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Abstract

Image alignment, also known as image registration, is a
critical block used in many computer vision problems. One
of the key factors in alignment is efficiency, as inefficient
aligners can cause significant overhead to the overall prob-
lem. In the literature, there are some blocks that appear
to do the alignment operation, although most do not focus
on efficiency. Therefore, an image alignment block which
can both work in time and/or space and can work on edge
devices would be beneficial for almost all networks deal-
ing with multiple images. Given its wide usage and impor-
tance, we propose an efficient, cross-attention-based, multi-
purpose image alignment block (XABA) suitable to work
within edge devices. Using cross-attention, we exploit the
relationships between features extracted from images. To
make cross-attention feasible for real-time image alignment
problems and handle large motions, we provide a pyrami-
dal block based cross-attention scheme. This also captures
local relationships besides reducing memory requirements
and number of operations. Efficient XABA models achieve
real-time requirements of running above 20 FPS perfor-
mance on NVIDIA Jetson Xavier with 30W power consump-
tion compared to other powerful computers. Used as a
sub-block in a larger network, XABA also improves multi-
image super-resolution network performance in compari-
son to other alignment methods.

1. Introduction

Image alignment (image registration) aims to align or
match images to a chosen reference image. This task con-
stitutes an important part of many computer vision prob-
lems dealing with multiple images either in space and/or
time, such as restoration [41, 47], segmentation [21], HDR
imaging [45], stereo imaging [40], multi and single-image
super-resolution and video super-resolution [24, 43, 44].

To construct a backbone used in many vision-related

(a) Motion image (b) DISFlow [26]+warp

(c) FlowNet [15]+warp (d) XABA

Figure 1. XABA’s alignment performance compared to DISFlow
and FlowNet based alignment. Motion image represents combina-
tion of reference and target images.

problems, there have been many image alignment meth-
ods/blocks developed to this day with different focuses.
These methods can be divided into three main categories:
feature-point extraction-based alignment, classical optical
flow-based alignment and deep learning-based alignment.

Feature-point extraction-based alignment algorithms uti-
lize extracted feature points to create a global transform
matrix between reference and target frames. Later, the re-
sulting matrix is used to warp frames or images onto each
other [34]. Classical optical flow-based alignment algo-
rithms compute the flow vectors between reference frame
pixels and target frame pixels, then use the flow vectors
in the warping process. These methods can vary greatly,
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from computing affine transforms of image patches using
flow vectors [27] to using a contrast constancy assump-
tion and iteratively reducing misalignments between im-
age pairs [10]. Deep learning-based alignment algorithms
inherit ideas such as deformable convolutions [13] and
deep-learning based optical flow [15], and attention mecha-
nisms [47].

Despite having been implemented in many ways, most of
the aforementioned image alignment methods suffer trad-
ing between accuracy and speed, especially on low-end de-
vices. Feature-point extraction-based alignment algorithms
require the planar scene assumption, which does not hold
most of the time. Although having efficient implementa-
tions, classical optical-flow algorithms can fail with large
motions. They can also cause bottlenecks when used in
deep learning pipelines, as it avoids being able to provide
an end-to-end deep learning-based solution. This result may
result in sub-optimal solution, since optical flow part is not
trained and is based on hand-crafted features. This is in-
deed the problem of integrating classical algorithms into
deep learning pipelines.

On the other hand, having the entire solution blocks in
deep learning framework helps using hardware at the hand
to the full extent easily by using the already supplied de-
ployment tools such as NVIDIA’s TensorRT [4] and Intel’s
OpenVINO [6], and improves the performance of the over-
all trained pipeline. Besides, deep learning-based align-
ment methods are fairly more recent and have promising
advancements. Deformable convolutions add 2D offsets
to sampling locations in traditional convolutions, introduc-
ing more adaptation and easing the alignment [18]. Deep
learning-based optical flow methods [36, 38] yield accurate
alignment; however, they can be quite expensive and hence
may not be feasible to run on embedded or edge devices.
Recent work on image alignment used attention mechanism
because of its native feature matching and transforming
properties [7, 47], however direct application of attention
operation for image alignment can be memory and compu-
tation hungry. The use of attention mechanism started with
natural language processing domain with the seminal works
[9, 28, 39] and later transferred to image domain [14] and it
is known to improve the performances of various networks
on image domain [42] as well. Nonetheless, using attention
for image alignment is fairly recent and not much study is
present, especially focusing on edge device interference ef-
ficiency.

Motivated by the recent performance & accuracy related
studies on attention, the lack of efficient attention-based
alignment studies, and the lack of a general-purpose deep
learning-based image alignment block applicable to differ-
ent problems on edge devices; we propose a cross-attention
based image alignment block which can be integrated into
many deep learning pipelines with ease. We name our pro-

posed method as XABA (cross-attention based aligner).
XABA is designed with efficiency and plug-and-play ap-
proach in mind that can run in real-time. We divide ref-
erence and target images into non-overlapping sub-images,
extract features from each sub-image, and efficiently com-
pute a cross-attention matrix to align sub-images in feature-
level. Dividing images into blocks allows us to process
them in parallel, ease implementations on embedded sys-
tems, and force local information extraction. In addition, to
boost the proposed methods performance in large motions,
the baseline block is applied in a pyramidal fashion to the
input image at different scales which effectively increases
the attended area while keeping the computational cost re-
quirements at minimum. The final output of the network is
used by fusing the pyramidal network outputs with a pixel
attention based fusion module. We also do not have hand-
crafted hyper-parameters for our cost function unlike [7],
which further eases the training process.

For more robustness and adaptation to different applica-
tions, we also propose a sparsification scheme to calculate
the attention matrix, which can be used to find sparse atten-
tion matrices. This can be further exploited for fast matrix
multiplication during inference.

Furthermore, as an alternative to the classical softmax
non-linearity used in attention matrices, we combined hard-
thresholded ReLU (clips above 1) with row-normalization
as the activation function. This effectively normalizes the
rows of the calculated attention matrix, promotes sparsity,
and makes the implementation more suitable to be used in
edge devices due to the lightness of the activation function.

The main contributions of this paper are:

• We propose a block-based, pyramidal, multi-purpose,
deep-learning based image alignment block using
cross-attention.

• We propose an alternative to softmax activation, com-
bining hard-thresholded-ReLU with Normalization.

• The proposed block is efficiency-focused and real-time
applicable, proven by multiple tests on edge devices.

2. Related Works

Feature-point based alignment. This method aims to
match feature points extracted from images via [20,34,46].
Using outlier methods like RANSAC [16] and their deriva-
tions [31,32], some extracted feature points are eliminated.
Then, using rest of the matching feature points, a global
transformation matrix is generated between images. The
major downside of this method is that the motion is re-
stricted to be globally uniform. In other words, every part
of the image is being subjected to the same global motion,
which is not correct most of the time.



Traditional & deep-learning-based optical flow align-
ment. Optical flow calculates flow vectors for each pixel
between reference image pixels and target image pixels.
Since a one-to-one correspondence is obtained between pix-
els (for occlusion-free regions), images can be aligned ac-
cordingly. Optical flow is an under-constrained problem,
hence additional constraints like brightness consistency
and confining to small movements are required. Lucas-
Kanade [27] and Horn-Schunck [19] are two of the most
well-known classical flow algorithms, with other variations
also present [37]. Classical flow algorithms are still be-
ing developed, one of the recent ones being DISFlow [26]
which focuses on time complexity. Deep-learning based
optical-flow, on the contrary, are much more recent which
gained momentum with FlowNet [15]. FlowNet proposed
using a convolutional network in flow estimation for the
first time. FlowNet2 [23] offered using correlation layers
as an improvement. It also included a new stacked architec-
ture including image warping, and sub-networks for small
displacements. PWC-Net [36] refined flow in a coarse-to-
fine manner and utilized feature warping to reduce the net-
work size. In addition to performing better than FlowNet2,
PWC-Net also has a smaller network size. Recent algo-
rithms like RAFT [38] started to utilize correlation vol-
umes and recurrent structures to further increase the flow
quality. RIFE [22] directly estimates intermediate flow es-
timations from a low-framerate video for frame interpola-
tion purposes. Even though most deep-learning based flow
methods have high accuracies, they are not applicable on
embedded environments due to their high computational de-
mand at practically meaningful image sizes.

Attention and attention-based alignment. Bah-
danau [9] and Luong [28] models, also known as addi-
tive and multiplicative/dot-product attentions respectively,
are the first remarkable studies about attention. Later on,
Google proposed their attention-based network architec-
ture, the Transformer [39]. All these studies were done
on natural language processing; however, attention-based
solutions in computer vision problems were also starting
to emerge. Inspired by non-local means denoising algo-
rithm [11], Wang et al. [42] proposed a non-local building
block which captures long-range dependencies within fea-
ture maps. This study prepared the ground for many vi-
sion applications, such as classification [33, 48], object de-
tection [12, 17], image segmentation [21, 30], image super-
resolution [40], and video super-resolution [24,43,44]. Re-
gardless, the idea of attention is fairly new on image align-
ment algorithms. Only a handful of studies [7, 43, 47] are
present, most of which do not focus on efficiency and de-
ployment on embedded environments.

3. Proposed Method
3.1. Background information

Attention mechanism. The attention mechanism pro-
posed in [39] and [28] has three main concepts: key, query
and value.

Query (Q) is the input vector for which the attention is
desired to be calculated. Query is compared with all keys
(K) by taking the dot products between Q and K, creating
a key-query matrix (QKT ). Higher values in the result-
ing matrix indicate higher correlation between the relevant
elements of Q and K. The matrix is then normalized with
some constant (

√
dk) and its softmax is calculated to make

the sum of each row 1. At the end, multiplying with values
(V ) gives the attention (1).

Att(Q,K, V ) = softmax(
QKT

√
dk

)V = AV (1)

In self-attention, Q, K and V are equal to each other.
Naturally, the equality does not hold for cross-attention. In
our study, Q represents the feature matrix of the reference
image, the image to be aligned. K is the feature matrix of
the target image. V is the reference image itself.

3.2. Baseline Block - Interframe Aligner

Our baseline block structure which we refer as inter-
frame aligner block is given in Fig. 3. Using cascaded
convolutional layers with skip connections and ReLU ac-
tivations, features of the input images (I1, I2) are extracted.
Note that the parameters of this residual feature extraction
network is shared between images. These features are then
convolved with 1x1 kernels to reduce the number of oper-
ations. Note that depending on the application, the layer
with 1x1 kernel may or may not share the same parameters
with its parallel branch. For instance, 1x1 convolutions can
be shared in aligning two RGB images as done in our ex-
periments, however; to match images in different domains
(such as thermal and RGB images) further adaptations may
be needed.

After the feature extraction, resulting features are sent
to tensor-to-block (T2B) operator. T2B operator divides
the feature images into non-overlapping patches and stacks
these blocks in batch dimension. In this sense, it is some-
what similar to pixel unshuffling [35] where the unshuffled
pixels are stacked on the channel dimension. This enables
us to only match spatially closer features with each other
while allowing parallel processing.

To find the correlation between two image features, T2B
outputs are matrix multiplied to create a dot-product atten-
tion matrix as described in Eq. (1). After normalization
along the rows of the result with a non-linearity (softmax, or
hard-thresholded ReLU with Normalization), A, the atten-
tion matrix between two input image features is generated.



Figure 2. Pyramidal global alignment block. concat denotes tensor concatenation. ↑ and ↓ denote upscaling and downscaling operations,
respectively.

Figure 3. Baseline block - interframe aligner. Reference (I1) and
target frames (I2) are sent as inputs and aligned frame I21 is ob-
tained at the output. fe and fm are modifiable dimension param-
eters for feature extraction. T2B is the operator transforming ten-
sors into non-overlapping blocks and reorganize the tensor in the
batch dimension, while B2T is the inverse operator. ∗ is matrix
multiplication operation. Activation is the function to normalize
the attention matrix, A.

Note that this matrix A transfers images from K (key) do-
main to Q (query) domain via an adaptive linear combina-
tion and blending. This linear combination map is then used
for aligning I1 and I2. Block-to-tensor (B2T) operation is
applied at the end to reverse the effects of T2B operator,
which is similar to pixel shuffling [35] where it operates
along the channel dimension.

As discussed above, the baseline block is good enough
to capture and align small displacements between fea-
tures. However, to be able to capture large motions, non-
overlapping block size should be increased which is a pa-
rameter of T2B operator. Unfortunately, increasing the
block size increases the size of A, and hence it increases
the computational load and memory requirements which is
not suitable for edge devices. As an alternative to handle

Figure 4. Pixel attention based fusion block. Using the out-
puts of interframe aligners, it generates a mask M to be used in
fusing the aligned images. D denotes the following operation:
D(A,B) =

∑
i A[i] · B[i], where A[i] and B[i] have the same

dimensions for all i, and · denotes element-wise matrix multipli-
cation operation. For the resulting tensor after concat operation
(IC ), each ith dimension represents an aligned image (K

−1

K I∗21).

large motions, we propose a pyramidal processing scheme
which is more efficient and suitable for edge devices.

3.3. Pyramidal Global Alignment Block

As described in Sec. 3.2, our baseline interframe aligner
is suitable for capturing local feature matches. In other
words, it is good at capturing small displacement of fea-
tures between images. To effectively handle large motions
and effectively increase the block size while being compu-
tationally light, we propose another block which we refer
as Pyramidal Global Alignment Block. This block encapsu-
lates different number of baseline blocks dedicated to work
with different scales of the input images (Fig. 2).

An input image pair (I1, I2) is sent to the alignment
block. Each baseline interframe aligner takes down scaled
input image pairs (KI1,KI2), where the downscaling fac-
tors are denoted by K = {1, 12 ,

1
4 , ...

1
n}. Interframe align-

ers generate the aligned frames (KI∗21), all of which have
different resolutions due to different downscalings. For all
outputs of interframe aligners, upsampling is applied with
the same scaling factor and therefore are scaled back to their
original resolution (K

−1

K I∗21). The individual outputs of the
baseline blocks for different scales are fused into a single
image using the Pixel Attention Based Fusion Block. Final



aligned frame result, I∗21 is obtained at the end.

3.4. Pixel Attention Based Fusion Block

Individual outputs of the baseline blocks for different
scales constitute candidate images and hence candidate pix-
els. Inherently, at unit scale level, the image resolution is
high but only small displacements are handled. At 1

2 scale,
level medium displacements are handled but the image res-
olution is lower. At 1

4 scale level, very large displacements
are handled; however, the resolution is at its lowest. Given
these, a selection mechanism is needed. Pixel Attention
Based Fusion Block is used for this purpose in such a way
that it tries to combine different outputs to form a single
image.

The fusion block inherits a cascaded convolutional net-
work which generates a mask M using all interframe
aligner outputs, shown in Fig. 4. Concatenated aligned im-
ages (IC) are passed through the CNN and the activation
function, which performs normalization in the channel di-
mension. This ensures that the contribution of all interframe
aligner output energies are unchanged. Each channel of the
resulting maskM are then used as a multiplicative mask for
the corresponding images in IC and all masked images are
summed up to obtain the final image. Note that the mask in
this case determines the combination ratio of all interframe
aligner outputs from different scales.

4. Experiments
For the experiments, we used Kitti [29] dataset which

is commonly used in image alignment, stereo and optical
flow benchmarking. Kitti includes 200 training and 200 test
stereo scene pairs, captured in rural and city traffic. Images
are in RGB and lossless png format, with resolutions not the
same among all images but all around 1250x375.

The experiments can be divided into three different sec-
tions. In the first experiment, we used XABA by itself for
image alignment. In the second experiment, we used the
image pairs of the Kitti dataset and posed a Multi Image
Super-Resolution problem (MISR) and showed the perfor-
mance of XABA in combination with a Single Image Super-
Resolution (SISR) network to solve MISR problem. In the
third experiment, for the different parameter settings and
block sizes of XABA, we have taken measurements from
NVIDIA Jetson Xavier and showed real-time capabilities
of the proposed method.

4.1. Training Details

For the first and second experiments, we used Adam op-
timizer with β1 = 0.9 and β2 = 0.999 and used maximum
learning rate = 2e-3 with Knee learning rate scheduling [25]
and warm up for all of our experiments. Mini batch size of
8 is used and the models are trained for 170 epochs, where
each epoch consumes the training images 10 times. Each

mini-batch is composed of image patches cropped from ran-
dom images from the training set and standard geometric
transformations such as rotate & flip were used as a form of
data augmentation. We used 320x320 as crop size and for
the second experiment (Sec. 4.3) the low resolution cropped
images were created by 4 times downscaling the original
images. In both experiments, Charbonnier loss was used
with ε = 0.1 as defined in (2). Charbonnier loss is the
smoother version of L1-loss, which is known to have better
convergence characteristics than L2-loss.

Charbonnier(x) =
√
x2 + ε2 (2)

4.2. Alignment Performance

For this experiment, we used images from Kitti dataset
paired in time as inputs to XABA and tried to align these im-
ages and warp the reference image to the target image. An
example pair and alignment results of the different methods
can be seen in Fig. 5

As shown in Fig. 5, optical flow based methods’ perfor-
mance drastically drops whenever there is a large motion.
This is basically due to the fact that these methods con-
straint the change in between frames to planar geometric
motion with 1-to-1 pixel correspondence. These constraints
from the point of the view of attention mechanism are in-
deed equivalent to limiting the Attention matrix,A, to a per-
mutation matrix where there is one and only one entry being
1 for all of its rows. However, in our case, we can ”relax”
the permutation matrix constraint by letting the sum of each
row to 1 (by using softmax or hard-thresholded ReLU with
Normalization), rather than forcing only a single element
to be 1 in each row. This relaxation allows contribution of
multiple pixels and blending, which warps the reference im-
age to the target image with better performance, which can
be seen in Tab. 1. Effects of different parameters of XABA
on image alignment performance can be seen in Tab. 2.

Methods PSNR

FlowNet-c [15] + warp 18.404
DISFlow [26] + warp 19.891

XABA (Softmax) 27.920

Table 1. PSNR results for different alignment algorithms. Ours
has the highest PSNR.

4.3. Super-Resolution Performance

To show the effectiveness of XABA as a sub-network
of a greater network, we conducted a multi-image super-
resolution experiment. Two different images of the same
scene is given as an input to a network to find x4 higher
resolution image of the same scene. For this experiment,
we selected XLSR [8] as the SISR baseline network. Then



(a) Original Reference Image

(b) Original Target Image

(c) Motion Image (d) DISFlow (e) FlowNet (f) XABA(HT+N)

Figure 5. Example Images from Kitti Dataset for Image Alignment. Note that rather than distorting the reference image to match with the
target image under planar 1-to-1 constraint, our proposed method prefers transferring a combination of features from the reference to the
target image for alignment which better fits the image.

Model parameters
PSNR# of interframe Block

aligners size

1 10x10 20.004
1 20x20 22.873

2 (1,2) 10x10 23.151
2 (1,2) 20x20 26.090

3 (1,2,4) 10x10 25.149
3 (1,2,4) 20x20 27.920

Table 2. PSNR values on Kitti test set for different model param-
eters. Values in the parenthesis in number of interframe aligners
denote the downsample and upsample factors for each interframe
aligner. (fe, fm) are chosen as (32,16) in interframe aligner block.
Non-overlapping block size affects T2B and B2T operations. 3 in-
terframe aligners with block size of 20 perform the best.

only by changing the input filters to accept two input RGB
images, we constructed so called XLSR MISR. By com-
bining XLSR MISR with DISFlow+Warp and XABA, we
constructed XLSR MISR + DIS + Warp and XLSR MISR

+ XABA, respectively. Here for XABA, we used two differ-
ent activation functions. PSNR values are calculated using
the original high resolution images with RGB outputs.

As seen in Tab. 3, when an input tensor adjusted
SISR method (XLSR MISR) is combined with our XABA
(HT+N), the performance is improved by 0.1dB. Further-
more, the SISR method is chosen to be with low number
of parameters to limit its receptive field to a limited region.
This causes degradation on the performance on MISR prob-
lem, as shown in XLSR MISR without any alignment. The
usage of correct alignment with XABA shows the effec-
tiveness of our algorithm. Although DISFlow corrects and
aligns the relevant data in the receptive field region, Kitti
image pairs usually have large motion and large motions
cannot be effectively compensated. An example output of
the different alignment methods combined with the super-
resolution network can be seen in Fig. 6.

4.4. Embedded Benchmarks Performance

In this experiment, we have investigated the computa-
tional performance of our proposed method XABA on an
embedded computation device. For this purpose, NVIDIA
Jetson AGX Xavier GPU [2] was used in the benchmark



(a) Original Image

(b) Bicubic (c) No Alignment (d) DISFlow (e) XABA(Softmax) (f) XABA(HT+N)

Figure 6. Example Images from Kitti Dataset. Note that the lanes are distorted on the other methods while XABA block helps the
super-resolution network to better distinguish the lanes, which match with the original image better.

SR Type Alignment PSNR ∆ PSNR

Bicubic × 23.965 -1.26
XLSR × 25.223 0.00

XLSR MISR × 25.216 -0.01
XLSR MISR DISFlow + Warp 25.231 0.01
XLSR MISR XABA (Softmax) 25.289 0.07
XLSR MISR XABA (HT+N) 25.323 0.10

Table 3. PSNR values of Kitti test set used in super resolution
(SR). In XABA, 3 interframe aligners are used with block size
20x20 and (fe, fm) = (32, 16). Our method with hard threshold
+ normalize activation function (HT+N) outperforms the others.
HT+N also outperforms Softmax in terms of timing performance
for same block sizes (Tab. 4).

tests. To have a better understanding of the computational
performance of the block, the high-performance computing
benchmarks are also provided for reference. For the high-
performance tests NVIDIA GeForce RTX 3080 GPU [1]
was used. For the inference measurements PyTorch mod-
els were exported to ONNX file format, which were then
converted to TensorRT engine using NVIDIA TensorRT-
Command Line Wrapper, trtexec [5]. As for TensorRT,
we used v7.1.3 and v8.2 for Jetson AGX Xavier GPU and
GeForce RTX 3080, respectively. Jetson AGX Xavier GPU
has CUDA cores. In this study, we preferred two power
consumption modes, which are 15 Watts and 30 Watts for
benchmarking on Jetson AGX Xavier GPU. The RTX 3080
GPU has 8704 CUDA cores and consumes 320 Watts as
maximum power.

The inference benchmark results of image alignment
models were separately produced with floating-point16

(FP16) and floating-point32 (FP32) operations. All the
training has been conducted with FP32, as it is known that
FP16 inference most of the time does not hurt the perfor-
mance while being two times computationally light [3].

4.5. Timing Results and Power-Efficiency Analysis

The inference performances of different configurations
of the proposed model are comparatively demonstrated in
this section. Note that Tab. 4 indicates timing performances
of global and local alignment models. It can be seen that
using FP16 for inference is faster than using FP32. On the
other hand, the global alignment inference performance can
reach about 170 frame per seconds (FPS) on high perfor-
mance computing device, which is included in the table as
a reference to compare it with Jetson Xavier’s performance.

As it can be seen from the Tab. 4, it is possible to run
the proposed block in real-time on Jetson for some specific
configuration such as XABA10fp16Soft which indicates the
non-overlapping block size for T2B operator is 10 and FP16
is used for inference and activation in Attention module is
softmax. Note that by using Hard-Thresholding we could
increase the performance of the similar block using soft-
max in all of the cases and this simple change added almost
+3FPS to most of the configurations. Note that local align-
ment section is also given in the table to get a better under-
standing of the effects of pyramidal processing and baseline
block. Also note that local alignment block can be seen as a
pyramid with 0 depth and can still have meaningful usages
for aligning smaller displacements such as aligning frames
of a video stream.

Fig. 7 presents FPS performance results of global align-



Timing Performance∗,ms Global Alignment Inference Local Alignment Inference
Units AGX (15 W) AGX (30 W) RTX 3080 AGX (15 W) AGX (30 W) RTX 3080

DataType&Models FP16 FP32 FP16 FP32 FP16 FP32 FP16 FP32 FP16 FP32 FP16 FP32
XABA20fp32Soft 594.2 904.4 304.8 473.2 39.9 64.5 381.4 596.3 202.4 322.7 26.4 42.9
XABA10fp32Soft 368.5 556.9 186.6 282.2 22.1 41.7 210.5 339.5 110.9 176.9 14.2 25.4
XABA10fp16Soft 86.7 121.9 43.5 61.4 6.5 10.2 46.7 69.7 24.2 36.5 4.4 6.2
XABA20fp16Soft 146.7 215.1 74.5 111.2 9.9 15.9 91.6 140.7 48.1 76.4 7.4 10.5
XABA10fp16HTN 74.1 110.5 38.6 56.1 5.9 9.8 40.9 64.9 20.5 32.7 4.3 5.9
XABA20fp16HTN 120.2 193.6 61.1 102.7 8.9 15.3 72.6 126.9 36.5 65.4 6.2 12.4

*With the contributions of Alperen Kalay (alperenkalay@aselsan.com.tr), Aselsan Research.

Table 4. The Global & Local Alignment Inference Benchmark Results. The name of the model is encoded as XABA[block
size][fp32—fp16][Soft—HTN]. Since the Global Alignment Inference includes Local Alignment Inference computation, we investigate
only Global Alignment Inference for real-time performance. The bold results indicate real-time performance.

ment inference models, while Fig. 8 demonstrates the power
efficiency performances for global alignment models.

Global Alignment Model Inference Performances
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Figure 7. The global alignment inference performance bench-
marks in terms of FPS for different block configurations.

The computing performance of XABA10fp16Soft infer-
ence model meets real-time requirement in terms of FPS
for image alignment processing according to the results
in Fig. 7. Indeed, the bottleneck analysis was performed
with NVIDIA Profiler for this model. According to bottle-
neck analysis, the computing time of softmax layer showed
that this layer has dominant computation compared to other
layers. This inspired our Hard-Thresholding activation pro-
posal which replaces softmax function in activation func-
tion. The global alignment inference performance has been
increased to 26 FPS from 23 FPS by using hard threshold-
ing and FP16 precision in XABA10fp16HTN. This perfor-
mance result provides 10% speedup compared to previous
inference model (XABA10fp16Soft).

The power efficiency experiments proved that Jetson
AGX GPU provides the most power efficient computation
with respect to comparative results in Fig. 8. According
to Fig. 8, the Jetson AGX GPU performance provides about
1.6x power efficiency compared to RTX3080 GPU under
FP16 precision. From this point of view, this edge device
meets real-time image alignment processing requirement in

FP16 inference case with 30 Watts power consumption. Al-
though RTX 3080 GPU has high computation performance,
its power efficiency performance gave drastically lower re-
sult compared to Jetson AGX GPU.

Power Efficiency Results for Global Alignment Inference Models
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Figure 8. The global alignment inference power efficiency for dif-
ferent computation designs.

5. Conclusion
In this study, we proposed our multi-purpose, cross-

attention based image alignment block, XABA. By process-
ing the images in blocks inside a pyramidal block based
alignment structure, we capture local relationships with
minimal computational need. Focusing on efficiency, we
further prove with tests that XABA can run in real-time on
edge devices such as NVIDIA Jetson Xavier.

Our experiments reveal that XABA can outperform com-
mon optical-flow based alignment methods. We have also
shown that XABA can be used as a sub-network aligner in
larger deep-learning based scenarios like single and multi-
image super-resolution with good performance. Embedded
benchmarks and power analyses further prove that pyrami-
dal structure of XABA allows us to realize a power-efficient
image aligner.
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