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Abstract

Self-supervised video representation learning has been
shown to effectively improve downstream tasks such as
video retrieval and action recognition. In this paper, we
present the Cascade Positive Retrieval (CPR) that succes-
sively mines positive examples w.r.t. the query for con-
trastive learning in a cascade of stages. Specifically, CPR
exploits multiple views of a query example in different
modalities, where an alternative view may help find another
positive example dissimilar in the query view. We explore
the effects of possible CPR configurations in ablations in-
cluding the number of mining stages, the top similar ex-
ample selection ratio in each stage, and progressive train-
ing with an incremental number of the final Top-k selec-
tion. The overall mining quality is measured to reflect the
recall across training set classes. CPR reaches a median
class mining recall of 83.3%, outperforming previous work
by 5.5%. Implementation-wise, CPR is complementary to
pretext tasks and can be easily applied to previous work.
In the evaluation of pretraining on UCF101, CPR consis-
tently improves existing work and even achieves state-of-
the-art R@1 of 56.7% and 24.4% in video retrieval as well
as 83.8% and 54.8% in action recognition on UCF101 and
HMDB51. The code is available at https://github.
com/necla-ml/CPR.

1. Introduction
Recently, large-scale self-supervised pretraining such as

BERT [7] and DINO [3] has been shown to improve the rep-
resentations and potentially outperform its supervised coun-
terpart. Most approaches revolve around proposing pretext
tasks [1, 10, 16, 19, 23, 38, 40–42] based on instance dis-
crimination to learn representations by matching or clas-
sifying specific relationships between the query example
and its augmented variants with the objective to minimize

*Work done as a NEC Labs intern in 2021.

the contrastive loss [33] and other predictive losses. How-
ever, few address the lack of true positives (TP) other than
the query example variants and likely harmful false nega-
tives uniformly sampled from the entire dataset [6]. Previ-
ous work CoCLR [12] demonstrates the significant perfor-
mance gap with the upper bound achieved in a supervised
contrastive setting using the labels for TP as in [18].

We are inspired by related work [11, 14, 27, 32, 35, 37]
that exploits multi-views of video to learn the representa-
tions through the correspondences between different modal-
ities. Previous work [12, 17, 30] incorporating hard exam-
ple mining in metric learning, object detection and action
recognition further motivates the necessity of positive ex-
ample mining in self-supervised representation learning. As
for video representation learning, hard positive examples in
the RGB view may be mined from the motion view despite
seemingly different background appearances. On the other
hand, hard positive examples in the motion view may be
mined from the RGB view as the motions can differ signifi-
cantly from various camera angles while the background re-
mains similar in the RGB view for actions in the same class.
CoCLR [12] shows mining in the alternative view during
training improves the representations and downstream task
performance. Nonetheless, it is not necessarily sufficient
for mining only once in a single view to prevent sampling
false positives (FP).

To address this issue, we propose the Cascade Positive
Retrieval (CPR) and systematically explore the design space
of positive example mining. The idea is to refine the mining
successively in a cascade of stages across different views
as search with filters to be applied progressively. For in-
stance, given a query example, one may first select those
with similar background in the RGB view, then further filter
out those dissimilar in the motion view and so on. Appar-
ently, the number of mining stages and the selection ratio
in each stage matter. The goal is to conclude the strategy
for effective positive example mining and make it applica-
ble to existing work. Moreover, it remains unclear of the
overall mining quality in terms of the recall across train-
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ing set classes despite the R@1 mining retrieval recall by
CoCLR [12]. We measure and compare the mining quality
that suggests correlation with the resulting performance in
ablations.

In short, we make the following contributions:

1.) We propose the Cascade Positive Retrieval for self-
supervised learning (SSL) of video representations that
complements pretext tasks and can be applied to exist-
ing work easily regardless of the SSL framework used.

2.) We apply CPR to previous work and observed consis-
tent improvement in downstream video retrieval and ac-
tion recognition. We then extensively explore the de-
sign space of mining configurations in ablations w.r.t.
the number of stages in the cascade, the top similar ex-
ample selection ratio in each stage and the progressive
training regime.

3.) We measure the mining quality of CPR in terms of the
positive mining recall denoting each time the fraction of
TPs in the final stage Top-k selected as the positive set,
and the class mining recall representing the fraction of
distinct TPs selected from a class in one training epoch.

4.) We evaluate the transfer performance in video retrieval
and action recognition on UCF101 and HMDB51 from
pretraining on UCF101 with CPR applied to an existing
work, achieving state-of-the-art (SOTA) results.

2. Related Work
Self-supervised Learning. Large-scale representation
learning through self-supervision has achieved great suc-
cess in multiple fields including natural language process-
ing (NLP) and computer vision (CV). In NLP, the general
idea is to build a language model that learns to predict
masked out words as in BERT [7]. In CV, the feature ex-
traction backbone is trained to learn representations based
on instance discrimination that works on both images and
videos. The instance discrimination views an example and
its augmented variants as positive while the other examples
are treated as negative. A typical objective is to minimize
the contrastive loss that encourages positive examples to be
similar in representations while pushing away negative ex-
amples. Many SSL frameworks were proposed in recent
years such as SimCLR [4], BYOL [9], MoCo [5, 13] and
SwAV [2] to facilitate systematic composition of numer-
ous pretext tasks that augment the input examples and for-
mulate the contrastive loss, delivering competitive perfor-
mance in comparison with supervised counterparts. In this
paper, we focus on improving self-supervised video repre-
sentation learning from the perspective of hard positive ex-
ample mining and show our method can be easily applied
to existing work regardless of a particular SSL framework
used or not.

Video Representation Learning. In contrast with SSL of
images, videos enables rich spatiotemporal augmentation to
generate diverse positive and negative example clips from
sampled frames. Common pretext tasks include future pre-
diction [11] and speed prediction [1, 16, 38, 42] to infer the
relationship between clips and the pace a clip is sampled.
Other tasks may require to sort out the ordering of frames
or clips [41], solve jigsaw puzzles [19], match features in
different modalities [14, 27, 35, 37] or group visual entities
based on co-occurrences in space and time [15]. We target
the video domain as videos in multiple views potentially
provide opportunities to mine hard positive examples in the
query class. Nonetheless, the proposed method is not lim-
ited to video tasks or specific pretext tasks. Instead, we aim
to complement existing approaches with hard positive ex-
ample mining.
Hard Example Mining. Hard example mining in super-
vised learning is well studied in metric learning and other
CV tasks. In metric learning, the goal is the push away those
hard negative examples but the challenge is the intractable
computational overhead over large datasets as the embed-
ding is updated constantly. One possible solution is to ef-
ficiently sample negative instances in nearest classes as in
deep metric learning [30]. Regarding positive example min-
ing, InvP [34] selects positive examples that preserve high
semantic consistency through a recursive k-nearest neigh-
bors graph. In addition, CMA [25] introduces the cross-
modal agreement that discovers positive examples highly
similar in both audio and visual feature space through multi-
view learning [32].

In video object detection, [17] leverages the temporal
consistency to identify hard negative and positive examples
from detection misses and isolated detection in consecutive
video frames.

In the case of SSL, it is challenging for no labels and the
representation learning is limited to the augmentations of
the query example with instance discrimination for the lack
of hard positive examples in the query class. Worse, the
negative examples are uniformly sampled and potentially
include false negatives (FN). This is called the sampling
bias in [6] and a possible solution is to reweight the posi-
tive and negative terms in the contrastive loss for correction
given the estimated class priors [6, 28].

On the other hand, as with the video object detection,
self-supervised video representation learning may exploit
multi-views of video clips to mine hard positive examples.
CoCLR [12] mines positive examples from action recog-
nition datasets given a query example in the RGB view
with its corresponding motion or flow view. Intuitively, this
may help find positive examples with similar motions de-
spite dissimilar background and vice versa. Our work fur-
ther explores the possibilities to mine diverse positive ex-
amples in the query example class as CoCLR only mines



positive examples in one view at a time. Chances are out
of those with similar motions, top instances similar in the
RGB view could be more likely the true positives. There-
fore, we reshape the positive example mining as a cascade
refining process between different video views. While Co-
CLR measures R@1 for mining retrieval recall, we further
evaluate the mining quality in terms of the overall mining
recall across the classes throughout training in reflection of
the coverage of distinct class instances. The metric is ex-
pected to correlate with the resulting performance w.r.t. the
upper bound in the supervised contrastive setting where the
mining recall is essentially perfect for all the class instances
being selected during training.

3. Proposed Method

Algorithm 1 CPR: Cascade Positive Retrieval
Variables: MB,C, S,B, V, r, vq, qv, q, q

+

Macros: E(c), K(c, s), SV (s), B(e)
Macros: select(fv, candidatesv, r), topk(fv, candidatesv, k)

1: C . range of training cycles
2: S ← 1..n . range of CPR stages
3: E(c) ∈ Z+ . epochs given a training cycle
4: K(c, s) ∈ Z+ . Top-k to select at stage s in cycle c
5: r ∈ R+ . selection ratio before the last stage
6: select(fv, candidatesv, r) ∈ Z+ . select top similar instances by ratio
7: topk(fv, candidatesv, k) ∈ Z+ . select top k similar instances
8: SV (s) ∈ Z+ . given a view at stage s
9: V ∈ {v1, v2, ...} . set of views

10: for c ∈ C do
11: for e ∈ E(c) do
12: for (q, q+) ∈ B(e) do
13: for v ∈ V do
14: if v == vq then
15: fqvq ← encodervq (qvq )

16: f
q
+
vq
← encoderema

vq
(q+vq )

17: else
18: f

q
+
v
← encoderfixed

v (q+v )

19: end if
20: end for
21: for s ∈ S do
22: v ← SV (s)
23: if s == 1 then
24: pos← select(f

q
+
v
,MBv, r)

25: else if s == n then
26: pos← topk(f

q
+
v
, posv, K(c, s))

27: pos = {q+, pos}
28: neg = MB \ pos
29: else
30: pos← select(f

q
+
v
, posv, r)

31: end if
32: end for
33: loss←MIL NCE(qvq , posvq , negvq )

34: optimize(encodervq , loss)

35: update(MB, f+
q )

36: end for
37: end for
38: end for

In this section, we first revisit the concept of contrastive
learning with different discrimination learning objectives.
Next, we present CPR in Algorithm 1, detailing the cascade
positive retrieval for mining examples in general.

3.1. Instance Discrimination

Self-supervised video representation learning based in-
stance discrimination where each instance serves as its own

class has been shown effective with the contrastive loss of
InfoNCE [33]. Specifically, given a set of videos V , a video
clip vi is a number of frames sampled from a video in V
and its positive variant v+i that can be an augmentation or
another clip sampled from the same video, forming a posi-
tive pair (vi, v+i ). On the other hand, a set of negative ex-
amples N− consists of those clips v−j , j 6= i. These clips
are fed into a query encoder and a key encoder to obtain the
visual representations. The output features of the query, its
positive augmentation and negative keys are denoted by qi,
q+i , and k−j respectively. The InfoNCE loss is defined as
follows:

LN = − log
exp(qi · q

+
i /τ)

exp(qi · q
+
i /τ) +

∑N
j=1 exp(qi · k

−
j /τ)

(1)

where the similarity is measured by dot product with a
temperature hyperparameterper τ to adjust its scale. In-
tuitively, InfoNCE encourages to pull positive pairs closer
while pushing away negative pairs.

3.2. Multi-instance Discrimination

In the case of multiple positive pairs, Multi-Instance In-
foNCE or MIL-NCE proposed in [24] is defined as follows:

LM = − log

∑
p∈P exp(qi · q

+
p /τ)∑

p∈P exp(qi · q
+
p /τ) +

∑N
j=1 exp(qi · k

−
j /τ)

(2)

where P is a positive set containing positive augmentation
of the query and other keys with the same label as the query.
For example, in an action video dataset, a fencing positive
set includes the augmentation of the query video and other
videos with the fencing label.

3.3. Cascade Positive Retrieval

In view of issues with instance discrimination includ-
ing the lack of other non-augmented positives and potential
false negatives, previous work CoCLR [12] has proposed
to mine positive examples in an alternative view other than
the query view. However, there is a possibility that CoCLR
suffers from FPs with similar motion patterns from the flow
view because the mining in the alternative view is only done
once such that some actions with very similar motion pat-
terns such as Shouput and ThrowDiscus may be wrongly
selected and confuse the model as shown in Figure 2. Un-
like CoCLR mining heavily dependent on a single view, our
CPR fully exploits the advantage of multi-views to improve
the mining quality. Figure 1 illustrates that in one cascade
of positive retrieval, CPR alternates between the RGB and
flow views to mine a top number of positive examples with
most similar appearances and motions as the query clip.

When applying CPR to existing work, there are many
possible configurations and hyperparameters to consider as
described in Algorithm 1 that assumes a memory bankMB
storing encoded instance features in different views, a pro-
gressive training schedule in cycles, the number of epochs
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Figure 1. Overview of CPR in mining alternately from both RGB and flow views for one cascade retrieval. K denotes the size of the
memory queues storing instance features in both views. Given a query example in the RGB view, the mining starts with selecting top k1
most similar instances from the flow memory queue at stage 1, top k2 most similar instances from the RGB memory queue at stage 2, and
so on up to top kn−1 from the RGB memory queue at stage n-1, where k1, k2, ..., kn−1 are values derived from the number of instances
selected from the previous stage multiplied by a fixed selection ratio (e.g. 0.5) at each stage. Unlike previous stages, the Top-k most similar
instances kn at the final stage are selected to form the positive set.

in one cycle, the number of mining stages in one cascade,
the selection ratio of top similar examples at each stage and
etc. Specifically, the algorithm iterates through each cy-
cle c and epoch e to train with query examples in batches
B. Each batch consists of query examples and their posi-
tive variants from augmentation or sampling as q and q+.
In the beginning of the batch processing, the representation
encoder to train in the query view, encodervq , encodes the
query examples qvq and produces the features fqvq . Those
q+ may be encoded in the query view with the momen-
tum encoderema

vq (q+vq ) and in the other views with frozen
encoderfixedv (q+v ). Next, CPR retrieves the most similar
examples in successive stages S given a selection ratio r
used at stages before the last one and a Top-k for the final
stage selection determined by the current cycle c and stage
s. Note that the mining always uses the features of positive
query variants to measure the similarities with those stored
inMB by view. Eventually, a set of Top-k most likely posi-
tives are selected at the last stage as pos and combined with
q+. The other instances in MB are viewed as negatives
neg. Then the MIL-NCE loss is computed given the query
examples, mined positives and negatives to optimize the en-
coder in the query view. Afterwards, the memory bankMB
is updated with the newly encoded query example variants
for the next batch training iteration. In the next section, we
will evaluate the effects of changing CPR hyperparameters
in ablations as well as compare the performance with SO-
TAs.

4. Experiments
4.1. Setup

Dataset. In this section, we conduct ablation studies and
evaluate CPR on two action video datasets:

UCF101 [29] contains 13K videos in 101 human action
classes at more diverse camera angles than HMDB51. Out
of the three splits of the dataset, the first one is used for our
ablations, pretraining, and downstream task evaluations.

HMDB51 [21] consists of 7K videos in 51 human ac-
tion categories. The dataset is divided into three splits. We
use the first split to conduct two downstream tasks in video
retrieval and action recognition.
Implementations. We apply CPR to previous work
IIC [31] and CoCLR [12]. While the latter uses MoCo [13],
CPR is not dependent on specific SSL frameworks. For fair
comparison, we use exactly the same hyperparameters as
previous work and only plug in CPR to construct the posi-
tive and negative sets for computing the MIL-NCE loss. If
necessary, we even retrain previous work for the same num-
ber of epochs to compare with the reproduced results. More
details can be found in the supplemental materials.
Data Preprocessing: The data preparation follows previous
work respectively. As for CoCLR [12], a clip in both RGB
and flow views is randomly sampled from 32 consecutive
frames in the video. Each frame is randomly cropped and
resized to 128×128 pixels. We apply the same data augmen-
tations including horizontal flips, color jittering and Gaus-
sian blur to the clips. Note that Gaussian blur is not used
for downstream tasks. To generate optical flow maps from
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Figure 2. Qualitative Top-5 mining comparison with wrong selection in red.

the video, we use TV-L1 [43] to extract the flow view with
a third channel filled with zeros. The features are clipped
in the range of 20 pixels and rescaled from [−20, 20] to
[0, 255]. In contrast, the motion view for IIC [31] is based
on frame difference residuals.
Self-supervised Pretraining on UCF101. For IIC [31],
we train from scratch with CPR under NPID [39]. For Co-
CLR [12], we begin with the released RGB and flow mod-
els pretrained with InfoNCE as there is no positive mining
in the initialization. Next at the co-training stage, the RGB
and flow models are alternately trained for 400 epochs on
2 GPUs, each with a batch size of 16. That is the same
number of epochs as two cycles in CoCLR.
Video Retrieval. We evaluate video retrieval as a down-
stream task on both UCF101 and HMDB51 based on ex-
tracted features from the pretrained model without finetun-
ing. Following the test protocol in [23, 41], we take a video
in the test set as a query and use it to retrieve k-nearest
neighbors in its corresponding training set. The recall at k
(R@k) serves as the evaluation metric, which means if one
of the retrieved top k nearest neighbors is from the same
class as the query, it is counted as a correct retrieval result.
Action Recognition. In addition to video retrieval, we
also evaluate the action recognition performance of the pre-
trained models on UCF101 and HMDB51. The pretrained
models are transferred as the feature extraction backbone
for downstream tasks. Two scenarios including linear
probing and finetuning are considered respectively. For
linear probing, we freeze the backbone while training the
linear classifier only. For finetuning, we train the entire net-
work including the backbone and the linear classifier. The
training and evaluation protocols essentially follow previ-
ous work for fair comparison even with test time augmenta-
tion used.

4.2. Ablation Study

In this section, we explore CPR in numerous configura-
tions. All experiments are conducted on UCF101 following
the setup mentioned in Section 4.1 except for the number of
training epochs fixed at 100 for pretraining and finetuning
respectively. Unless said otherwise, the ablations are based

Stages (s) R@1 R@5 R@10 Probe Finetune
s = 1 45.1 64.0 71.9 60.0 69.5
s = 3 46.5 64.5 72.0 60.0 69.6
s = 5 47.5 65.1 73.3 60.2 70.6
s = 7 47.8 66.2 74.6 60.4 71.3

Table 1. Ablations with CPR applied to CoCLR w.r.t. the number
of stages. CoCLR is a special case with CPR in only one stage as
s = 1 where only the Top-5 positive candidates are selected.

SR (r) R@1 R@5 R@10 Probe Finetune
r = 0.8(s=3) 46.1 63.9 72.4 60.0 69.8
r = 0.5(s=3) 46.5 64.5 72.0 60.0 69.6
r = 0.8(s=7) 46.2 63.6 71.7 59.6 69.9
r = 0.5(s=7) 47.8 66.2 74.6 60.4 71.3

Table 2. Results for CPR applied to CoCLR with varied selection
ratios but a fixed number of stages s.

IIC(+CPR) R@1 R@5 R@10 R@20
Baseline-Top-5 36.2 53.5 63.6 72.7
Prog-Top-1 39.4 57.5 67.6 77.2
Prog-Top-2 42.5 60.5 69.0 77.5
Prog-Top-3 44.1 62.3 70.2 77.9
Prog-Top-4 45.3 63.2 70.4 78.2
Prog-Top-5 46.2 63.6 71.4 79.2

Table 3. Improvements in video retrieval with progressive training
when CPR is applied to IIC [31] in 5 cycles with incremental Top-
k selection. The baseline is trained with the same number of total
epochs in the 5 cycles with a fixed Top-k selection at the last stage.

Settings PMR R@1 Finetune
s = 1 (CoCLR) 35.1 45.1 69.5
s = 3, r = 0.5 35.8 46.5 69.6
s = 5, r = 0.5 37.4 47.5 70.6
s = 7, r = 0.5 38.9 47.8 71.3

Table 4. Mean PMR and R@1 measured in the last epoch as well
as fine-tuning results w.r.t. different CPR configurations.
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Method R@1 R@5 R@10 Finetune
IIC [31] 34.8 51.6 60.8 71.8
IIC(+CPR) 46.2 63.6 71.4 73.1
CoCLR 45.1 64.1 71.9 69.5
CoCLR(+CPR) 47.8 66.2 74.6 71.3
UberNCE 70.3 81.7 86.8 80.7

Table 5. Summary of improvements over IIC and reproduced Co-
CLR [12] with CPR on UCF101. UberNCE is reproduced in the
supervised contrastive setting serving as the upper bound.

on application of CPR to CoCLR.
Number of Stages. Our CPR mines positive examples in
a cascade of multiple stages. It is necessary to demonstrate
the influence of this hyperparameter given a fixed selection
ratio 0.5 for positive selection across stages before the last
one and Top-5 for the last stage. As shown in Table 1, with
more mining stages, the model may learn better representa-
tions for the downstream task and the best performance is
achieved in the configuration with 7 stages. As a result, we
use 7 stages in later evaluation with other SOTAs.

Diving

PommelHorse

UnevenBars

Lunges

Haircut

HandstandWalking

Figure 5. Visualization of the action classes that are ranked in
CMR. The top half of the figure shows the Top-3 classes while the
bottom of the figure shows the Bottom-3 classes.

Selection Ratio. In this ablation, we set the selection ratio
(SR) to 0.5 and 0.8 respectively to evaluate the impact of
SR before the final stage that uses fixed Top-5. The total
number of stages are set to 5 and 7 for comparison. It is
observed that no matter in 5 or 7 stages, a smaller SR can get
better performance in Table 2. Hence, we choose SR = 0.5
when comparing with other SOTAs.
Progressive Training. This configuration examines the
training regime of the Top-k selection at the last stage.
Specifically, is it better to train with a fixed Top-k or the
training should be progressive with an incremental num-
ber of Top-k. The conclusion is likely model architecture
dependent as we see the improvement with IIC shown in
Table 3 in terms of video retrieval recalls but little with Co-
CLR. Therefore, progressive training will not be applied to
CoCLR in other evaluations.
CPR Mining Quality. While CoCLR [12] measures R@1
for the mining retrieval against the ground truth (GT)
throughout training, it remains unclear how many TPs
are actually mined each time and throughout the training.
Therefore, we measure the positive mining recall and class
mining recall defined in Eq. 3 and Eq. 5:

Positive Mining Recall =
# TP

Size of Positive Set
(3)

Class Mining Recall =
#Distinct TP Selected

#Total Class Instances
(4)

The positive mining recall (PMR) measures each time the
fraction of TPs in the final Top-k selected as the positive



Method Year Backbone UCF101 HMDB51
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

VCOP [41] 2019 R(2+1)D 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8
VCP [23] 2020 R3D-50 18.6 33.6 42.5 53.5 7.6 24.4 36.3 53.6
MemDPC-RGB [11] 2020 R-2D3D 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7
MemDPC-Flow [11] 2020 R-2D3D 40.2 63.2 71.9 78.6 15.6 37.6 52.0 65.3
IIC [31] 2020 R3D-18 42.4 60.9 69.2 77.1 19.7 42.9 57.1 70.6
PacePred [38] 2020 R3D-18 23.8 38.1 46.4 56.6 9.6 26.9 41.1 56.1
CoCLR-RGB [12] 2020 S3D 53.3 69.4 76.6 82.0 23.2 43.2 53.5 65.5
CoCLR-Flow [12] 2020 S3D 51.9 68.5 75.0 80.8 23.9 47.3 58.3 69.3
DSM [35] 2021 I3D 17.4 35.2 45.3 57.8 7.6 23.3 36.5 52.5
STS [36] 2021 R3D-18 38.3 59.9 68.9 77.2 18.0 37.2 50.7 64.8
CMD [14] 2021 C3D 41.7 57.4 66.9 76.1 16.8 37.2 50.0 64.3
VCLR [20] 2021 R2D-50 46.8 61.8 70.4 79.0 17.6 38.6 51.1 67.6
MFO [26] 2021 R3D-18 39.6 57.6 69.2 78.0 18.8 39.2 51.0 63.7
MCN [22] 2021 R3D-18 53.8 70.2 78.3 83.4 24.1 46.8 59.7 74.2
CoCLR-RGB(+CPR) S3D 50.4 66.1 73.0 80.4 18.2 40.1 52.5 66.7
CoCLR-Flow(+CPR) S3D 56.7 75.5 82.2 88.2 24.4 48.5 62.4 74.3

Table 6. Comparison with SOTA video retrieval on UCF101 and HMDB51. Note that all methods are pretrained on UCF101.

set. The class mining recall (CMR) measures the frac-
tion of distinct TPs selected from a class in one training
epoch. Table 4 shows that as PMR and mining R@1 in-
crease with more stages, higher fine-tuning performance on
action recognition is expected. However, PMR seems to
serve as a better performance indicator for being in propor-
tion to improvement.

Furthermore, we provide a breakdown of full PMR
during the entire pretraining process for 100 epochs on
UCF101 in Figure 3. The results show CPR gradually in-
creases its PMR from 34.0% to 40.3%. On the other hand,
the PMR of baseline CoCLR is sluggish between 35.2%
and 37.4%. It can be found that CPR indeed can mine
more true positives by leveraging both RGB and flow views
while baseline CoCLR suffers from false positives for min-
ing only in a single view. This is the crucial factor to support
why CPR has better performance than baseline CoCLR. In
summary, PMR seems to serve as a better performance in-
dicator for being in proportion to improvement.

To further quantify the mining quality across classes, we
count the number of distinct TPs selected for each action
class. Figure 4 illustrates the statistics from 10 randomly
chosen classes with 18 instances each in the last train-
ing epoch. CPR succeeds in selecting all the distinct TPs
from both Surfing and UnevenBars classes while discover-
ing much less from the Hammering class. Through visual
inspection, Hammering is difficult with motions at differ-
ent camera angles in varied scenes. In contrast, Swing and
Surfing are easy to mine for having regular motion patterns
and consistent background. Furthermore, we list the CMRs
of the Top-3 and the bottom 3 classes respectively. The
Top-3 classes are Diving(100%) , PommelHorse(100%),

and UnevenBars(100%). On the other hand, the bottom
3 classes are Lunges(27.8%), Haircut(33.3%) and Hand-
standWalking(33.3%). We demonstrate video frames from
these classes above to visualize their content including hu-
man action and background. In Figure 5, sampled frames
in the bottom 3 classes cover different camera angles and
varied backgrounds, which increases the difficulty of min-
ing full video instances in each class. In contrast, it is sim-
ple to discover entire video instances in each Top-3 class
because these classes represent a relatively consistent back-
ground and standard motion with a fixed pattern. To sum
up, out of all the UCF101 classes, CPR scores higher CMR
than baseline CoCLR in 48 classes while the baseline mines
better only in 20 classes. It is even in the rest classes. Over-
all, CPR achieves the median CMR of 83.3% across all the
classes, which is 5.5% improvement over the baseline Co-
CLR with the median CMR of 77.8%.

Besides quantitative measurements, we visualize the
Top-5 positive examples mined from the baseline CoCLR
and CPR for qualitative comparison. In Figure 2, the base-
line mining heavily relies on the motions from optical flows
and tends to select false positives (FPs) with similar motion
patterns to the query. Instead, our CPR alternately mines
from both RGB and flow views to discover positive ex-
amples with similar appearances and motions to the query.
Even the only FP still contains visually similar motions and
context as the query. This indicates that CPR is able to ef-
fectively filter out potential FPs from a single view. Conse-
quently, CPR facilitates learning representations from more
diverse TPs compared with the baseline mining.
Applicability. In addition to CoCLR, CPR is also applied to
IIC [31] in the ablation of progressive training, demonstrat-



Method Year Dataset Resolution Architecture UCF101 HMDB51
VCOP [41] 2019 UCF101 16 × 1122 R(2+1)D-26 72.4 30.9
VCP [23] 2020 UCF101 16 × 1122 C3D 68.5 32.5
IIC [31] 2020 UCF101 16 × 1122 R3D-18 74.4 38.3
PacePred [38] 2020 UCF101 16 × 1122 R(2+1)D 75.9 35.9
PRP [42] 2020 UCF101 16 × 1122 C3D 69.1 34.5
TT [16] 2020 UCF101 16 × 1122 R3D-18 77.3 47.5
CoCLR-RGB [12] 2020 UCF101 32 × 1282 S3D 81.4 52.1
DSM [35] 2021 UCF101 16 × 1122 C3D 70.3 40.5
STS [36] 2021 UCF101 16 × 1122 R3D-18 77.8 40.7
CMD [14] 2021 UCF101 16 × 1122 R3D-26 76.6 47.2
MFO [26] 2021 UCF101 32 × 1282 S3D 74.3 37.2
Vi2CLR [8] 2021 UCF101 32 × 1282 S3D 82.8 52.9
MCN [22] 2021 UCF101 32 × 1282 S3D 82.9 53.8
CoCLR-Flow(+CPR) UCF101 32 × 1282 S3D 83.8 54.8

Table 7. Comparison with SOTA action recognition on UCF101 and HDMB51 based on pretraining on UCF101

ing the general applicability. Particularly, IIC uses memory
banks instead of momentum encoders to maintain features
as well as frame difference residuals as motion views. It
focuses on generating hard negatives from the query video
by repeating or shuffling the frames but there is no positive
example mining. With CPR, IIC gains significant perfor-
mance improvement in both downstream tasks on UCF101
in Table 5 where CoCLR is also listed to show consistent
performance boost. This suggests that CPR is generally ap-
plicable whether or not the existing approach has positive
example mining in mind.

4.3. Comparison with State-of-the-arts

As CPR aims to benefit existing work in terms of better
positive example mining, our focus is to show how much
improvement an existing work can be enhanced with CPR
to compete with newer SOTAs. CoCLR [12] is chosen as it
already has positive example mining in mind.
Video Retrieval. To validate the effectiveness of learned
representations with CPR, we evaluate the nearest neigh-
bor video retrieval on both UCF101 and HMDB51. Specifi-
cally, the top-k video retrieval recalls for k = 1, 5, 10, 20
are computed as the performance metrics. As shown in
Table 6, CoCLR-Flow(+CPR) outperforms the the other
SOTA methods in all recall metrics on both datasets. We
achieve the best top-1 recall of 56.7% on UCF101 and
24.4% on HMDB51, outperforming the the latest SOTA
MCN [22] by up to 2.9% based on the same backbone.
Moreover, CPR also gains much more improvement at
higher top-k metrics. Since video retrieval does not require
fine-tuning and leaves little room for manipulation, posi-
tive example mining from diverse positive examples across
distinct videos is likely the key to learning effective repre-
sentations.
Action Recognition. In table 7, we compare our method

with SOTAs on video action recognition. All methods
are applied in a fully finetuning setting that finetunes all
layers on the downstream task. Pretrained on UCF101,
CoCLR-Flow(+CPR) outperforms all the previous SOTAs
fine-tuned on UCF101 and HMDB51 with accuracies of
83.8% and 54.8% based on the same or comparable back-
bone and resolutions as illustrated in Table 7.

5. Conclusion
In this work, we propose the Cascade Positive Retrieval

(CPR) for self-supervised video representation learning and
extensively explore the design space of positive example
mining configurations. We find that more mining stages in
the cascade likely improves the performance. The positive
selection ratio on the contrary works better if set to a smaller
number. The progressive training with an incremental final
Top-k selection could bring potential improvement. Beyond
the R@1 mining retrieval recall by CoCLR [12], we further
measure the mining quality quantitatively in PMR and CMR
that seem to correlate with downstream task performance
better. Moreover, the mining quality is also visualized for
qualitative comparison. Finally, we evaluate the transfer
performance from UCF101 to UCF101 and HMDB51 that
is either SOTA or competitive in both video retrieval and
action recognition. Aside from promising results, our CPR
can be applied to existing work easily regardless of a spe-
cific SSL framework used or not. Nonetheless, the gap
from the supervised contrastive performance upper bound
remains, suggesting the necessity of follow-up research for
even better mining in self-supervised representation learn-
ing. In the future, we plan to facilitate the application of
CPR to existing work, automate the hyperparameter search
for improved mining quality, and examine the scalability of
transfer learning from large-scale dataset.
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Appendices

A. Implementation Details
A.1. Self-supervised Pretraining

We use MoCo [13] as the contrastive learning frame-
work and S3D [40] as the feature extractor to implement
CPR. Note that MoCo is not required but is useful to save
memory usage. Therefore, it is simply a coincidence that
the baseline CoCLR [12] uses MoCo and we have ap-
plied CPR to other work not using MoCo such as IIC
as well. At pretraining stage, two fully connected layers
(FC1024→ReLU→FC128) are used as a projection head
after the global average pooling layer to obtain the embed-
ding features but the projection head is removed for the
model to perform downstream tasks. Following CoCLR we
set the momentum to 0.999, the temperature to 0.07, and
the size of the queue to 2048 on every dataset Training each
model on UCF 101 , we use ADAM as our optimizer with
an initial learning rate of 10−3 and weight decay of 10−5,
where the learning rate is multiplied by 0.1 at 300 and 350
epochs.

A.2. Action Recognition

For action recognition task, we use ADAM to optimize
the model for 500 epochs with a batch size of 16 on two
GPUs. The initial learning rate is set to 10−3, where the
learning rate is decayed by 0.1 at 400 and 450 epoch respec-
tively. The momentum is 0.9 and the weight decay is 10−3.
At evaluation stage, we follow the practice of CoCLR to
uniformly sample 32 frames from each video, perform ten-
crop to 128×128 pixels, and then average their predictions
to become the final video prediction.

B. Additional Results
B.1. Class Mining Recall (CMR)

To evaluate the overall mining quality, we further de-
fine Class Mining Recall (CMR) in Eq 5 to measure how
a model is able to successfully mine distinct true positives
from a certain class in one training epoch.

Class Mining Recall =
#Distinct TP Selected

#Total Class Instances
(5)

As shown in Figure 6, we present the full CMR in the
UCF101 classes. Closer inspection of the figure reveals that
CPR has the Top-3 classes are Diving (100%) , Pommel-
Horse (100%), and UnevenBars (100%). On the other hand,
the bottom 3 classes are Lunges (27.8%), Haircut (33.3%),
and HandstandWalking (33.3%). Furthermore, we demon-
strate video frames from these classes above to visualize
their content including human action and background.

In the overall evaluations of all 101 classes, CPR scores
higher CMR than baseline CoCLR in 48 classes while

the baseline mines better only in 20 classes. It is even in
the rest classes. Regarding the classes that the baseline
has higher CMR, it may that those positive classes highly
correlate with a single view while CPR sometimes does not
help much after visual inspection. A further comparison
of the number of 100% CMR between both methods, CPR
obtains eight perfect CMRs across 101 classes, which
exceeds two classes compared to the baseline getting
six. In addition, we evaluate the entire performance of
CPR by applying median CMR. Our approach achieves
the median CMR of 83.3% across all the classes, which
outperforms the baseline with the median CMR of 77.8%.
This outcome shows a great improvement with a margin of
5.5%. In summary, these empirical evidence validates the
effectiveness of our approach in mining the higher quality
positives than the baseline.
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Figure 6. Class Mining Recall (CMR) per action class on UCF101. There are 101 action classes which are listed in alphabetical order.
The upper bar chart covers the first 50 action classes while the lower bar chart covers the rest of the action classes. Eight action classes
appeared in bold font represent cases where CPR achieves 100% CMR. They are 1. BenchPress, 2. Billiards, 3. Diving, 4. HorseRace, 5.
FrisbeeCatch, 6. PommelHorse, 7. UnevenBars, and 8. Surfing. Note that we measure the CMR of both approaches in their last training
epoch.
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