel size k = 3, and one hidden layer, an exam-
ple of (a) normal convolutions. (b) causal convolutions. (c) dilated
causal convolutions with dilation factor d = 2 and zero padding to
ensure same length in each layer. Note: some connections in (a)
and (b) are not drawn.

The convolutional layers are immediately followed by
weight normalization [42], a rectified linear unit (ReLU)
[35], and spatial dropout [44] to improve generalization.
Lastly a residual connection is added between the input and
output of each block to improve stability of the network.
Given input p and output f(p), this residual connection is
simply:

output = Activation(p + f(p)) 4)

In the case that the input channel size could differ from
the output channel size of the second convolutional layer, a
1x1 convolution is added to account for this discrepancy.
Our structure is based on those used in [2,25] but with in-
creasing hidden size and decreasing kernel size as the num-
ber of layers increase. The increasing dilation factors are
also adjusted to accommodate for the limited input length
while maintaining full history coverage. To ensure each
layer has the same length, zero padding is used.

From the output sequence of the last TCN block, we ex-
tract the last time-step and feed it into dense layers for pre-
diction. Due to sampling in Sec. 4.1, for a given video, we
have a predicted action for each subsequence of frames. We
select the most commonly predicted action among the sub-
sequences as our final predicted action. Details of the struc-
ture and parameters of the network can be found in Fig. la.
These values were tuned using random search.

4.3. BiFenceNet

Causal convolutions ensure no information leakage into
the future, which allows us to sequentially capture the for-
ward motion of an action. Inspired by ELMo [38], we hope
to capture “bidirectionality” of motion by using two sepa-
rate networks. As seen in Fig. 4, we capture the forward mo-
tion of an action through a network of stacked TCN blocks,
while feeding the reversed motion into a separate stack of
TCN blocks, essentially creating a separate “anti-causal”
network. The TCN blocks in the two networks are the same
as in Fig. 1b. As in FenceNet, we extract the last time step
from the output of each network. They are concatenated and
fed into dense layers for prediction. To create BiFenceNet,
we simply replace the footwork classifier seen in Fig. la
with the bidirectional TCN-based module in Fig. 4.

Stacked
» TCN Blocks

(causal network)
—
Goreal) F(e)
SR
Stacked
Pl ;, -1 > TCN Blocks

(anti-causal network)

________________________

Figure 4. A bidirectional TCN-based module that replaces the
footwork classifier (Fig. 1a) in BiFenceNet. The TCN blocks re-
main the same as in Fig. 1b.

5. Experimental results
5.1. Evaluation

Our model is trained and evaluated on FFD using 10-
fold cross-validation, where in each fold, data from one
fencer is taken out as the test set. This scenario provides
a better representation of how the model generalizes to
new fencers than randomly splitting the training and testing
data. Malawski and Kwolek referred to this scenario as the
person-independent (PI) case when evaluating JLJA. Since
Malawski and Kwolek did not provide the train-test split for
their random 5-fold cross-validation scenario, we omit the
comparison for that case. The JLJA result displayed in this
section is the top performing result from the various combi-
nations of features and parameters used in [28,29].

Under the PI case, FenceNet achieved a classification ac-
curacy of 85.4%, within 1% of JLJA (86.3%), after train-
ing for 103 epochs for all 10 folds. BiFenceNet achieved a
classification accuracy of 87.6%, outperforming JLJA af-
ter training for 94 epochs for all 10 folds, with 4 layers
for each of the two stacked TCN blocks. In addition to



JLJA, Malawski and Kwolek also evaluated methods such
as SkeletonNet [17], C3D [48], EigenJoints [55], HON4D
[36], LOP/FTP [50], and MHI [5]. Comparisons of the
methods can be found in Tab. 3 (note that results from all
non-FenceNet methods were computed by Malawski and
Kwolek in [29]). As mentioned in Sec. 3, we removed 1
of the 653 files from FFD for this study as we were unable
to process the data in that file. However, since the removed
file was an SF action, and we were able to separate this class
well in both FenceNet and BiFenceNet (Tab. 4 and Tab. 5),
we believe this one missing observation will not alter our
results and that our results are still comparable to the other
methods shown in Tab. 3.

Method Accuracy %
JLJA [29] * 86.3
EigenJoints [55] * 29.9
MHI [5] * 61.3
SkeletonNet [17] * 64.4
C3D [48] * 67.6
HON4D [36] * 75.9
LOP/FTP [50] * 76.1
FenceNet (ours) 85.4
BiFenceNet (ours) 87.6

Table 3. Classification accuracy for the PI case (* results taken
directly from Sec. 5 of [29]).

From the confusion matrices (Tabs. 4, 5, 6) we ob-
serve that, compared to JLJA, our methods are also better at
distinguishing between coarse actions — steps from lunges.
This could be useful in future action segmentation tasks for
fencing matches.

For all three methods (Tabs. 4, 5, 6), we find IS to be
the worse performing class, often mixed with WW. This
is likely due to different fencers subjectively interpreting
the two classes differently, as the two actions share almost
identical motion trajectories but differ in speeds at differ-
ent time points. Having some prior knowledge of the fencer
can improve results. For example, during the random split
case, where we randomly take out 20% of the repetitions
for each action for each fencer as the test set, FenceNet
achieves a significantly higher accuracy of 96.5% on the
test set. JLJA’s ability to better identify IS is likely due to its
JMHC descriptor directly incorporating the change in depth
image between consecutive frames to better capture the “in-
cremental” change in speed of the movement, whereas in
FenceNet, only skeleton data is used as input. This can
cause FenceNet to misclassify “faster” IS repetitions as R
and “slower” ones as WW, since different athletes perform
techniques at different overall speeds. Future variants of
FenceNet can explore incorporating the change in skeleton
data as input. Furthermore, distinguishing IS and WW in
a binary classification scenario could be a focus in future

work. A hierarchical approach where IS and WW are treated
as one class during initial classification and separated in the
second stage as a binary case may improve overall accuracy.

R IS WwWw JS SF SB
R 889 74 1.9 1.9 - -
IS 155 518 173 155 - -
Ww 09 155 8.7 09 - -
JS - 10.1 - 899 - -
SF - - - - 100 -
SB - - - - - 100

Table 4. Confusion matrix for FenceNet for the PI case (prediction
accuracy 85.4%).

R IS Ww JS SF SB
R 954 09 - 37 - -
IS 145 591 136 127 - -

WwW 1.8 145 836 - - -
IS - 37 13 89.0 - -
SF - - 0.9 - 9.1 -
SB - - - - - 100

Table 5. Confusion matrix for BiFenceNet for the PI case (predic-
tion accuracy 87.6%).

R 853 120 1.8 09 - -
IS 11.0 71.6 5.6 11.8 - -
WW 4.6 182 773 - - -

IS - 13.6 - 864 - -
SF - - : - 100 -
SB - - ; - 27 973

Table 6. Confusion matrix for JLJA for the PI case (prediction
accuracy 86.3%), taken from the top performing version in [29].

5.2. Causality

To investigate the effect of causality, we examine cases
where the input sequence is reversed (anti-causal) and shuf-
fled (acausal). FenceNet outperforming these cases (rows
3-4 of Tab. 7) provides evidence that the forward trajectory
of motion contains useful information when distinguishing
actions.

To investigate the effect of the additional network in
BiFenceNet that aims to capture the reverse direction of
movement, we replace the anti-causal network with another
causal network. BiFenceNet outperforming this case (Tab. 7
row 5) provides evidence that the reversed motion trajec-
tory contains additional information for distinguishing ac-
tions, and that the better performance from BiFenceNet is



Parameters  Prediction Class accuracies (%)

(10%) accuracy(%) R IS WW JS SF SB
FenceNet 2.6 85.4 89 52 83 90 100 100
BiFenceNet 54 87.6 95 59 84 89 99 100
FenceNet (reversed) 2.6 84.4 86 61 78 83 99 100
FenceNet (shuffled) 2.6 84.4 87 50 84 87 100 99
FenceNet (forward x2) 7.0 86.2 95 50 8 86 100 100
FenceNet (wide) 5.9 85.4 90 56 80 88 100 100
FenceNet (regular conv1D) 4.8 83.3 92 41 83 84 100 100
FenceNet (zero padding) 2.6 76.5 82 28 74 77 100 100
FenceNet (full body) 2.7 83.1 89 52 72 87 100 100
FenceNet (lower body) 2.6 82.4 77 60 72 90 99 97
LSTM 2.7 81.9 92 34 78 89 100 100
Bi-LSTM 5.5 83.1 93 39 80 88 100 100

Table 7. Experimental results. Rows 3-7 correspond to results in Sec. 5.2. Row 8 corresponds to Sec. 5.3. Rows 9-10 correspond to
Sec. 5.4. Rows 11-12 correspond to Sec. 5.5. All methods were evaluated under the PI case.

not simply due to an ensemble effect. Different parameters
and structures for the second causal network were tested
and the best result was recorded. In Tab. 7 row 6, we com-
pare BiFenceNet to a wider version of FenceNet by increas-
ing channel size to show that the improved performance is
not simply due to an increase in model size. In Tab. 7 row
7, we compare BiFenceNet to a version of FenceNet with
only dilated 1D convolution layers and no causality to show
that training the forward and reverse directions of the input
sequence separately is different from using regular 1D con-
volutions. Instead of taking the last time step of the output
from the last block, we flatten the last 1D convolution layer
before feeding into the dense layers.

5.3. Sampling versus zero padding

During the preprocessing phase (Sec. 4.1), to ensure
videos of the same length for batch training, an alternative
to sampling would be to pad zeros to the end of shorter
videos, as done in [18]. However, we chose to sample
subsequences as this process simultaneously augments our
training data.

Segmenting a sequence of movements into actions, even
by manual cropping, is prone to error, and could lead to
inconsistencies in defining the start and end of an action.
Sampling subsequences of frames essentially augments the
training data, and allows the model to better deal with this
problem. From Tab. 7 row 8, we see that FenceNet outper-
forms the zero padding case significantly.

5.4. Keypoint selection

Despite the lunge being characterized as a lower body
movement, we included the front wrist, elbow, and shoulder
joint into our input. This is because Czajkowski described
IS as often being associated with feint attacks and WW with
counter-actions. We hypothesize that information extracted

from the front arm could capture some of the aforemen-
tioned associations, and improve our lunge prediction. We
compare this to using keypoints from the whole body (by
including the nose and back arm), as well as only the lower
body (both hips, both knees, both ankles). From rows 9-10
of Tab. 7, we see that both these cases perform worse than
our original method, aligning with our hypothesis.

5.5. Model comparison

Lastly, Tab. 7 row 11 shows FenceNet outperforming an
LSTM of similar size and Tab. 7 row 12 shows BiFenceNet
outperforming a bidirectional LSTM of similar size. The
training times for the LSTM and bidirectional LSTM were
both more than 3 times that of FenceNet and BiFenceNet,
respectively. These results align with observations from
[2, 18], which state that TCNs often outperform LSTMs in
sequential tasks.

6. Discussion

A limitation of FenceNet is its dependency on the qual-
ity of 2D pose input. Without a marker-based motion cap-
ture system, pose data extracted from off-the-shelf 2D pose
estimators could be noisy or inaccurate, limiting the per-
formance of FenceNet. To address this issue, future work
can focus on the preprocessing step to obtain more robust
inputs. This includes data augmentation, smoothing, pose
normalization, or incorporating methods such as VIPE [40]
to directly extract pose features from 2D input.

The next step involves collecting high quality labeled
fencing competition video data to test these methods to ob-
tain more robust results. Competition video data also al-
lows us to further explore different computer vision tasks in
fencing, such as action segmentation and retrieval of more
complex techniques.



Preliminary data collection and tagging on competition
videos are currently being conducted with help from video
analysts from the Canadian Olympic fencing team. We
found actions from FFD not directly transferable to a com-
petition setting. The footwork classes are highly imbal-
anced. For example, in the Grand Prix Turin 2020 Women’s
Foil Final’, we tagged all 45 lunges (2266 total frames) ex-
ecuted by French fencer Ysarora Thibus according to the
description in Sec. 3 and noticed that the frequency of the
JS lunge dominates the other actions, as seen in Tab. 8.

Action Count
Rapid lunge (R) 3(6.7%)
Incremental speed (IS) 4 (8.9%)
With waiting (WW) 3 (6.7%)
Jumping sliding (JS) 35 (77.8%)

Table 8. Class frequency for each lunge performed by Ysarora
Thibus in the Grand Prix Turin 2020 Women’s Foil Final. The
lunges are tagged according to the descriptions in Sec. 3.

Although there are multiple scenarios where Thibus ad-
justs the speed of her lunge as in IS or WW, they are almost
always accompanied by a jumping, sliding motion in the
lower body, as described by JS. She very rarely keeps her
back foot still during the entirety of a lunge, which is the
case for all non-JS lunges in FFD. For footwork recogni-
tion in a competition setting, we recommend creating more
classes or modifying the definitions of the current ones, as
techniques performed during competition seem to be much
more complex and dynamic.

7. Conclusion

The current state-of-the-art fencing footwork recog-
nition algorithm, JLJA, fuses information from skeleton
data, depth videos, and IMU sensors to classify footwork
techniques in fencing. However, the requirement of depth
videos and wearable sensors imposes technological and
physical difficulties on users, limiting the pool of athletes
that they are able to analyze. To address this shortcoming,
we introduce FenceNet, a fencing footwork recognition
model that relies only on 2D pose data. FenceNet is a
lightweight network that incorporates skeleton-based hu-
man action recognition with TCN architectures to capture
both spatial and temporal components of human motions.
Experimental results indicate that FenceNet’s classification
accuracy came within 1% of JLJA, while BiFenceNet
was able to outperform JLJA, despite both only using
2D skeleton data as input. We hope FenceNet and future
variants are able to contribute to automating the analysis in
sports.

thtps ://www.youtube.com/watch?v=H-v6DfxnjF8
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