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Abstract

Bridging the semantic gap between image and question
is an important step to improve the accuracy of the Vi-
sual Question Answering (VQA) task. However, most of
the existing VQA methods focus on attention mechanisms
or visual relations for reasoning the answer, while the fea-
tures at different semantic levels are not fully utilized. In
this paper, we present a new reasoning framework to fill
the gap between visual features and semantic clues in the
VQA task. Our method first extracts the features and pred-
icates from the image and question. We then propose a
new reasoning framework to effectively jointly learn these
features and predicates in a coarse-to-fine manner. The
intensively experimental results on three large-scale VQA
datasets show that our proposed approach achieves supe-
rior accuracy comparing with other state-of-the-art meth-
ods. Furthermore, our reasoning framework also provides
an explainable way to understand the decision of the deep
neural network when predicting the answer. Our source
codes can be found at: https://github.com/aioz-
ai/CFR_VQA

1. Introduction
The Visual Question Answering (VQA) task aims to pre-

dict the correct answer of a given question such that the an-
swer is consistent with the visual image content. There are
two main variants of VQA, i.e., Free-Form Opened-Ended
(FFOE) and Multiple Choice (MC). In FFOE, an answer is
a free-form response of a given image-question input pair,
while in MC, the answer is chosen from a list of predefined
ground-truth. In both cases, extracting meaningful features
from the images and questions plays a key role. Further-
more, mapping the semantic features from the images and
questions also strongly affects the results [16]. Most of
the existing solutions for the VQA task rely on visual re-
lations [4, 5, 56, 60], attention mechanisms [26, 47, 50], ex-
ternal knowledge [18, 29], or message passing [50] to link

the visual clue with the associated information in the ques-
tion.

While both extracting and reasoning the features of the
image and question are important for VQA, they are not
trivial tasks in practice. Many questions (and answers)
are composed of complex semantic information, which can
have noise or ambiguous attributes. Current methods focus
on utilizing visual information [5,22,33,35,38,40,42,44,53]
without considering if the supporting information is useful
or not [16]. Besides, many approaches aim to enrich the in-
formation extracted from both image and question regard-
less of the noisy information that may occur [5, 14, 15, 18].
This leads to the fact that although the image and question
features can be extracted by a deep convolutional neural net-
work, they may not be effectively utilized to reason and pre-
dict the correct answer.

To bridge the semantic gap between images and ques-
tions in VQA, we introduce a new framework that focuses
on reasoning the visual contents in the image and the se-
mantic clues in the question in a coarse-to-fine manner.
Our observation is that both image and question’s features
can be extracted gradually at different fine-grained levels.
Therefore, we can map these features in each level to allow
a stronger connection when reasoning. Our framework con-
tains effective extractors for extracting meaningful features
and predicates from the image and question. Furthermore,
the answer outputted by our framework can be reasoned ex-
plicitly through the distribution maps during the prediction
progress. These maps indicate the necessity of input fea-
tures or predicates, allow us to understand which informa-
tion is meaningful for predicting the answer. Our contribu-
tions can be summarized as follows:

• We propose a simple, yet effective framework to ex-
tract meaningful features and predicates from the ques-
tion and image. The extracted information can be used
to explain the decision of the deep network.

• We introduce a new coarse-to-fine reasoning method
to bridge the semantic gap between the question and
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image when predicting the answer.

• We conduct intensive experiments to validate our
method. Our source code and trained models will be
released for further study.

2. Related Work
There are numerous reasoning VQA methods [1, 6, 12,

14,19,36,37,39,48,52,55,58,63,64] that focus on learning
the relations between visual regions and words in questions
implicitly, e.g., through message passing [50], pairwise re-
lationship modeling [4], adversarial learning [8, 31, 51], or
graph parsing methods defined by inter/intra-class edges
[15]. Other works focus on leveraging external informa-
tion [18] or explicit scene graph [5] to extract features from
input images. ReGAT [30] considers both explicit and im-
plicit relations to enrich image representations. Most of the
current VQA works focus on enriching image representa-
tion without examining whether the enriched information is
necessary for reasoning the answer or not [28].

Extracting meaningful features from images, questions,
and their joint embedding is crucial in the VQA task. For
image representation, grid features [23, 65] or object fea-
tures [2,13,43,46,49] are widely used. For question embed-
ding, Glove [45] and BERT [10] are used to present words
and sentences. Besides, using large-scale pre-training mod-
els on image-text pairs is also popular [7, 32]. For learning
the joint embedding, many approaches use attention mecha-
nisms [11,26,41,47,50,61,62]. The authors in [57] propose
Stacked Attention Networks to localize image regions that
are relevant to the question. In [26], the authors propose Bi-
linear Attention Networks for VQA. Recently, in [11], the
authors introduce Compact Trilinear Interaction which si-
multaneously learns the interaction between images, ques-
tions, and answers.

Unlike other approaches that focus on enriching infor-
mation from image and question, in this work, we consider
the interaction among the semantic clues in questions and
the visual contents of the image ranging from object-level
to fine-grained level. Hence, we apply a simplified fine-
grained detector inspired by Faster R-CNN model [46] to
extract visual features and predicates, rather than leverag-
ing complicated scene graph generators. This setup allows
us to achieve competitive results compared with other ap-
proaches, while keeping the network at a reasonable com-
putational cost.

3. Methodology
3.1. Overview

Our Coarse-to-Fine Reasoning (CFR) framework takes
an image and a question as inputs. The image is passed
through the Image Embedding module to extract the re-

gion of interest (RoI) features and visual predicates. The
question is processed in the Question Embedding module
to extract the question features and question predicates.
The predicates are keywords about objects, relations, or at-
tributes of the image/question. To effectively map the vi-
sual modality and language modality, we jointly learn their
features, as well as their predicates in the Coarse-to-Fine
Reasoning module. Figure 1 illustrates an overview of our
framework.

3.2. Image Embedding

The goal of the Image Embedding module is to extract
RoI features and visual predicates from the input image.
The RoI features are extracted by a deep object detector to
localize all potential regions of interest. The visual pred-
icates are extracted by classifying attributes and relations
based on the visual RoI features provided by the object de-
tector.

In practice, as in [26, 49], we use the pre-trained Faster
R-CNN model [2] to extract visual features for each RoI.
Note that the RoI feature is an important visual input for
the VQA task. Therefore, we retain the original Faster R-
CNN multi-task loss for object detection, then adding two
additional Cross-Entropy losses for attribute class predic-
tor and relation class predictor. The extracted objects, as
well as their attributes and relations, are then re-arranged
to form predicates. Each predicate follows one of three
forms: single predicate <obj>; attribute-based predicate
<attr, obj>; and relation-based predicate <obj1,
rel, obj2>. Following [26, 30, 49], we use a pretrained
Faster R-CNN model on the Visual Genome dataset [27] to
extract predicates from the images. For each word in each
predicate, we apply 300-dim Glove word embedding [45]
to extract predicate features.

3.3. Question Embedding

The Question Embedding module aims to extract ques-
tion features and question predicates. To extract question
features, following [11, 26, 59], we apply 600-dim Glove
word embedding [45] accompanied by GRU [9] to extract
the features and learn the dependencies of all words in the
question.

To extract question predicates, we pass the whole ques-
tion through a stop-word filter. The filter is the combination
of two lists. The first list contains words in the NLTK based
stop-words [34] list, i.e., words that do not add much mean-
ing in a sentence. The second list contains words from all
the questions that have the frequency of occurrence is less
than 10. Words in the second list are considered as rare
words and hard for the model to learn. For each word in
each question predicate, we apply 300-dim Glove word em-
bedding [45] to extract the predicate features.



Figure 1. An overview of our framework.

3.4. Coarse-to-Fine Reasoning

Given the image features and predicates (fi, pi) as well
as the question features and predicates (fq, pq), our goal is
to predict an answer α in a list of ground-truth A using a
trainable model θ as follow:

α̂ = argmax
α∈A

θ (α|fi,pi, fq,pq) (1)

To effectively map the information of the question to the
visual information in the image, the Coarse-to-Fine Rea-
soning module utilizes three steps: Information Filtering,
Multimodal Learning, and Semantic Reasoning. The Infor-
mation Filtering aims to filter out unnecessary visual infor-
mation from the image based on the predicates. The Mul-
timodal Learning module learns the semantic mapping be-
tween the question and image at coarse-grained and fine-
grained levels. Finally, the Semantic Reasoning module
combines the output of the multimodal learning step to pre-
dict the answer.

3.4.1 Information Filtering

Since the features and predicates of both the question and
image are extracted by pretrained models, they may have
noise or incorrect information. Therefore, we design the In-
formation Filtering module to filter out unnecessary infor-
mation. In practice, this module also helps us understand
the importance of each RoI for each question. The Informa-
tion Filtering takes the feature f ∈ Rnf×df and the predicate
p ∈ Rnp×dp as input. Both f and p have a matrix form; nf ,
np denote the number of instances (e.g., number of RoIs or
number of predicates); df , dp denote the dimension of each
instance.

To filter out the unnecessary information in the feature f ,
we consider the predicate p as the supervision information.

Through the interaction mechanism, we compute a weight-
ing map Ψ̂ ∈ Rnf which is then applied to output the filtered
information Ψ ∈ Rnf×dΨ . Ψ̂ is computed as follow:

Ψ̂ = softmax

(
np∑
i=1

τf (f) τp (p)
T
i

)
(2)

where τf (· ) and τp(· ) are learnable linear projection fun-
tions which project f ∈ Rnf×df and p ∈ Rnp×dp into
f ′ ∈ Rnf×dΨ and p′ ∈ Rnp×dΨ , respectively.

Given the weighting map Ψ̂, the filtered information Ψ
is calculated by Equation (3):

Ψ =
(
Ψ̂ · 1T

)
⊙ τf (f) + τf (f) (3)

where 1 ∈ RdΨ is a channel-scaled vector; ⊙ denotes the
Hardamard product.

In practice, the Information Filtering module is applied
on both the image features and predicates (fi, pi), as well
as the question features and predicates (fq, pq) to achieve
the filtered information Ψi and Ψq. Here we use the unified
symbol Ψ for simplicity.

3.4.2 Multimodal Learning

Inspired by the Unitary Attention Mechanism [26], we de-
sign the Multimodal Learning module to jointly learn the
features from the visual and language modalities. Multi-
modal learning is essential for identifying the correlation
between each instance in the image and the question, then
identifying which instances in the image are useful for an-
swering the question.

In this module, the features are jointly learned at two
levels: coarse-grained and fine-grained. The coarse-grained
level learns the interaction between question features and



Figure 2. Examples of the predicted confidence scores of the Coarse-grained Learning, Fine-grained Learning, and Coarse-to-Fine Rea-
soning module.

image features, while the fine-grained level learns the inter-
action between filtered information of the image and ques-
tion obtained from the Information Filtering step.

Coarse-grained learning. The inputs for coarse-grained
learning are the image features fi and question features fq.
The output of coarse-grained learning is a joint representa-
tion jcg ∈ Rdcg , where dcg is the dimension of the joint
representation. Each k-th element of the join representation
jcg is computed as follows:

jcgk = (fqMfq)
T
kA

cg(fiMfi)k (4)

where Mfq ∈ Rdq×dcg and Mfi ∈ Rdi×dcg are learnable
factor matrices; nq, ni denote the number of instances in
question and image; Acg ∈ Rnq×ni is the bilinear atten-
tion distribution map of the joint representation jcg; dq, di
denote the dimension of each instance. The subscript k in-

dicates the index of matrix column. Acg is computed by
Equation (5):

Acg = softmax
((

fqM
′
fq

)
(fiM

′
fi)

T
)

(5)

where M′
fq ∈ Rdq×dcg and M′

fi ∈ Rdi×dcg are learnable
factor matrices, and independent of Mfq and Mfi .

Fine-grained learning. We apply the same process of
coarse-grained learning for fine-grained learning. The only
difference is the inputs for fine-grained learning are the im-
age filtered information Ψi and question filtered informa-
tion Ψq. Similar to Equation 4 and 5, the fine-grained joint
representation is computed as follow:

jfgk = (ΨqMΨq
)TkA

fg(ΨiMΨi
)k (6)



where Afg is computed as:

Afg = softmax
((

ΨqM
′
Ψq

)
(ΨiM

′
Ψi
)
T
)

(7)

3.4.3 Semantic Reasoning

The goal of Semantic Reasoning is to selectively learn infor-
mation from both the Coarse-grained and the Fine-grained
learning steps using a learnable adaptive weight W ∈ R|A|,
where |A| is the number of possible answers. In practice,
this module takes jcg and jfg as inputs and then outputs the
distribution ρ ∈ R|A| over candidates of all answers A.

ρ = softmax
(
Wτ (jcg) +W′τ ′(jfg)

)
s.t
∑

||[Wα,W
′
α]|| = 1,∀α ∈ A

(8)

where W and W′ are the learnable adaptive weights of
coarse-grained learning and fine-grained learning; τ(· ) and
τ ′(· ) are learnable projection functions that project jcg ∈
Rdcg and jfg ∈ Rdfg into ρcg ∈ R|A| and ρfg ∈ R|A| ,
respectively. To satisfy the constraint in Equation (8), we
apply the softmax function for each vector [Wα,W

′
α]; the

subscript α indicates the index of an answer in the answer
list A.

Through an end-to-end training process, the learned
adaptive weights W identify the contribution of each input
information to predict the answer. These weights are ex-
pected to robust with noisy information from the question or
image at both the coarse-grained and the fine-grained level.

4. Experiments
4.1. Dataset, baseline and evaluation protocol

Dataset. We use three popular datasets in our experi-
ments: GQA [21], VQA 2.0 [17], and Visual7W [65] . We
follow the same split in each dataset for training and testing.

Implementation. We conduct experiments on an
NVIDIA TITAN V 12GB GPU. The network is trained with
a batch size of 32 and a learning rate of 0.001 using Adam
optimizer. Following [25, 26, 49, 57], we use the Visual
Genome [27] and Glove [45] to extract the image embed-
ding and question embedding. Then we train the whole
framework from scratch. The parameters dcg and dfg are
empirically set to 768. The learnable factor matrices M,
W are initialized randomly at the beginning of the train-
ing phase and being learned through the training process.
It takes approximately 10, 20, and 35 hours to train our
network on Visual7W, VQA2.0, and GQA dataset, respec-
tively.

Baselines. We compare our results with various re-
cent methods in VQA. These methods can be categorized
into three groups: joint learning mechanisms: BAN [26],
Pythia [24], DFAF [15], fPMC [20], STL [54], CTI [11],

Method

Dataset

GQA (Acc) VQA 2.0 (Acc)
Visual7W
(Acc-MC)

val tes-dev val test-dev val test
BAN [26] 61.5 55.2 66.0 70.0 65.7 67.5
Pythia [24] − − 66.3 70.0 − −
DFAF [15] − − 66.2 70.2 − −
fPMC [20] − − 61.7 63.9 − 66.0
STL [54] − − − − 67.5 68.2
CTI [11] 61.7 54.9 66.0 70.1 67.0 69.3

MCAN [59] − 57.4 67.2 70.6 − −
MuRel [4] − − 65.1 68.0 − −

ReGAT [30] − − 67.2 70.3 − −
MMN [6] − 60.4 − − − −
NMS [22] − 63.2 − − − −
HAN [25] − 69.5 65.5 69.1 − −

LXMERT [47] 59.8 60.0 − 72.4 − −
OSCAR [32] − 61.6 − 73.6 − −

UNITER-base [7] − − − 72.7 − −
UNITER-large [7] − − − 73.8 − −

CFR (ours) 73.6 72.1 69.7 72.5 69.8 71.9

Table 1. The accuracy of our method and other approaches on
three VQA datasets.

and MCAN [59]; reasoning-based methods: Murel [4], Re-
GAT [30], MMN [6], NMS [22], and HAN [25]; and large-
scale visual-language modeling: LXMERT [47], OSCAR
[32], and UNITER [7].

Evaluation Metrics. As the standard practice, we
use the accuracy metric (Acc) [3] to evaluate the free-
form opened ended dataset (GQA and VQA 2.0), and
Acc-MC [65] to evaluate the multiple-choice dataset (Vi-
sual7W).

4.2. Module Contribution

4.3. Results

Table 1 summarizes our results compared with dif-
ferent recent methods in the VQA task. In the GQA
dataset, our proposed method outperforms the recent ap-
proach HAN [25] on the test-dev set by +2.6%. Regard-
ing the multiple-choice Visual7W dataset, our method out-
performs the work CTI [11] by 2.8% in the validation set
and 2.6% in the test set, respectively. The results show that
our CFR can deal with compositional reasoning questions
through the selected information from both coarse-grained
learning and fine-grained learning. It is worth noting that
our CFR achieves new state-of-the-art results in GQA and
Visual7W datasets.



(a) (b) (c)

(d) (e) (f)

Figure 3. Visualization of the explicit contribution of RoIs and predicates in both input image and question. The ✓ and ✗ symbols indicate
the correct and the wrong answers, respectively. The arrow indicates the attribute or relation from the attribute classification or relation
classification step in our Image Embedding module.

It is more challenging for our method to improve the
result in the VQA2.0 dataset. While our CFR still out-
performs the recent reasoning work ReGAT [30] by 2.5%
and 2.2%, UNITER-large [7] achieves 1.3% higher than
our CFR in the test-dev set. We note that the VQA2.0

dataset has fairly fewer compositional reasoning questions
comparing with the GQA dataset [21]. Thus, it limits
the effectiveness of methods that focus on reasoning the
question and images, including our CFR. Our method also
uses simple modules to extract image and question features,



Methods
Language Modality Vision Modality

Acc
(%)

Question
Features

Predicates
Filtered

Info
Image

Features
Predicates

Filtered
Info

Multimodal
Learning

Coars grained ✓ ✓ 62.6

Fine grained
✓ ✓ ✓ ✓ 67.2 (+4.6)
✓ ✓ ✓ ✓ 69.5 (+6.9)

Semantic Reasoning ✓ ✓ ✓ ✓ ✓ ✓ 73.6 (+11.0)

Table 2. The contribution of each module in our CFR framework.

which may not be robust enough comparing with features
extracted from complicated modules such as large-scale
visual-language models [32] [7].

To evaluate the contribution of each module in our
framework, we conduct the following experiment: Given
different level of information of language and vision modal-
ity (features, predicates, and filtered information of the im-
age/question), we gradually choose different pairs of vision
and language modality as the input to predict the answer.
The experiment is conducted using the GQA dataset.

Table 2 shows the contribution of each module when dif-
ferent inputs are used. By using only the question and im-
age feature (coarse-grained learning), our framework only
achieves 62.6% accuracy. When we combine the ques-
tion and image features with their corresponding predicates
(fine-grained learning), the accuracy increase to 67.2%.
This result indicates the effectiveness of predicates. By
applying the filtered information of both question and im-
age, the performance of fine-grained learning increases to
69.5%. This result shows that by reducing the negative in-
fluence of noisy information, the prediction accuracy can
be improved. To effectively leverage all coarse-grained and
fine-grained information, the Semantic Module is integrated
into the framework and achieves 73.6% accuracy. This re-
sult validates the potency of Semantic Reasoning in select-
ing information for answering the complicated question.
Overall, our introduced framework outperforms the base-
line coarse-grained learning method by a large margin, i.e.,
+11.0% accuracy.

4.4. Visualization

Figure 2 illustrates the comparison between using
Coarse-grained learning, Fine-grained learning, and Se-
mantic Reasoning when we visualize the confidence score
of the top 5 output answers. From this figure, we notice
that if the Coarse-grained or Fine-grained learning are used
separately, the output answer may not be correct, and there
is usually an ambiguity in the top two predicted answers.
However, when we apply our whole Coarse-to-Fine Rea-
soning framework, the network predicts both answers cor-
rectly, and also there is no ambiguity between the top pre-

dicted answer and the second predicted answer. These re-
sults show that our Coarse-to-Fine Reasoning framework
successfully encodes both the features and predicates from
the image and question in a coarse-to-fine manner, hence
consequently improves the prediction results.

Figure 3 illustrates the explicit contribution of RoIs
and predicates in both input image and question when
our framework answers different compositional questions.
Note that the transparency level of each RoI/word indicates
the importance of each information. The RoIs and pred-
icates with no opacity are crucial instances for answering
the corresponding question. The visualizations in samples
(a,b, c,d, e) indicate the effectiveness of our CFR frame-
work in reasoning the correct answers from the inference
process. The sample in (f) demonstrates the case when our
CFR predicts the wrong answer. The incorrect prediction
may come from the limitation of extractors, i.e., the ex-
tracted features are not robust enough (e.g., “cap” and “hel-
met” in our false example). Figure 3 also shows that our
CRF framework not only can increase the accuracy of the
VQA task but also provides an explainable way to under-
stand the prediction results.

5. Conclusion

We have introduced a new simple, yet effective Coarse-
to-Fine Reasoning (CFR) framework for the VQA task. Our
CRF framework first extracts the features and predicates of
both question and image. Then we propose a new reasoning
module to map the key information in the question to the
visual clues in the image in a coarse-to-fine manner. The
intensive experiments on GQA, VQA2.0, and Visual7W
datasets show that our framework achieves competitive re-
sults comparing with recent approaches. Our source code
and trained models will be released for reproducibility and
further study.
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