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Abstract

We propose a point-based spatiotemporal pyramid archi-
tecture, called PointMotionNet, to learn motion informa-
tion from a sequence of large-scale 3D LiDAR point clouds.
A core component of PointMotionNet is a novel technique
for point-based spatiotemporal convolution, which finds the
point correspondences across time by leveraging a time-
invariant spatial neighboring space and extracts spatiotem-
poral features. To validate PointMotionNet, we consider
two motion-related tasks: point-based motion prediction
and multisweep semantic segmentation. For each task,
we design an end-to-end system where PointMotionNet
is the core module that learns motion information. We
conduct extensive experiments and show that i) for point-
based motion prediction, PointMotionNet achieves less than
0.5m mean squared error on Argoverse dataset, which is a
significant improvement over existing methods; and ii) for
multisweep semantic segmentation, PointMotionNet with
a pretrained segmentation backbone outperforms previous
SOTA by over 3.3 % mIoU on SemanticKITTI dataset with
25 classes including 6 moving objects.

1. Introduction
Capturing and interpreting motion information from the

environment is critical for autonomous systems that must
interact with the three-dimensional (3D) world. Although
many researchers have emphasized visual sensing for this
purpose (e.g., optical flow for 2D images [12]), the growing
popularity of 3D sensing techniques has led to a need for
improved motion analysis of 3D point clouds.

It is nontrivial to achieve effective motion learning
on a sequence of 3D point clouds. A particular issue
is that fine-grained point correspondences are often not
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Figure 1. PointMotionNet is a point-based spatiotemporal
pyramid network to achieve motion learning from a sequence
of 3D LiDAR point clouds. It can handle multiple frames, large-
scale open scenes, explicitly model the temporal ordering, and
does not suffer from discretization error.

available between consecutive sweeps due to spatial and
temporal resolution of the sensors. Recent systems, such as
FlowNet3D [16], HPLFlowNet [9] and PointPWC-Net [36],
have addressed this problem by generalizing optical flow to
the 3D domain. However, these techniques rely on learning
point-to-point correspondences between consecutive 3D
point clouds, and this assumption often does not extend to
multiple sweeps. An alternative is MotionNet [35], which
handles multiple sweeps by representing 3D point clouds
in bird’s-eye-view (BEV) maps. However, this approach
results in inevitable discretization errors. MeteorNet [17]
is a recent method that performs motion learning based on
PointNet, which utilizes raw points and does not require
voxelization. To handle temporal information, it gathers 3D
points from multiple sweeps and encodes the time stamp
in an additional feature channel. However, MeteorNet does
not design specific operations to explicitly handle temporal
information. Occupancy Flow [20] and CaSPR [24] explic-
itly consider the temporal ordering by leveraging tools like
continuous normalizing flows and neural ordinary differen-
tial equations. However, these methods work well for 3D
point sets that are densely sampled, which is often not the
case for sparse, outdoor scenes.

To address these issues, we propose a novel method to
achieve motion learning that can handle multiple frames,
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does not suffer from discretization (voxelization) error,
explicitly models temporal ordering, and handles large-
scale open scenes. Because this method is based on raw
points and focuses explicitly on motion learning, we call
it PointMotionNet; see Figure 1. It has a pyramid struc-
ture that enables spatiotemporal feature learning at multiple
spatial scales. A core operation in PointMotionNet is a
novel point spatiotemporal convolution (Point-STC) opera-
tion. Instead of looking for point-to-point correspondences,
the proposed Point-STC finds the correspondences across
time by leveraging the time-invariant neighboring space. It
handles 4D points (3D coordinates + time index) in two
steps. Step 1 considers spatial information: at each time
stamp, the system finds the spatial neighbors for each 4D
point and designs trainable multi-kernel functions to aggre-
gate neighboring information to extract spatial features.
Step 2 considers temporal information: It concatenates the
spatial features sequentially based on their time stamps and
then uses a multilayer perceptron to aggregate spatiotem-
poral features and output final motion features. Overall,
PointMotionNet is a point-based architecture that avoids the
voxelization issue, explicitly models the temporal ordering,
and accommodates multiple sweeps and large-scale scenes.

To validate PointMotionNet, we apply it as a core
module to handle two motion-related tasks: point-based
motion prediction and multisweep semantic segmentation.
For the task of point-based motion prediction, we aim to
predict the 3D motion vector for each point in the current
frame, which is the displacement from the current 3D posi-
tion to a future 3D position. We validate the system’s
performance empirically on the Argoverse [4], and find that
PointMotionNet significantly outperforms others. For the
task of multisweep semantic segmentation, the system aims
to estimate the semantic and motion labels for each point in
the current frame, extending semantic segmentation from a
single sweep to multiple sweeps. We validate the system’s
performance on the SemanticKITTI [2], and find that Point-
MotionNet achieves top performance on the leaderboard.

In summary, the main contributions include:
• we design a novel point-based spatiotemporal convolution
operation (Point-STC) that extracts spatiotemporal features
from raw points;
• we implement two systems based on PointMotionNet
to handle two motion-related tasks, point-based motion
prediction and multisweep semantic segmentation; and
• we have conducted extensive experiments on point-based
motion prediction and multisweep semantic segmentation.
Experimental results show that the proposed approach
consistently outperforms previous state-of-the-art methods.

2. Related Work
Deep learning on 3D point clouds. Current approaches
can be divided into three categories, based on the input

representations: projection-based, voxel-based, and point-
based. The projection-based methods, including [14, 19,
25, 30, 33, 34], leverage well-established 2D convolutional
networks by projecting 3D point clouds into 2D images.
SqueezeSeg [33, 34] projects a 3D LiDAR point cloud onto
a spherical surface. RangeNet++ [19] further proposes
a nearest-neighbor search for point labels. However,
projection-based approaches might suffer from discretiza-
tion errors that result from the projections. The voxel-
based methods, such as [6,8,11,15,26,29,32,38], focus on
mapping points into regular 3D voxels and then applying
2D/3D convolution operations to extract features. PolarNet
[38] and Cylinder3D [39] discretize the points based on a
polar coordinate system, which makes input points more
evenly distributed compared with Cartesian coordinates.
However, those methods are characterized by large memory
and computational demands.

To directly process raw points, [22, 23] introduce
PointNet/PointNet++ for point-cloud classification and
segmentation. Many researchers [21, 27, 37] have extended
those techniques to 3D object detection. Instead of using the
multi-layer perceptron (MLP) from PointNet/PointNet++,
KPConv [31] implements an explicit spatial kernel point
convolution to directly operate on the input points without
any intermediate representation. RandLA-Net [13] demon-
strates a new random point sampling method to encode
spatial information. In this work, instead of working with
a single point cloud, we aim to learn motion information
from a temporal sequence of 3D point clouds based on a
novel point-based method. Although recent work [1,7] deal
with point cloud sequences, [7] is generic for recognition
and segmentation, and [1] aims at panoptic segmentation.

Motion learning on 3D point cloud sequences.
Modeling and learning motion information for a
temporal sequence of 3D point clouds is crucial to
scene understanding for dynamic environments. Recently,
FlowNet3D [16], MeteorNet [17] and HPLFlowNet [10],
and PointPWC-Net [36] leverage various strategies to
generate 3D scene flow between two consecutive frames
to represent previous motion displacements. Besides
scene flow estimation, there are several studies of motion
prediction jointly trained with object detection using
deep neural networks [3, 5, 18], which typically require
bounding-box annotations. MotionNet [35] predicts future
motion behaviors from a sequence of point clouds without
bounding box annotations. However, MotionNet works
with bird’s-eye-view representations, with limited precision
by the voxelization. In this work, we aim to capture motion
information for each point without any discretization.

3. PointMotionNet
Our goal is to propose a generic neural network module

to extract motion information from a temporal sequence of
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Figure 2. 4D point spatiotemporal convolution operation
(Point-STC). To extract spatiotemporal features, we gather all
points across time to the same spatial coordinate system. For each
query point (with red circle), we find its neighbors (in the orange
ball) in each frame. With the set of proxy points (in red triangle)
of the query point, we extract spatial features in each individual
frame, which follows from (1a). We next concatenate the spatial
features across all time stamps and use a MLP to obtain the final
spatiotemporal features, which follows from (1b).

3D point clouds. The motion information could include the
motion state (static/moving), the motion displacement and
many others. Let P = {S(t)}−T

t=0 be a temporal sequence
of 3D point clouds, where the set S(t) = {p(t)i }Nt

i=1 is the
point cloud collected at the tth frame with p

(t)
i the ith point

in the tth frame. Here t = 0 denotes the current frame
and t < 0 denotes previous frames. Let p(t)

i ∈ R3 be the
3D coordinate of the point p(t)i . Since p

(t)
i is also indexed

by time, together with 3D coordinates, we consider it a 4D
point and P a 4D point cloud. We aim to design a neural
network f(·) to produce motion information for each point
in the current frame; that is, m(0)

i = f(p
(0)
i ,P), where m(0)

i

could be a scalar to indicate the moving probability, or a 3D
vector to indicate the motion displacement.

3.1. 4D Point Spatiotemporal Convolution

To extract motion features for 4D points, we consider a
spatiotemporal convolution operation. Let x(t)

i be the input
features of the point p(t)i . For p(t)i , the 4D point spatiotem-
poral convolution (Point-STC) operates as,

y
(t+τ)
i =

∑
p

(t+τ)
j ∈S(t+τ)

⋃
N (p

(t)
i )

Ψ
p

(t)
i ,p

(t+τ)
j

(
x
(t+τ)
j

)
,

(1a)

z
(t)
i = MLP

(
concat

(
{y(t+τ)

i }
)−T

τ=0

)
, (1b)

where MLP(·) denotes the multilayer perceptron network
shared by all the points and concat(·) denotes the concatena-
tion operation that combines several short vectors to output
a long vector, a kernel function Ψ

p
(t)
i ,p

(t+τ)
j

(
x
(t+τ)
j

)
that

evaluates the effect from point p(t+τ)
j to point p(t)i with τ

being time difference and N (p) = {q ∈ R3|∥q − p∥2 ≤
r} defines a neighboring set of points for point p with
r ∈ R a pre-defined radius, reflecting a fixed 3D-ball
space. Step (1a) is a spatial convolution that aggregates the
neighboring information at each single frame and y

(t+τ)
i

denotes the intermediate feature extracted at frame t+τ ; and
step (1b) aggregates temporal features sequentially based
on time stamps and z

(t)
i denotes the output feature for

p
(t)
i . Since the sequence length T is usually small in prac-

tice, MLP works effectively. Combining (1a) and (1b), we
achieve information aggregation over both the spatial and
temporal dimensions; see in Figure 2. Note that instead
of looking for point-to-point correspondences, Point-STC
finds correspondences across time by leveraging the time-
invariant neighboring space. Because for each point, the
neighboring space is fixed given a radius, we can evaluate
the spatial features within this space across time to extract
motion features.

To define the kernel function Ψ
p

(t)
i ,p

(t+τ)
j

(
x
(t+τ)
j

)
,

instead of directly considering the pairwise effect from
p
(t+τ)
j to p

(t)
i , inspired by [31], we first introduce a few

proxy points to represent each 4D point and then consider
the effect from p

(t+τ)
j to each of the proxy points. The

benefit is to leverage multiple kernels to make the training
more stable and effective. The set of proxy points for a 4D
point p(t)

i is K(p
(t)
i ) = {p(t)

i − bk ∈ R3}Kk=1, where the
offsets bk ∈ R3 are pre-defined so that each proxy point
belongs to the vertices or center of a regular polyhedron in
3D space; see the definition in supplementary. With this, we
consider a multi-kernel function as

Ψ
p

(t)
i ,p

(t+τ)
j

(
x
(t+τ)
j

)
=

∑
δk∈K(p

(t)
i )

wkh(δk,p
(t+τ)
j )x

(t+τ)
j ,

(2)
where wk are trainable parameters shared by all the points
and the kernel associated with each proxy point is

h(δk,p
(t+τ)
j ) = max

0, 1−

∥∥∥δk − p
(t+τ)
j

∥∥∥
2

σ

 ∈ R,

(3)
where σ = r/2 is a hyperparameter related to the neigh-
boring radius. In (2), h(δk,p

(t+τ)
j ) reflects the spatial prox-

imity prior between p
(t+τ)
j and the kth proxy point of p(t)

i

and wk can further adaptively change the kernel weight.
Note that the set of proxy points is similar to rigid kernel
points in [31]. The difference is that KP-Conv considers
a pair of points at the same time stamp, while (2) evalu-
ates a pair of points across time. This is also related to grid
points in [28], where they use a fixed global grid; while
we recenter the proxy points to each query point, where the
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Figure 3. PointMotionNet is a point-based spatiotemporal
pyramid network. Point-STC layers enable spatiotemporal
feature learning. Downsampling and upsampling layers enable
multiscale feature learning. With the skip connections, the aggre-
gation layers fuse features from both encoder and decoder.

relative displacements are shift-invariant.
The proposed Point-STC (1) directly handles raw 4D

points without any discretization. Since the operation only
takes the neighboring points, we do not need to handle the
entire point cloud at the same time; instead, we can split
a large-scale point cloud into multiple patches, which are
small-scale point clouds, and handle each patch locally.
This can significantly ease the computation and make it
easier to handle large-scale 3D point clouds.

Compared to recent point-based methods, the proposed
Point-STC can effectively operate on a sequence of large-
scale 3D point clouds. Specifically, FlowNet3D [16]
and HPLFlowNet [10] generate scene flow by learning
the point-to-point correspondence between two frames.
However, they could only operate on two frames; while
the proposed Point-STC can operate on multiple frames by
concatenating spatial features from all frames. Although
MeteorNet [17] can take multiple frames, it gathers the
3D points from all frames together and encodes the time
stamp as a separate feature channel, which is not dedicated
to extracting the temporal information; while the proposed
Point-STC preserves the temporal ordering by sequentially
concatenating spatial features from each frame and uses
MLP to fully extract temporal information.

3.2. 4D Point Pyramid Network Architecture

Here we propose a network architecture to systemati-
cally handle a sequence of 3D point clouds. This archi-
tecture has a pyramid structure; see Figure 3. The left part
acts like an encoder that extracts spatiotemporal features at
multiple scales; and the right part acts like a decoder that
only focuses on aggregating features at the current frame
from both the previous layer and the encoder.

Point-STC layer. As the main compontent to extract
spatiotemporal features from points, a Point-STC layer
implements the 4D point spatiotemporal convolution (1).

The first layer takes raw points from multiple frames as
the input, where the point features are their 3D coordinates.
For the deeper layers, the point features are hidden features
from the previous layer. For each point, the spatiotemporal
neighborhood is implemented by collecting certain number
of the 3D points within a pre-defined spatial distance to this
query point at each time stamp. The neighborhood radius
is defined as rℓ+1 = 2rℓ, where ℓ is the network layer
index. In a deeper layer, we need a larger reception field
for a Point-STC to extract more global features.

Downsampling layer. Since we increase the reception
field in a deep layer, the corresponding Point-STC needs
to handle many more points. In a large-scale scene, a
point cloud is usually irregularly sampled, where nearby
points are relatively denser and far-away points are rela-
tively sparser. Uniformly downsampling would make far-
away points too sparse. To resolve this issue, we adopt
downsampling based on grids following [31]. We first
partition a 3D scene into a series of nonoverlapping 3D
grids. For a non-empty grid cell with multiple 3D points,
we only take their barycenter as their proxy. At each time
stamp, we collect the sampled points from all the grids to be
a downsampled 3D point cloud. In this manner, we would
downsample more points nearby and less points far-away,
balancing the spatial distribution of point density. The grid
size is defined as dℓ+1 = 2dℓ, where ℓ is the network layer
index. Note that the downsampled 3D points are still irreg-
ularly scattered in the 3D space, which is clearly different
from the regular voxelization.

Upsampling layer. Each upsampling layer aims to
populate point features from a downsampled point cloud to
an original point cloud (previous layer before the downsam-
pling layer). For each 3D point in the original point cloud,
we find its closest point in the downsampled point cloud and
take its associated point features.

Aggregation layer. Each aggregation layer aims to
aggregate point features from both the encoder and the
decoder at the same scale. In our pyramid architecture, we
use a skip connection to introduce the point features at the
current time stamp from the encoder side and concatenate
them with the corresponding point features from the upsam-
pled point cloud. We then use a multilayer perceptron to
aggregate the concatenated features.

Compared with previous works, the proposed pyramid
architecture explicitly preserves the temporal ordering.
MeteorNet [17] merges the entire input sequence of 3D
point clouds directly to a denser 3D point cloud without
ordering them among the temporal axis; while the proposed
architecture preserves the complete temporal information
and our design decouples the spatio-temporal convolution
along spatial and temporal dimensions. In addition, Mete-
orNet [17] uses FPS sampling as in PointNet++ [23], while
we adopt grid-based sampling, which balances the spatial
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Figure 4. Point-based motion prediction system. With PointMotionNet as a backbone, the system takes a sequence of 3D point clouds
as the input and generates the predicted motion vector and the estimated motion state for each single 3D point in the current frame through
the motion vector head and the motion state head. For visualization, we sample the moving points for the motion vector output.
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Figure 5. Multisweep semantic segmentation system. It consists of four parts: the segmentation backbone, extracting semantic features
from each individual 3D point cloud, the segmentation head, producing the estimated semantic labels, PointMotionNet, extracting motion
features based on semantic features across time stamps, and the motion state head, producing the estimated motion states.

distribution of point density. [6] relies on high-dimensional
sparse convolutions to extract spatiotemporal information
from discretized 4D data; while PointMotionNet directly
operates on raw points instead of voxels. The proposed
Point-STC leverages a fixed set of proxy points, and it
covers a general polyhedron compared to regular voxels.

4. Motion-Related Systems
In this section, we apply PointMotionNet as a core

module to two motion-related systems.

4.1. Point-based Motion Prediction
Our aim is to predict a motion vector for each point in the

current frame given a sequence of 3D point clouds. Each
motion vector of a point is the displacement from the 3D
coordinate at the current time stamp to the 3D coordinate
at some future time stamp. Here we consider point-level
motion, instead of an instance level or a cell level.

Architecture. Figure 4 illustrates a point-based motion
prediction system. The proposed PointMotionNet takes a
sequence of 3D point clouds as the input and produces
the intermediate motion features to two output heads: the
motion vector head, which predicts the motion vector for
each 3D point in the current frame, and the motion state

head, which estimates the binary motion state for each 3D
point in the current frame. As the backbone network, the
PointMotionNet has 4 downsampling layers in total. We
also set the neighborhood radius in the first Point-STC layer
be rℓ = 0.15m, the grid size in the first downsampling
layer be dℓ = 0.06m, the number of the proxy points be
15. The motion vector head is implemented by three fully-
connected layers and the motion state head is implemented
by one fully-connected layer followed by a softmax layer.

Loss function. We apply the smooth L1 loss Lvector

to supervise motion vector prediction and use the cross-
entropy loss Lstate for motion state. We jointly train
motion state estimation and motion vector prediction with
the overall loss L = Lvector + 0.1Lstate. In the testing
phase, the estimated binary motion states are used to refine
the predicted motion vectors: when the estimated motion
state is static, the corresponding motion vector is set to zero.

4.2. Multisweep Semantic Segmentation
The task of multisweep semantic segmentation aims to

estimate the semantic label and motion state for each 3D
point in the current sweep given a sequence of point clouds.

Architecture. A straightforward design for multisweep
semantic segmentation is to take multiple sweeps as the
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Method View mIoUtotal ↑ (%) mIoUstatic ↑ (%) mIoUmoving ↑ (%) Static ↓ Speed ≤ 5m/s ↓ Speed > 5m/s ↓
MotionNet [35] BEV 94.8 97.8 91.7 0.007 0.755 0.503
FlowNet3D [16] Point 75.2 90.5 59.9 0.003 1.535 1.834
MeteorNet [17] Point 93.8 97.4 90.2 0.005 1.014 0.749

PointMotionNet Point 98.5 99.4 97.6 0.001 0.416 0.445

Table 1. PointMotionNet outperforms in the motion prediction task on Argoverse Validation Set.

Ground Truth PointMotionNetFlowNet3D

Figure 6. PointMotionNet (right) qualitatively outperforms FlowNet3D (middle) in point-based motion prediction on Argoverse.
Moving points are associated with green motion vectors and the static points are in red; the remaining points are background, marked in
grey.

Models mIoUtotal ↑ (%) mIoUstatic ↑ (%) mIoUmoving ↑ (%)

RangeNet++ [19] 72.0 97.6 46.5
MotionNet [35] 81.4 98.6 64.2
FlowNet3D [16] 59.0 97.1 20.8
MeteorNet [17] 72.0 97.9 46.1

4D-PointNet2 [23] 68.3 97.1 39.5

PointMotionNet 81.8 98.7 64.9

Table 2. PointMotionNet outperforms in motion state estima-
tion on SemanticKITTI. RangeNet++ and MotionNet are in the
range view and BEV, respectively, while the rest are point-based.

input and directly estimate all the semantic and motion
labels. However, we observe that for foreground cate-
gories, such as car, person, and bicyclist, semantic infor-
mation and motion information are mostly independent.
Jointly training the semantic and motion information would
potentially harm the performances on both tasks. More-

over, previous sweeps might not significantly benefit the
point-wise semantic labeling of the current sweep because
the points across sweeps do not have a clear point-to-
point correspondence. Therefore, our design rationale is to
split multisweep semantic segmentation into two separated
tasks: semantic segmentation based on a single sweep and
motion state estimation based on multiple sweeps.

Figure 5 illustrates a multisweep semantic segmentation
system. The overall architecture consists of four parts:
the segmentation backbone, the segmentation head, Point-
MotionNet and the motion state head. The segmenta-
tion backbone consumes each individual sweep and learns
per-point semantic features. All sweeps share the same
backbone network. The segmentation head takes semantic
features of all the points in the current sweep to generate
the per-point semantic labels. It is implemented by a
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TangentConv [30] 34.1 20.7 84.9 40.3 0.0 30.1 1.6 1.9 0.0 42.2 18.5 6.4 21.1 1.1
DarkNet53 [2] 41.6 24.2 84.1 61.5 0.0 28.9 7.5 0.2 0.0 37.8 20.7 15.2 20.0 14.1
SpSeqnet [26] 43.1 25.5 88.5 53.2 0.0 2.3 6.3 36.2 0.0 0.1 22.7 26.2 29.2 41.2
LatticeNet [25] 45.2 33.7 91.1 54.8 0.0 44.6 6.8 49.9 0.0 64.3 23.1 0.6 65.4 3.5
KP-Conv [31] 51.2 40.5 93.7 69.4 0.0 67.4 21.6 67.5 0.0 47.2 38.6 0.5 42.5 0.5
Cylider3D [39] 51.5 31.4 93.8 68.1 0.0 60.0 12.9 63.1 0.1 0.4 37.6 0.1 41.2 0.0
PointMotionNet 54.8 39.2 93.8 71.4 6.2 62.2 13.7 61.8 23.4 15.1 38.1 29.9 44.2 10.5

Table 3. PointMotionNet outperforms in multisweep semantic segmentation on SemanticKITTI test set. Note that S represents the static
foreground category, and M denotes the moving foreground category. Please refer to the supplementary for the detailed 25 classes results.

Ground Truth PointMotionNetMeteorNet

Figure 7. PointMotionNet (right) visually outperforms MeteorNet (middle) in motion state estimation on SemanticKITTI. For six fore-
ground classes, moving points are in green and static ones are in red; for the remaining background classes, points are in grey.

fully-connected layer followed by a softmax layer. The
third component, PointMotionNet, learns motion features
based on semantic features from the segmentation back-
bones across all sweeps. The motion state head takes the
motion features to estimate the motion state for each point
in the current sweep. It is implemented by a fully-connected
layer followed by a softmax layer.

Loss function. We adopt the cross-entropy losses for
both multi-category semantic segmentation and the binary
motion state estimation. Based on the groundtruth of the
semantic category, we apply a foreground mask to the
motion state estimation, so that only the losses of fore-
ground points are counted. The overall loss function
combines the semantic segmentation loss and the motion
state loss. In the training phase, we could also use a pre-
trained segmentation backbone to focus on motion training

and accelerate the training time. In the inference phase, for
estimated background categories, the system would set the
corresponding estimated motion states to be static.

5. Experimental Results
In this section, we validate PointMotionNet both quanti-

tatively and qualitatively on Argoverse and SemanticKITTI.

5.1. Point-based Motion Prediction
Dataset. Argoverse [4] is an autonomous driving dataset

for 3D tracking and forecasting. We follow the official split
to generate 65 logs for training and 24 logs for validation.
Since there is no direct labeling for motion information, we
generate the groundtruth based on 3D bounding boxes; see
more ablation studies in supplementary.

Baselines. We compare PointMotionNet with several
state-of-the-art methods, including MotionNet [35], which
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proxy points(k) d1 temporal op. # frames (n) mIoUtotal mIoUstatic mIoUmoving Static Speed ≤ 5m/s Speed > 5m/s

15 0.06 MLP 3 0.985 0.994 0.976 0.001 0.416 0.445
6 0.06 MLP 3 0.981 0.992 0.970 0.002 0.461 0.543
15 0.24 MLP 3 0.983 0.993 0.974 0.002 0.398 0.461
15 0.06 Conv. 3 0.976 0.990 0.962 0.002 0.558 0.782
15 0.06 MLP 4 0.982 0.996 0.969 0.001 0.341 0.422

Table 4. Ablation Study of PointMotionNet on Argoverse Validation Set. We vary several hyper-parameters: number of proxy points k,
initial sampling resolution d1, temporal operation, and input frames number n.

is a BEV-based method, and MeteorNet [17], which is a
point-based method. We adjust the output head of Mete-
orNet for future motion vector prediction and motion state
estimation. We also consider a 3D scene flow method,
FlowNet3D [16], which only takes 2 frames. We train
it to estimate the 3D scene flow between one past frame
and current frame, and then lift the predictions to motion
displacements in future frames using a linear motion model.

Experimental setup. The inputs are 3 sequential
frames of point clouds S(t−0.2s),S(t−0.1s),S(t), which are
synchronized to the same coordinate system. The final
motion prediction contains a binary motion state, i.e. static
or moving, together with the displacements from current
time stamp to the next 5 future time stamps {t+ τ}0.5sτ=0.1s.

Results. We adopt the mean intersection-of-union
(mIoU) [2] to evaluate motion state estimation for static
and moving points. For the motion vector prediction, we
evaluate on two speed intervals, which shows performances
on both slow and fast motions. Since MotionNet will
only predict 2D motion vector at each cell, we reproject
its predictions back to each point, and quantitatively eval-
uate all methods on xy plane only. Table 1 shows that
as a point-based method, PointMotionNet outperforms its
competitors. Figure 6 shows that PointMotionNet visually
outperforms FlowNet3D. Due to the limitation of fusing
only two consecutive frames, FlowNet3D tends to easily
fail to predict the motion state of objects either too closer
or the too far away from the LiDAR sensor.

Ablation Studies. Table 4 considers several variants of
PointMotionNet. We see that i) Less proxy points results in
slightly worse results; ii) increasing the grid resolution up
to 0.24m in downsampling makes minor effects; iii) MLP
works significantly better than convolution in the temporal
aggregation (1b); and iv) increasing the number of sweeps
improves the performance; see more in supplementary.

5.2. Multisweep 3D Semantic Segmentation
Dataset. SemanticKITTI [2] is another one of the largest

datasets for LiDAR-based semantic segmentation. There
are 22 labeled sequences consisting of over 43, 000 input
laser scans. The experiments follow the standard protocol
on the training, validation and test sequences. Note that
we manually remove the first 130 corrupted validation

scans with inconsistent annotation when we evaluate Point-
MotionNet and previous architectures. The multiple-scan
benchmark evaluates mIoUs on the 25 classes, including six
moving and non-moving foreground classes, car, bicyclist,
person, motorcyclist, other-vehicle and truck.

Baselines. We compare PointMotionNet with several
state-of-the-art methods, including KP-Conv [31], and
recent cylinder coordinates-based Cylider3D [39].

Experimental setup. We use the SGD optimizer with
momentum 0.98 and weight decay of 10−3 and an initial
learning rate of 0.01. We train the PointMotionNet and the
heads for 500 epochs. Following MotionNet [35], we use a
consistency loss to enforce that the points belonging to the
same object have a same motion state.

Results. First, we validate PointMotionNet in the point
motion state estimation task on SemanticKITTI validation
set. We compute the overall mIoUtotal, mIoUstatic for static
points and mIoUmoving for moving points. Table. 2 shows
that PointMotionNet outperforms its competitors. Second,
we visualize the motion state estimation results for the fore-
ground classes on SemanticKITTI validation set. Figure 7
shows that with the same semantic segmentation backbone,
PointMotionNet outperforms MeteorNet. Third, we eval-
uate the overall multisweep semantic segmentation perfor-
mance on the SemanticKITTI test server. Table. 3 shows
that the proposed PointMotionNet could improve the overall
performance on 25 classes semantic segmentation using a
simple single-frame semantic segmentation backbone.

6. Conclusion
The proposed PointMotionNet is a novel point-based

method to achieve motion learning. It handles multiple
frames and large-scale scenes, avoid discretization and
explicitly learn from the temporal ordering. We further
integrate PointMotionNet into two systems to handle point-
based motion prediction and multisweep semantic segmen-
tation. Experimental results show that PointMotionNet
outperforms baselines on Argoverse and SemanticKITTI.
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