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Abstract

We exploit the complementary strengths of vision and pro-
prioception to develop a point-goal navigation system for
legged robots, called VP-Nav. Legged systems are capable of
traversing more complex terrain than wheeled robots, but to
fully utilize this capability, we need a high-level path planner
in the navigation system to be aware of the walking capabil-
ities of the low-level locomotion policy in varying environ-
ments. We achieve this by using proprioceptive feedback to
ensure the safety of the planned path by sensing unexpected
obstacles like glass walls, terrain properties like slipperiness
or softness of the ground and robot properties like extra pay-
load that are likely missed by vision. The navigation system
uses onboard cameras to generate an occupancy map and a
corresponding cost map to reach the goal. A fast marching
planner then generates a target path. A velocity command
generator takes this as input to generate the desired velocity
for the walking policy. A safety advisor module adds sensed
unexpected obstacles to the occupancy map and environment-
determined speed limits to the velocity command generator.
We show superior performance compared to wheeled robot
baselines, and ablation studies which have disjoint high-
level planning and low-level control. We also show the
real-world deployment of VP-Nav on a quadruped robot
with onboard sensors and computation. Videos at https :
//navigation—locomotion.github.io

1. Introduction

Gibson has famously remarked, “we see in order to move
and we move in order to see.” Although, it would be more
accurate to say that we see and feel in order to move. Vision
and proprioception are complementary senses. Vision is a
distance sense, which allows us to avoid static and dynamic
obstacles. However, vision is slow and cannot directly sense
physical properties of terrains such as softness vs. hardness,
smooth vs. rough. Proprioception (knowledge of agent’s
own body like joint angles, body orientation, foot contacts,
etc.) is fast and gives a direct measurement of physical
environment characteristics. In this paper, we will focus
on exploiting the complementary strengths of vision and
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Figure 1. Example deployment scenarios for our proposed point
goal navigation system for legged robots. The varying terrains on
the way to the goal require the planner to be aware of the robot’s
locomotion capabilities. The proprioceptive coupling between the
locomotion controller and the navigation planner allow the robot to
sense properties of the environment which the vision might miss
(slippery terrain, glass obstacle, etc.).

proprioception for navigation of legged robots. The goal is to
train a legged robot by developing both low-level control of
its motor joints to walk on terrains (i.e., locomotion) as well
as high-level path planning to reach certain goal locations
by autonomously avoiding any obstacles along the way (i.e.,
navigation).

Locomotion and Navigation: Traditionally, locomotion
and navigation are studied as separate problems and then put
together on a robot as individual modules [29, 52,81, 85].
However, to truly support dynamic goal reaching in complex
terrains, the planner should know about the walking ability
of the robot in different terrains. For instance, a robot navi-
gating to a goal through a slippery patch may either lower
its walking speed or walk around it altogether depending
on its locomotion ability. To facilitate such communica-
tion between high-level and low-level, prior works generally
infer a cost map for the planner from an onboard vision
sensor which is only capable of detecting clearly visible ob-
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Figure 2. Our navigation system (VP-Nav) consists of a velocity-conditioned walking policy, a safety advisor module, and a planning
module. The velocity-conditioned walking policy takes as input the command velocity and the proprioceptive robot state to output the
actions needed to walk in a variety of complex settings. Once we have learned the walking policy in simulation, we then train a Safety
Advisor Module, also in simulation, which estimates the safety constraints of the walking policy. It uses proprioception to estimate two
probabilities: (1) if the robot is in collision, (2) if the robot is about to fall, which are used to update the map and velocity estimates to walk
safely in its environment. The planner uses on board cameras to compute a navigation cost map for an input point goal and takes in the
safety constraints from the Safety Advisor module to compute desired walking velocity and direction. All modules run asynchronously

onboard of the robot.

stacles and regions that are hard to traverse, e.g. steps and
ramps [ 13, 83,85, 88]. However, it is extremely challenging
to predict several other terrain properties from vision like
how slippery, uneven, granular or deformable the surface is.
These directly affect the walking robot’s ability to follow
the plan. Furthermore, the environment could also contain
obstacles that are invisible to a vision-only planner as shown
in Figure 1 and Figure 5, e.g., glass walls or uneven bumps
on ground — things which a robot can readily feel as it walks
through them.

Proprioceptive Feedback: Our insight is to leverage this
robot’s on-ground feeling as observed via proprioception to
bridge the gap and continually update the high-level naviga-
tion plan in accordance with low-level locomotion. Further-
more, this coupling of locomotion with navigation improves
locomotion efficiency as well. For instance, a planner aware
of locomotion ability can direct the robot to switch low-level
gaits (walking — trotting — galloping) for increasing its
speed whenever the path is straight and switch other way
round to decrease speed on winding paths. We posit that the
adaptation of navigational plan from vision and propriocep-
tion must occur online in real time. But, how?

Coupled Vision and Proprioception: We show a high-
level illustration of our overall system VP-Nav (Vision and
Proprioception for Navigation) in Figure 2. It consists of
three subsystems: a velocity-conditioned walking policy, a
safety advisor module, and the planning module which to-
gether make synergistic use of vision and proprioception for
navigation of legged robots. At the lowest level, our velocity-

conditioned locomotion controller is trained via reinforce-
ment learning to allow the robot to walk at different speeds
and in different directions. It takes the commanded linear
and angular velocity as input along with the robot’s proprio-
ception state to predict the target joint angles directly without
using any hand-engineered control primitives. We train this
base controller in simulation via energy-based reward to al-
low for seamless gait switching at different speeds [18,90]
and then transfer to the real world via rapid motor adap-
tation [48] that estimates environment extrinsics using an
adaptation module trained in simulation. Once we have
learned the walking policy, which includes the base pol-
icy and the adaptation module, in simulation, we freeze it
and train a Safety Advisor (SA) Module, also in simulation,
which learns to estimate the safety constraints of the walk-
ing policy. It uses proprioception to estimate(1) if the robot
is in collision to a visually undetected object such as glass
walls (2) what is a safe velocity limit for the robot to walk
in the current terrain which could be soft, slippery, bumpy,
etc. During deployment, the walking policy (base policy
and adaptation module) and the SA (safety advisor) module
are kept frozen and interact with the planner as shown in
Figure 2. The planner uses on board cameras to compute a
navigation cost map for an input to the point goal and takes
in the two bits of safety constraints from the safety advisor
module to compute the target linear and angular velocity
which is given to the walking policy to track. This planner
also ensures that both the linear and angular commanded
velocities are within the feasible range of the walking pol-
icy. The planning module continually updates the cost map



and safety constraints to generate the target velocity for the
walking velocity as the robot moves. All the modules run
asynchronously onboard of the robot.

Simulation and Real-World Evaluation: We evaluate our
system VP-Nav in challenging navigation settings (e.g., Fig-
ure 1) with difficult terrains, invisible glass obstacles, slip-
pery surfaces, deformable ground and challenging outdoor
scenarios. Please see videos at https://navigation-—
locomotion.github.io

In addition, we conduct a series of experiments in sim-
ulation. For this we import real-world Matterport 3D [7]
maps used in Habitat [70] and Gibson [86] into RaiSim to
create a simulation benchmark for controlled study of joint
navigation and legged locomotion. We find that the proposed
system is 7% - 15% better than baselines with disjoint plan-
ning and control loop in different terrains and in settings
with invisible obstacles. We find that minimizing time to
goal can lead to more energy consuming behaviours which
can be compensated for by the use of efficient locomotion
policy with emergent gaits. We also additionally show the
importance of legged systems over wheeled counterparts in
traversing challenging terrains, and empirically demonstrate
that continuous velocity-conditioned policy is more time
efficient than its discrete counterpart.

2. Velocity-Conditioned Walking Policy

Our velocity-conditioned walking policy is an implemen-
tation of the approach in [18,48]. We present a review here
to make this paper self-contained. The walking policy con-
tains a base policy which takes the command velocity and
the robot state as input and predicts the target joint angles.
It additionally takes the extrinsics vector as input which is
estimated by the adaptation module and enables rapid online
adaptation to varying environment conditions [48].

Base Policy: We first train a base policy to walk in simula-
tion on varying terrains and track a commanded linear and
angular velocity. The base policy 7 takes the current pro-
priopceptive state (incl. joint angles, joint velocities, body
row angle, body pitch angle, and foot contact indicators)
z; € R, command velocities [v™9, we™d] € R2, previous
action a;—; € R'2, and the extrinsics vector z; € R2 to
predict the target joint positions a;, which are converted to
torques by a PD controller. The extrinsics vector z; is an
encoding of the environment conditions (like payload, fric-
tion, etc.) which enables the base policy to adapt to different
environment conditions instead of being blind to it. The
extrinsics vector z; is generated by an environment encoder
w from privileged environment information e; € R1Y, as
follows: z; = u(es) and a; = 7(x¢, ar—1, 2¢).

We jointly train both 7 and p end-to-end with model-
free reinforcement learning to maximize discounted ex-

pected return J (1) = Ep(.|m) [ZtT:_Ol Vtrt}, where 7 =

{(z0,a0,70); -, (XT—1,a7_1,77_1)} is a sampled trajec-
tory of the robot when executing policy 7 in the simulation,
and p(7|m) represents the likelihood of the trajectory under
m. We use PPO [71] to maximize this objective.

RL Reward: Reward encourages the policy to accurately
track a commanded linear and angular velocity while penaliz-
ing a higher energy consumption [18]. We denote the linear
velocity as v, the orientation as € and the angular velocity as
w, all in the robot’s base frame. We additionally define the
joint angles as g, joint velocities as ¢, and joint torques as 7.
The reward at time r; is defined as the sum of the following
quantities (see supplementary for specifics):

s Velocity Matching: —|v; — ™| — |wyayw — w9

* Energy Consumption: —77¢

* Lateral Movement: —|v,|?

* Hip Joints: —||qnip ||?
Training Scheme: Similar to [48], we train our agent on
fractal terrains without any additional artificial rewards for
foot clearance or external pushes. For target velocities, we
sample from one of the two settings: jointly track linear
and angular velocity (curve following), or turning in place.
Turning in place is important to handle very cluttered envi-
ronments. See supplementary for range details.

Adaptation Module: Since we don’t have the privileged en-
vironment information during deployment, we use RMA [48]
to train an adaptation module ¢ in simulation itself to esti-
mate the extrinsics z; from proprioceptive state, which is
available during deployment. Concretely, the adaptation
module uses the recent history of robot’s states x;_.;—1 and
actions a;_x.;—1 to generate Z; which is an estimate of the
true extrinsics vector z;. This is trained via supervised learn-
ing because we have access to both proprioceptive history
and the true extrinsics vector in simulation.

3. Safety Advisor Module

The safety advisor module captures the constraints which
enable the robot to walk safely. For this, we train two safety
advisors in simulation: (1) Collision Detector M, to detect
collisions and (2) Fall Predictor M} to predict future falls,
both from proprioception which includes the recent history
of states (ry—x.¢+—1) and actions (a;—.t—1) (analogous to
[48] ). During deployment, the safety advisor module uses
the prediction of these two advisors to inform the planner of
the safe operating constraints of the walking policy.

Collision Detector (M .): The collision detector estimates
the probability of whether the robot is currently in colli-
sion, using proprioception (M (xt—g:t—1,at—k:+—1)). If a
collision probability is above a threshold (0.5), the safety
advisor module adds a fixed size patch of obstacle (9cm x
3cm, about the head size of Al), where the side with 3cm
is in the current direction of robot, to the cost map in front
of the current position of the robot to indicate an obstacle
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which may be missed by the vision system (e.g. glass walls).

Fall Predictor (My): The fall predictor makes a prob-
ability prediction of whether the walking policy is
likely to fall within the next 1s using proprioception
(M¢(x4—k:t—1,at—k:t—1)). If a fall probability is above a
threshold (0.5), the safety advisor module decreases the ve-
locity limit (v;***) by 0.2 m/s, otherwise it increases the
velocity limit by 0.05 m/s. The planner uses v;"** to gener-
ate the linear velocity command for the walking policy. This
enables the planner to slow the robot down in dangerous
settings like soft or slippery terrains, heavy payload, etc.

Module Training: We train both the safety advisors My and
M. in a self-supervised fashion in simulation. We collect
data under randomly sampled environments and commands,
and record the binary labels on (1) robot is currently in
collision (2) if the policy results in a fall in the next 1s. We
then train the safety advisors by minimizing binary cross-
entropy loss. Details are in the supplementary.

4. Visual Planner

The visual planner uses the onboard cameras to generate
a top down 2D cost map and uses it to plan a path to the goal.
It additionally uses the safety constraints estimated by the
safety advisor to generate the command velocities which are
fed into the walking policy. Concretely, the visual planner
consists of (1) a mapping module which generates a top down
2D occupancy map from onboard cameras, (2) cost map
generation step using Fast Marching Method (FMM) and
signed distance field, (3) PID based planner to use the cost
map and safety constraints from the safety advisor module
to generate linear and angular velocity commands for the
walking policy.

4.1. Visual Occupancy Map

We first generate a top down 2D visual occupancy map by
incrementally accumulating point clouds from an onboard
Intel RealSense D435 depth camera [38] as the robot moves.
The point clouds are transformed into the world reference
frame using pose information from an onboard tracking cam-
era (Intel RealSense T265). The transformed point clouds
are capped by a maximum height of interest and then dy-
namically projected into a horizontal 2D frame to form an
occupancy map where each grid has a value from O to 1 to
indicate the probability of being free space. The occupancy
map is binarized for the path planning using a threshold of
0.5. We use an open-sourced implementation from Intel
RealSense to compute the visual occupancy map [68]. We
convert it to a configuration space by modeling the robot size
as a square and dilating the occupancy map.

4.2. Cost Map Generation

The 2D cost map is a sum of goal distance map (geodesic
distance to the goal) and obstacle distance map (to maintain
a safety margin from obstacles). Following the direction
of steepest descent from any starting point in this cost map
gives an obstacle free path to the goal.

Goal Distance Map: We use Fast Marching Method
(FMM) [72] to compute the geodesic distance to the point
goal, d8°?!(z, y) for every starting position (z,y).

Obstacle Distance Map: We first compute the signed dis-
tance (L1 norm) from the closest obstacle for every point
(d*¥(z,v)), and then compute the obstacle distance map as
max(0, oy — d*¥(z,y)), where a; is a distance threshold.
We only penalize the robot when it is within o to an obsta-
cle. This inverse signed distance field serves two purposes:
1) it penalizes the robot for being too close to obstacles; 2)
gives a smooth differentiable cost map even at at (otherwise
non-differentiable) object boundaries which enables smooth
continuous path planning.

Cost Map: The final cost map is
O(x,y) = (2, y) + az max(0, an — d*(z,y)) (1)

Here, v is a scaling factor to trade off the two costs. Dur-
ing deployment, the safety advisor module asynchronously
adds an additional local obstacle to the cost map if the colli-
sion detector (M, ) predicts a collision.

4.3. Velocity Command Generation

Given the robot’s current position (¢, y; ), heading (yaw)
6; and cost map C'(z, y), the optimal heading direction is the
direction of steepest descent in the cost map [72]. We can
compute this optimal heading direction or target orientation
of the robot 6;*"#°" as the normalized negative gradient of
the cost map —VC (x4, y).

Angular Velocity: We use a PD controller to compute the
command angular velocity (3) which is then clipped to the
feasible range (specified in supplementary):

wgmd —_ Kp . (ezargct . at) + Kd . (wzargct o Wt) (2)

Linear Velocity: We do a linear search in the cost map start-
ing from the robot current position (z;, y;) in the direction
of 6 to get a short-term target position («}, y;). The key in-
sight is that the robot should go in its current direction as far
as possible as long as the cost keeps decreasing (Figure 3).
The target linear velocity v°™ is %ao, where «y is obtained
from the optimization problem in Figure 3a. A larger 7" will
lead to a more conservative target linear velocity, whereas
a small 7" will be more aggressive. The command sent to
the robot is an exponentially smoothed average of the target
speed. We maintain a separate exponential moving average
for speed-up and slow-down.
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Figure 3. The optimal direction is along the direction of steepest
descent in the cost map —V C. The angular velocity is computed
by PD control on the error e between optimal direction and current
direction V. The magnitude of linear velocity is determined by
finding the furthest point oy along the current direction such that
the cost keeps decreasing. (r¢: robots current position, d¢: unit
vector in direction 6;, v;"“®: maximum linear walking speed from
the fall predictor My, and T': lookahead time)

5. Experimental Setup

Physical Hardware: We use the A1 robot from Unitree with
18-DoF (12 actuatable). Its proprioception sensors include
joint motor encoders, roll and pitch from the IMU sensor
and binarized foot contact indicators. We additionally mount
Intel RealSense depth D435 and tracking T265 cameras. The
deployed policy uses joint position control.

Locomotion Policy: For locomotion policy, we use similar
architecture and training details as [18,48], and list the exact
policy and training details in the supplementary.

Safety Advisor Module: Similar to the adaptation module,
both the collision detector and fall predictor module share
the same architecture and embed states and actions into a
32-dim vector using a linear layer. Then, we use 3 layers
of 1D convolutions with input channels, output channels
and strides [32, 32, 8, 4], [32, 32, 5, 1], [32, 32, 5, 1]. The flat-
tened features are then passed through a 2-layer MLP with 8
hidden units to get 1 sigmoid output as the predicted prob-
ability value. We train the module in an online fashion by
rollouts in environments with randomly sampled invisible ob-
stacles, frictions, terrain roughness and payload values (see
supplementary for ranges). At simulation test time, we run
both the collision detector and fall predictor at SHz, whereas
for deployment on robot we train a lightweight version using
only the last 0.2s of observation history and run it at 10Hz.
More details are in the supplementary.

FMM Planner and PID Controller: During cost map gen-
eration we choose oy = 0.3m, as = 0.5. For controlling
the angular velocity we set gains K, = 1, K5 = 0.02 with
w'areet get to 0. At run time, we clip the linear speed sup-
plied by the line search to the maximum command velocity
determined by the fall predictor. To facilitate in-place turn-
ing, if the linear speed is less than 0.2, we clip the angular
velocity to the range [0.4, 0.8]. The planner runs at 10Hz in
simulation and robot.
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Figure 4. An example of the top- down view room layout and the
corresponding generated simulation environment.

Simulation Environments: We generate top-down view
room layouts from room scanning meshes using habitat-
sim [70,77]. The meshes are from gibson environment [86]
and matterport3D [7]. We then select 200 challenging room
layouts for navigation as our validation set. For each room
layout, we sample 10 navigation goals and set the initial
point to be the farthest point from the goal. We then convert
the room layout to RaiSim simulation environment [32]. The
resolution is 0.1m per pixel. We show an example of the
top-down layouts and the generated environment in figure 4.

To demonstrate our navigation system on complex ter-
rains, we construct the following variations:

* Flat: flat surface with coefficient of friction y = 0.8.

* RoughTerrain: we put eight patches of z-scale 0.05 and
size 0.8mx0.8m along the path from initial to the goal
position. The rough terrain is constructed using the built-
in terrain generator by RaiSim [32].

* 2x/4x/8x Inv-Obstacle: we put 2/4/8 0.2m x0.2m obsta-
cles that cannot be detected by the vision sensor.

* Randomized: we put 8 rough and slippery patches along
the path from initial to goal position. The rough patches
are of z-scale 0.05. The coefficient of friction of slippery
patches are sampled from {0.1, 0.3, 0.5, 0.7, 0.9}. An
8kg payload (Al itself is 12kg) is placed on / removed
from top of the robot every 5s.

6. Experimental Results

We test our approach both in simulation and in the real world.

6.1. Simulation Experiments

In simulation we assume that the agent has access to the
ground-truth occupancy map, and we only vary the terrains
and the navigation strategy. The purpose of our simulation
experiments is to answer the following questions:

* How much does proprioception feedback help?

* Minimizing time to goal requires more aggressive walk-
ing and more energy. Can a varying gait policy compen-
sate for some of the energy consumed?

We additionally evaluate the following broader questions:
* Does legged locomotion improve goal reaching?
* Is continuous velocity conditioning better than discrete?

Baseline and Metrics: We use the LoCoBot [1] as our
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Figure 5. Collision Detector: The top row shows the deployed robot, the second row shows the state of the occupancy map and the bottom
two rows show the predictions of the collision detector and the gait plot of the robot. The robot collides with the glass wall which is missed
by the onboard cameras, after which, the collision detector detects this from proprioception and indicates a missed obstacle. The map is
updated locally to indicate this and the robot replans its path around it. The gait plot shows that the robot is stuck for a fraction of the second
before the collision detector senses the glass wall and updates the map. VP-Nav bypasses the glass wall with a 100% (8 out of 8) success

rate, whereas a vision only baseline fails to cross it even once.

wheeled robot baseline, as it is widely used in visual naviga-
tion [4,8,9,22]. We import the PyRobot URDF model [62].
Both VP-Nav and the LoCoBot use a control frequency of
100Hz and a planning frequency of 10Hz. We evaluate our
system using the following metrics: 1) Success Rate 2) Suc-
cess weighted by (normalized inverse) Path Length (SPL) [3]
3) Average time used to achieve the goal. If the agent fails to
reach the goal, we add a constant timeout penalty (220s) for
the failure episodes; 4) Average energy consumption over
the successful episodes [18].

Improvements with Proprioceptive Coupling: We sepa-
rately analyze the importance of the two safety advisors
(collision detector and fall predictor).

Collision Detector: ~ We uniformly place 2/4/8
0.2mx0.2m obstacles along the path from initial and goal
positions, and run VP-Nav with/without proprioceptive feed-
back. The obstacles are not marked in the top-down view
map to simulate the glass or other objects that an imperfect
vision sensor fails to capture. In Table 1, we note that adding
invisible obstacles makes the navigation task very challeng-
ing as evident from the performance drop of all the methods.
Using the proprioceptive collision detector module improves
the success rate by 5.7 points over the baseline method which
does not use it. The performance improvements are even
larger when the environment becomes more challenging with
up to 15 points improvement over baseline.

Fall Predictor: In Table 2, we show that learned fall pre-

dictor enables safe navigation in challenging environments
involving a combination of slippery surfaces, rough terrains,
and payload changes. We put eight 2.4mx2.4m patches
with uneven slippery surfaces along the path from initial
and the goal positions. An 8kg payload is placed / removed
to the robot every 5 second. Using the proprioceptive fall
prediction to adjust the speed of the robot gives 7 points
higher goal-reaching success rate over the baseline without
proprioception.
Compensating for higher energy consumption induced
by minimizing time to goal: Minimizing time to goal leads
to aggressive locomotion behaviours and increased energy
consumption. To compensate for some of the increase in en-
ergy consumption, we show that a policy with efficient gaits
[18] leads to a 10% lower energy consumption compared to
a fixed gait trotting-only policy (Table 3). VP-Nav also has
a slightly higher success rate because it switches to a more
stable gait at low speeds when traversing complex settings,
as compared to a fixed gait policy. VP-Nav automatically
switches gaits to optimize for stability and energy at different
speeds.

Legs vs. Wheels: We also compare VP-Nav with LoCoBot
on visual navigation in Table 4. On flat terrains, LoCoBot has
a slightly lower performance since LoCoBot is more prone
to getting stuck in the local minima of the FMM map (see



Navigation System | Terrain Type | Success T SPL 1T Time(s) |

(a) w/o Proprio Flat 95.20 0.79 80.28
2x Inv-Obstacle |  68.45 0.57 119.80
2x Inv-Obstacle |  74.15 0.61 111.93
4x Inv-Obstacle | 45.85 0.38 152.39
4x Inv-Obstacle |  59.20 0.49 134.70

®) w/o Proprio 8x Inv-Obstacle | 24.35 0.20 184.07

(g) | VP-Nav (Ours) | 8x Inv-Obstacle | 39.25 0.32 164.95
Table 1. Proprioceptive feedback helps navigation with invis-
ible obstacles. With proprioceptive feedback, the Success Rate
is improved by more than 5 points when two invisible obstacles
present. In more challenging environment, the performance im-
provement is increased to 15 points.

(b) w/o Proprio
(c) | VP-Nav (Ours)
(d) w/o Proprio
(e) | VP-Nav (Ours)

Navigation System | Terrain Type | Success T SPL 1T Time(s) |

(a) w/o Proprio Flat 95.20 0.79 80.28

(b) w/o Proprio Randomized | 80.25 0.66 105.68

(¢c) | VP-Nav (Ours) |Randomized | 87.40 0.73 117.65
Table 2. Proprioceptive feedback helps navigation with chal-
lenging terrains. Without proprioceptive feedback, the success
rate is decreased by 7 points in the presence of a combination of
slippery, rough surfaces, and abrupt payload changes, which cannot
be inferred from a vision-only system. But with proprioception,
the planner can readily “feel” the terrain property and the payload
changes and plan with a safer velocity.

supplementary for details). Whereas adding rough terrain
(S5cm elevation) to the environment leads to a significant
drop in goal-reaching performance of the LoCoBot. We
additionally try the planning scheme which plans around
rough terrains while assuming ground truth access to their
locations. Although the success rate improves, the time cost
is still significantly worse than our legged robot baseline,
which is able to maintain similar success rate and time to
goal because of its robust walking capabilities. In short,
though energy efficient, wheeled robots struggle on uneven
terrains, whereas legged robots are more terrain-agnostic.

Continuous Velocity Conditioning vs. Discrete: We com-
pare our continuous planner to a discrete planner typically
used in visual navigation [22,49, 58, 69]. Our discrete plan-
ner only commands four actions: 1) forward with 0.6 m/s; 2)
turn left with 0.8 rad/s; 3) turn right with 0.8 rad/s; 4) stop,
whereas planning over the continuous range of linear and
angular velocities enables smoother trajectory and shorter
time to goal. In Table 5, we see that our system VP-Nav is
27% more time efficient than a discrete planner as the robot
can simultaneously turn and go forward.

6.2. Real-World Experiments

Invisible Obstacles: We tested the collision detector with
invisible obstacles like glass doors, humans that abruptly
walk into the robot’s path, walls and boxes without textures
(Fig 5, 6). We find that feedback from the safety module
gives higher success rate in all these settings. The glass

‘ Navigation System ‘ Terrain Type ‘ Success T SPL 1 Energy(K) |
(a) Trot Only Flat 93.80 0.77 252.56

(b) | VP-Nav (Ours) Flat 95.20 0.79 233.05

Table 3. Energy efficiency. Our policy with varying gaits con-
sumes less energy compared with the single-gait policy.

‘ Navigation System ‘ Terrain Type ‘ Success T SPL T Time(s) |

(a) | LoCoBot-Proceed Flat 90.65 0.81 102.98

(b) | VP-Nav (Ours) Flat 95.20 0.79 80.28

(c) | LoCoBot-Proceed | RoughTerrain 15.70 0.14 215.28

(d) | LoCoBot-Avoid | RoughTerrain| 69.10 0.60 146.85

(e) | VP-Nav (Ours) | RoughTerrain | 95.05 0.79 80.87
Table 4. The importance of legs for goal-reaching. LoCoBot
cannot easily pass rough terrains even when its height is only Scm.
The success rate drops to only 15.7 (LoCoBot-Proceed). Even
when the LoCoBot has access to location of rough terrain patches
and can plan to avoid it (LoCoBot-Avoid), the success rate is still
significantly lower than ours with a higher time cost.

Navigation System ‘ Terrain Type ‘ Success T SPL 1 Time(s) |

(a) LoCoBot-Dis Flat 86.45 0.77 178.27
(b) LoCoBot-Cts Flat 90.65 0.81 102.98
(c) VP-Nav-Dis Flat 95.35 0.80 110.27
(d) | VP-Nav-Cts (Ours) Flat 95.20 0.79 80.87

Table 5. Comparison between discrete planner (-Dis) and con-
tinuous planner (-Cts). Using the continuous planner makes the
navigation system spend less time to reach the goal.

wall, which is invisible to the onboard cameras is detected
by the proprioceptive feedback once the robot collides with
the door. The missed obstacle is then updated in the map
at the place of the collision and the robot replans its path
around it. Humans abruptly rushing into the robot’s path
are similarly missed by the camera, and then later block the
robot’s cameras to be detected by them (depth camera’s near
distance is around 30cm). Such obstacles that suddenly ap-
pear from outside into the field-of-view render the trajectory
prediction approaches useless [29]. With proprioceptive col-
lision detector, our robot can reason about these “invisible”
objects and update its occupancy map to plan a new path.

Rough Slippery Terrains: We tested the fall detector with
challenging terrains including movable planks scattered on
the floor and slippery terrain, shown in Figure 6 and in the
supplementary. On rough slippery terrain, the fall predic-
tor uses proprioception to estimate the risk of falling and
accordingly decreases the velocity to ensure safety.

Other Complex Indoor Navigation: We deploy VP-Nav
in challenging settings and compare to baselines which use
pure vision without fall prediction and collision detection
from proprioceptive feedback, and evaluate for 5 trials in
all settings (Figure 6). We find that using vision and pro-
prioception for coupled navigation and locomotion gives a
higher success rate in all these settings. In the left of Fig-
ure 6, we have 2 indoor tasks which require taking a detour
with planks scattered on the floor and maneuvers through
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Figure 6. Real-World Experiments: We compare VP-Nav with a pure vision approach (without proprioceptive feedback from safety advisor)
and evaluate for 5 trials in several challenging settings. VP-Nav gives a higher success rate in all these settings. On the left, we have 2
indoor tasks with planks scattered on the floor and cluttered narrow paths. In both settings, texture-less walls, transparent panels, large
brown packaging boxes can be missed by vision. With proprioceptive feedback from safety advisor, we update the occupancy map and
replan, despite hitting same number of obstacles. On the right, we tested with a fast human obstruction. With proprioceptive feedback from
safety advisor, the robot recovers within a second. Additionally, on challenging terrains as shown on the bottom right, a likely fall detected
by the predictor can be used to decrease the safe velocity limit, and improve the stability and success rate.

a cluttered narrow path. In both settings, there are objects
that can easily be missed by the vision system, including
white walls with no texture, transparent desktop side panels
and large brown packaging boxes in dim light. With the
proprioceptive safety advisor, our robot can reason about
these “invisible” objects and update its occupancy map to
replan for a new viable path, despite hitting the same number
of obstacles. The robot also slows down on unstable planks
that are scattered on the ground.

7. Related Work

Visual Navigation: Visual navigation is mainly studied on
wheeled robots by chaining mapping, localizing, and plan-
ning. Once a 2D map is created, an optimal path to a goal
can be found using graph search techniques [25,46,50,76],
level-set methods [44] or potential field methods [40,41]
among others. The map is constructed via simultaneous lo-
calization and mapping using classical [19,61,79] or learned
methods [4,8,12,15,22,39,57,64,84,96,97,99] assuming
access to nearly perfect low-level control. In our bench-
mark, we import maps from the common navigation datasets
include Habitat [70], Gibson [86] and Matterport3D [7].

Navigation of Legged Robots: Earlier works decouple lo-
comotion and navigation which restricts the application only
to simple terrains [85]. This decoupled framework has been
extended to include learned modules for cluttered environ-
ment navigation [29,52,81]. [11] describe a coupled nav-
igation and locomotion framework by estimating foothold
placements from an elevation map. Foothold scores can

be estimated heuristically [13,17,35,43,56,83] or learned
[37,47,54,55,82]. Other methods forgo explicit foothold op-
timization and learn traversibility maps [10,23, 88]. Several

works complement vision-based state estimation by using

contact information [26-28,51]. Instead of relying only on
vision, we combine navigation and locomotion via coupling
vision and proprioception.

Legged Locomotion: This has conventionally been accom-
plished using control theory [2,5,6,21,30,33,34,36,42,59,

,75,91] over handcrafted dynamics models. Recently, RL
has been successfully used to learn such policies in simu-
lation [20,53,60,71] and in the real world with sim2real
methods [24,31,63,65,78,78,80,87]. Alternatively, a policy
learned in simulation can be adapted at test-time to work
well in real environments [ 14, 18,48,66,73,74,89,92-95,98].

8. Conclusion and Limitations

The use of a legged robot instead of a wheeled one broad-
ens the applicability of visual navigation to complex terrains
and environments. In this paper, we combine low-level
locomotion with high-level navigation planning to enable
goal-reaching for a legged quadruped robot. Our approach,
VP-Nav, tightly couples vision and proprioception to exploit
their complementary strengths for robust navigation in the
presence of disturbances, transparent obstacles and complex
terrains which may not be detected by vision alone. VP-Nav
is lightweight and only uses the modest onboard computa-
tion and storage of the low-cost A1l quadruped robot. One
limitation of our system is that low-level locomotion module
communicates with navigation planner via safety module,
and is not conditioned on the vision directly. Due to this, the
robot can walk around obstacles but can not climb or jump
over them. We leave vision-guided locomotion for future.
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A. Locomotion Policy Details

Base Policy & Env-Factor Encoder Architecture: We fol-
low the implementation of [48]. The base walking policy is
a multi-layer perceptron (MLP) with 3 hidden layers. The in-
put is the current state x; € R3O, previous action a;_1 € R12
and the extrinsics vector z; € R® and the output is 12-dim
target joint angles. The dimension of hidden layers is 128.
The extrinsics vector z; is estimated by an environment fac-
tor encoder. The environment factor encoder is a 3-layer
MLP (256, 128 hidden layer sizes) and encodes e; € R17
into z; € R8.

Adaptation Module Architecture: The adaptation module
first embeds states and actions into 32-dim vector using a
2-layer MLP. Then, a 3-layer 1-D CNN convolves the rep-
resentations across the time dimension to capture temporal
correlations in the input. The input channel number, output
channel number, kernel size, and stride of each layer are
[32,32,8,4],[32,32,5,1],[32,32,5, 1]. The flattened CNN
output is linearly projected to estimate z;.

Learning the Walking Policy: We jointly train the base
policy and the environment encoder network using PPO [71]
for 15, 000 iterations (1.2B sample, 24 hours) each of which
uses batch size of 80, 000 split into 4 mini-batches. We then
train the adaptation module using supervised learning with
on-policy data. We run the optimization process for 1000
iterations (80M samples, 3 hours) and use Adam optimizer
[45] to minimize MSE loss. The batch size is 80, 000 split
up into 4 mini-batches.

Reward Function: The reward at time r, is defined as the
sum of the following quantities:

* Velocity Matching: —|v, — v<09| — |wyaw

* Energy Consumption: —77'¢

* Lateral Movement: —|v,|?

* Hip Joints: —||qnip ||?
The corresponding scalings are 20, 0.075, 1 and 0.2. The
survival bonus is set by a simple rule as 10 + 20(vS™d +
wemd),

We list the ranges of command linear velocity and angu-
lar velocity in Supplementary Table 6. We re-sample the
command velocities within a single episode with probability

0.004.

cmd
— Wyaw

B. Safety Advisor Details

Hyperparameters: Velocity changes in Fall Predictor and
the size of obstacles in Collision Detector are set by simple
rules. For instance, (a) if a fall is predicted, the safety advi-
sor module decreases the velocity limit by a large amount
(we pick 0.2 m/s), so the robot can slow down quickly; (b)
otherwise, it increases the velocity limit by a small amount
(we pick 0.05 m/s) for conservative speed up; (c) the size of
obstacles in Collision Detector (9cm x 3cm) is set to roughly
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Command Linear Velocity = Command Angular Velocity

Task Range (m/s) Range (rad /s)
Curve Following [0.15, 1.0] [-0.4,0.4]
In-Place Turning [0, 0.15] [-0.6, 0.6]

Table 6. Command velocity range for curve following and in-place
turning.

be the size of the head of the robot. Additional real-world
experiments [link] show that if the obstacle is set to be larger,
the robot will take a more conservative path around the un-
expected obstacle. If the obstacle is set to be smaller, the
robot takes a shorter path but risks colliding legs with the
unexpected obstacle.

Network Structure: Similar to the adaptation module, both
the collision detector and fall predictor module share the
same architecture and embed states and actions into a 32-
dim vector using a linear layer. Then, we use 3 layers of
1D convolutions with input channels, output channels and
strides [32, 32, 8, 4], [32, 32, 5, 1], [32, 32, 5, 1]. The output
is a sigmoid scalar.

Training Data and Environments: The scalar sigmoid out-
put predicts a probability value, indicating whether the robot
collides with an obstacle in the Obstacle Detector, or if the
robot falls at time ¢ + 100 and 0 otherwise (note that one
simulation time-step is 0.01s) in the Fall Predictor. We
train both modules in an self-supervised fashion by collect-
ing data from robot walking / colliding with the obstacles
/ falling down. Data are collected given random command
linear/angular velocity commands in environments with ran-
domly sampled frictions, terrain roughness and payload val-
ues from the following list:

* Coefficient of Friction: [0.1,0.6,1.1, 1.6, 2.1].

* Payload: [1.2,2.4,3.6,4.8,6.0] (kg).

* Rough Terrain z-scale: [0.01,0.08,0.14,0.23] (m).

* Linear Velocity: [0, 0.5, 1.0] (m/s).

* Angular Velocity: [—0.4, 0.0, 0.4] (rad/s).
We train both Obstacle Detector and Fall Predictor for 145k
iterations with a batch size of 1000. At simulation test time,
we run both the collision detector and fall predictor at SHz
whereas for deployment on robot we train a lightweight ver-
sion using only the last 20 timesteps of observation history
and run it at 10Hz.

C. Visual Planner Details

We command the angular velocity for our robot and the
baseline LoCoBot using the following equation:

cmd __
Wy

Kp . (ozargct o 0]‘) + Kd . (w:argct o

3)

where K, = 1, Kg = 0.02, w"*8°" is set to 0. The command
angular velocity is clipped to the range in Supplementary
Table 6 before being sent to the locomotion policy in order
to be consistent with the training setting. We also observe

wt)
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Figure 7. An example of local minima produced by the map. The
gray square represents the non-traversible areas. The white square
represents the traversible regions. The number in each square
represents the cost on that point. At the current position, the robot
will orientes to the bottom left which the linear velocity commands
will command 0 velocity, in which case the robot got stuck in the
local minima.

that when the linear speed is low (less than 0.1m/s), the
locomotion policy is unable to make in-place turns with a
small commanded angular velocity, due to the imperfection
of our locomotion policy. Thus in this case we clip the ab-
solute value of the commanded angular velocity to be at
least 0.4 to compensate this imperfection. We empirically
observe a higher performance even when the command is
sub-optimal, mainly because our planning algorithm oper-
ates in a relatively high frequency and can soon correct the
angular velocity command as soon as the linear velocity
becomes large enough.

D. LoCoBot Baseline &
Discrete Planner Details

We import the PyRobot URDF model [62]. Both our
method and the LoCoBot use a control frequency of 100Hz
and a planning frequency of 10Hz. We follow [ 6] to convert
commanded linear and angular velocity to the angular speed
of the left and right wheel of the LoCoBot. We set the
forward action of the discrete planner at 0.6 m/s after we
measured the average speed of the continuous planner in the
same evaluation environment is around 0.6 m/s. The low
level controller is also a PD controller with K, = 10, K4 =
0.05. The controller gain is adjusted so that no obvious
motion jerk happens during movement. Since the control of
wheeled robot is simpler and more accurate, we do observe
the LoCoBot being more likely to stuck in local minima
in the cost map (an illustration is shown in Supplementary
Figure 7). For our robot, since the locomotion policy is not
perfect and the legged robot is harder to control compared
with LoCoBot, it sometimes can get out of the local minima
due to the noisy movement, which is the reason why we
perform better in the perfect flat ground (Table 4 (a) and (b)
in the main text). However, we want to emphasize again
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that our point here is not to show our robot performs slightly
better than baseline in the flat ground. Instead, what we show
is the ability to traverse and navigate over difficult terrains
where LoCoBot easily fail (Table 4 (c), (d), and (e) in the
main text).



