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Abstract

Emotion Recognition in Conversations (ERC) is crucial
in developing sympathetic human-machine interaction. In
conversational videos, emotion can be present in multi-
ple modalities, i.e., audio, video, and transcript. How-
ever, due to the inherent characteristics of these modalities,
multi-modal ERC has always been considered a challeng-
ing undertaking. Existing ERC research focuses mainly on
using text information in a discussion, ignoring the other
two modalities. We anticipate that emotion recognition ac-
curacy can be improved by employing a multi-modal ap-
proach. Thus, in this study, we propose a Multi-modal
Fusion Network (M2FNet) that extracts emotion-relevant
features from visual, audio, and text modality. It employs
a multi-head attention-based fusion mechanism to com-
bine emotion-rich latent representations of the input data.
We introduce a new feature extractor to extract latent fea-
tures from the audio and visual modality. The proposed
feature extractor is trained with a novel adaptive margin-
based triplet loss function to learn emotion-relevant fea-
tures from the audio and visual data. In the domain of
ERC, the existing methods perform well on one bench-
mark dataset but not on others. Our results show that the
proposed M2FNet architecture outperforms all other meth-
ods in terms of weighted average F1 score on well-known
MELD and IEMOCAP datasets and sets a new state-of-the-
art performance in ERC.

1. Introduction

Emotions are the unseen mental states that are linked to
thoughts and feelings [23]. In the absence of physiological
indications, they could only be detected by human actions
such as textual utterances, visual gestures, and acoustic sig-
nals. Emotion Recognition in Conversations (ERC) seeks to
recognize the human emotions in conversations depending
on their textual, visual, and acoustic cues. Recently, ERC
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Figure 1. Multi-modal data as input

has become an essential task in multimedia content anal-
ysis and moderation. It is a prominent trait to understand
the nature of the interaction between users and the content.
It has applications in various tasks, namely, Al interviews,
personalized dialog systems, sentiment analysis, and under-
standing the user’s perception of the content from the plat-
forms like YouTube, Facebook, and Twitter [23].

In literature, we can see that many state-of-the-art meth-
ods adopt text-based processing to perform robust ERC
[6, 11], such methods do not take into consideration the
vast amount of information present in the acoustic and vi-
sual modalities. Since the ERC data mainly consists of all
three modalities, i.e., text, visual, and acoustic, we hypoth-
esize that the robust fusion of these modalities can improve
the performance and robustness of the existing systems. A
sample of emotional expressions in three different modal-
ities is presented in Figure 1 where the ERC system takes
each modality as input and predicts the associated emotion.

In this paper, we propose a multi-modal fusion network
(M2FNet) that takes advantage of the multi-modal nature of
real-world media content by introducing a novel multi-head
fusion attention layer. This layer combines features from
different modalities to generate rich emotion-relevant rep-
resentations by mapping the information from acoustic and
visual features to the latent space of the textual features. In
addition, we propose a new feature extractor model to ex-
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Figure 2. Quantitative analysis on MELD and IEMOCAP datasets
in terms of weighted average F1 score.

tract the deeper features from the audio and visual contents.
Here, we introduce a new adaptive margin-based triplet loss
function, which helps the proposed extractor to learn rep-
resentations more effectively. Additionally, we propose a
dual network inspired from [13] to combine the emotional
content from the scene by taking into account the multiple
people present in it. Furthermore, from the literature, we
can see that state-of-the-art ERC methods perform well on
one benchmark dataset, for example, IEMOCAP [2] while
their performance degrades on more complex datasets like
MELD [22]. This motivates us to propose a robust multi-
modal ERC system.

In order to verify the robustness of the proposed network,
one experiment is carried out to compare its performance
with existing text-based and multi-modal ERC methods.
This comparison is visualized in Figure 2 where results are
given in terms of weighted average F1 score on MELD [2]
and IEMOCAP [22] datasets. Here, it can be observed that
the proposed M2FNet model obtains a higher weighted av-
erage F1 score than other models. Followings are our major
contributions:

* A novel multi-modal fusion network called M2FNet is
proposed for emotion recognition in conversation.

¢ A multi-head attention-based fusion layer is intro-
duced, which aids the proposed system to combine la-
tent representations of the different inputs.

* To extract deeper relevant features from audio and vi-
sual modality utterances, we introduce a new feature
extractor model.

¢ In the feature extractor model, we propose a new adap-
tive margin-based triplet loss function that helps the
proposed model to learn emotion-relevant features.

* To take advantage of the scene’s emotional content, we
also present a weighted face model that considers mul-
tiple people present in the scene.

2. Related Works

Emotion recognition in conversations (ERC) is different
from traditional emotion recognition. Rather than treating
emotions as static states, ERC involves emotional dynam-
ics of a conversation, in which the context plays a vital role.
Prior works on ERC mainly which use text, and audio fea-
tures are proposed in [4, 12]. In the past few years, datasets
with visual, acoustic and textual cues have been made pub-
licly available [2,22]. On these datasets, several deep learn-
ing methods are applied to recognize emotion. These tech-
niques can be classified based on the type of data; either
they merely utilize text or use multi-modal data (i.e. text,
visual and audio).

2.1. Text-based methods

With the advent of the Transformer [32], the focus on
text-based methods has recently increased. Due to the vast
amount of information present in text data, current meth-
ods approach ERC as a purely text-based problem. Li et
al. [16] use BERT [5] to encode the individual sentences
and then uses a dialog level network for multitask learning
on auxiliary tasks to generate better latent representations of
the dialog as a whole. Furthermore, Li ef al. [14] build on
this by incorporating transformer at the dialog end. Jiang-
nan et al. [15] took this one step further by using the con-
textual representations from a BERT and transformer dia-
log network by designing three types of masks and utilizing
them in three independent transformer blocks. The three de-
signed masks learn the conventional context, Intra-Speaker,
and Inter-Speaker dependency.

In [6], Ghosal et al. incorporates different elements of
commonsense such as mental states, events, and causal re-
lations to learn interactions between interlocutors partici-
pating in a conversation. Authors in [7] and [28] use Graph
Neural networks to encode inter utterance and inter speaker
relationships. Kim et al. [11] model contextual informa-
tion by simply prepending speaker names to utterances and
inserting separation tokens between the utterances in a di-
alogue. To generate contextualized utterance representa-
tions, Wang et al. [33] uses LSTM-based encoders to cap-
ture self and inter-speaker dependency of interlocutors. A
directed acyclic graph (DAG) based ERC was introduced
by Shen et al. in [27] which is an attempt to combine the
strengths of conventional graph-based and recurrence-based
neural networks. In [38], Zhu et al. propose a new model in
which the transformer model fuses the topical and common-
sense information to predict the emotion label. Recently,
Song et al. [29] proposed the EmotionFlow model, which
encodes the user’s utterances via concatenating the context
with an auxiliary question, and then, a random field is ap-
plied to capture the sequential information at the emotion
level.



2.2. Multi-modal Methods

Prior literature on using previous utterances to provide
context with respect to the utterance in hand has set the
benchmark for dyadic conversations. In [8,21], authors use
previous utterances of both parties in a dyadic conversation
and the contextual information from the same to predict
the emotional state of any given utterance. Majumder et
al. [18] build on this by separately modeling the uni-modal
contextual information and then using a hierarchical
tri-modal feature level fusion for obtaining a rich feature
representation of the utterance. DialogueRNN [19] tracks
the contextual information of each speaker and the global
state as separate entities. It uses the global and speaker’s
emotional context to produce accurate predictions. Zhang
et al. [36] introduced a model called ConGCN, which
uses Graph Convolution networks on both audio and
Text utterance features to model Speaker-Utterance and
Utterance-Utterance relationships concurrently in a single
network. Mao et al. [20] investigate the differentiated
multi-modal emotional behaviors from the intra- and inter-
modal perspectives. On a similar dataset, the CMU-Mosei
methods like Loshchilov et al [3] and Tsai et al [31] use
multi-head attention based fusion [32] for multi-modal
emotion recognition.

In most of the previous work, methods do not consider
distinct facial features that play a significant role in deter-
mining the emotional context of the conversation. They use
the frames as a whole entity but do not extract the essential
part of the frame (i.e., face). Additionally, most of these
methods do not have an active fusion strategy other than
simple concatenation to take advantage of the wealth of the
information present in the form of visual and acoustic data.

3. Proposed Framework

This section first introduces the problem statement and
then provide details of the architecture design of the pro-
posed framework briefly.

3.1. Problem Statement

A dialog consists of £ number of utterances (U) along
with their respective labels (V) arranged together with re-
spect to time where each utterance is accompanied by it’s
respective video clip, speech segment and text transcript.
Mathematically, a dialog for £ number of utterances can be
formulated as follows:

{U.Y} = {{o" =<aj a2, >y i € [LA}, (1)
Here, 2% denotes the i*" utterance made up of correspond-

ing x; (text), x, (audio) and x,, (visual) component, while
y; indicates respective i utterance’s emotion label. The
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Figure 3. Network design of the proposed framework.

proposed network takes this data as input and assigns the
right emotion to any given utterance.

3.2. Multi-modal Fusion Network: M2FNet

We propose a hierarchical framework called Multi-
modal Fusion network (i.e., M2FNet) which is illustrated
in Figure 3. The network is designed based on two levels of
feature extraction:

¢ Utterance level feature extraction
* Dialog level feature extraction

Initially, the features are extracted by the utterance level
module independently. Then, at the dialog level extraction
network, the model learns to predict the right emotion for
each utterance by using the contextual information from the
dialog as a whole. In the subsequent subsections, we briefly
discuss the design steps occurring in both utterance and di-
alog level feature extraction.

3.2.1 Utterance level feature extraction

From Figure 3, one can see that there are k¥ number of ut-
terances and each utterance is made up of x; (text), x,
(audio) and x, (visual) content. In this step, the features
from each modality are extracted for each utterance sepa-
rately before passing to the dialog level feature extraction
network. Each modality’s input signals are passed through



their corresponding feature extractors for generating their
embeddings.

Text: In order to provide deeper inter utterance con-
text, the text modality data (i.e., z;) are passed through
the Text Feature Extractor module. Here, we employ a
modified RoBERTa model (¢r;—roERTA) Proposed by
Kim et al. [11] as feature extractor. Every utterance’s x
is accompanied by its preceding and next utterance text
separated by the separator token < S >. The modi-
fied RoOBERTa model is fine-tuned on this transcript and
the respective utterance’s labels. The last layer activations
{Fir : Fir,For.....Fyr} obtained from the modified
RoBERTa model by passing the utterance’s text data can be
represented by:

Fir = ¢rm—roprrTa(Th) | i € [1, K], VFr € RFPT,
2
Here, F!;. denotes i'" utterance’s embeddings and D de-
notes the size of the embeddings of text utterance.

Audio: On the audio end, we introduce a new feature ex-
tractor model. The network design of the proposed feature
extractor module is discussed briefly in Subsection 3.3. Ini-
tially, the audio contents are transformed into 2D Mel Spec-
trogram in RGB format and then passed through the feature
extractor model. Here, the audio signal is first processed
via different augmentation techniques like time warping and
Additive White Gaussian Noise (AWGN) noise. Then the
augmented signals are transformed into the corresponding
Mel Spectrograms [24]. For computing the Mel Spectro-
gram, the Short Time Fourier transform (STFT) is used with
the frame length of 400 samples (25 ms) and hop length of
160 samples (10ms). We also use 128 Mel filter banks to
generate the Mel Spectrogram [30].

The proposed extractor takes the Mel Spectrograms (i.e.,
x,) as input and generate the corresponding feature embed-
dings {Fra : F1,4,F5 4......F};_a}. The functionality of the
proposed audio feature extractor module can be mathemat-
ically expressed as,

Fiy=odarp(a) |i € 1K), VFia eR*PA - (3)

where, F?, is the i'" utterance’s embeddings and D 4 in-
dicates the size of embeddings of audio utterance and the
¢ arE denotes the function of introduced audio feature ex-
tractor module.

Visual: In order to extract rich emotion-relevant features
from the visual signal, we propose a dual network inspired
from [13] that exploit not only human facial expression but
also context information in a joint and boosting manner. For
both tasks, we use our proposed extractor model (as dis-
cussed in Subsection 3.3) and train on the CASIA webface
database [35] to extract the deeper features from the visual
image. Following are the details of steps involved in the
dual network:

* To encode the context information of the scene as a
whole our trained feature extractor model is performed
on 15 successive frames of the utterance clip. Follow-
ing which the features are max pooled over the frame
axis to obtain the scene embeddings of the utterance.

e To extract facial emotion-related features from the
same 15 successive frames of the utterance clip, we
propose a weighted Face Model (i.e., as visualized in
Figure 3) which works as follows:

— Given a frame, it is passed through a Multi-task
Cascaded Convolutional Network (MTCNN)
[37] to detect the faces present in the frame.
This returns the bounding box of each face along
with its confidence. Then each of the respec-
tive faces is passed through our trained feature
extractor model to obtain emotion-relevant fea-
tures of each respective face. Now, the areas of
each bounding box accompanying the faces are
normalized to bring their values between 0 and
1. Following this, a weighted sum is performed
using the features of each face and their respec-
tive normalized areas to obtain the facial emotion
feature of a frame.

— The same process is followed for each of the 15
frames, and similarly, upon extraction, the fea-
tures are max-pooled over the frame axis to ob-
tain the facial features of the utterance.

Upon extraction of features from each network, the scene
embeddings are concatenated with the facial features to ob-
tain a more comprehensive representation of the visual data
in an utterance. Finally, this visual feature extractor’s output
{Frv : F1 v, Fsy.....Fy v} can be formulated as:

Fiy = owr(al) i € [LK], VEy € RFPY (@)

where, F} , is the i'" utterance’s embeddings and ¢y 5 de-
notes the function operation of weighted face model while
Dy is the size of the feature embedding of the visual ut-
terance. Finally, these embeddings (i.e., text, acoustic and
visual) are then sent to the dialog level feature extractor as
an input to learn the correct prediction of emotions for each
utterance.

3.2.2 Dialog level feature extraction

The design diagram at dialog level feature extraction of the
proposed M2FNet model is illustrated in Figure 3. Each
modality embeddings (i.e., Frr, Fra and Fjy ) are passed
through their corresponding network with a variable stack
of transformer encoders [32] to learn the inter utterance
context. The number of transformer encoders for text, au-
dio, and visual modality is denoted by N, N4, and Ny,



respectively. We also employ a local skip connection be-
tween each encoder to prevent the model from ignoring the
lower-level features. The corresponding feature maps ob-
tained from the encoders can be mathematically expressed
as:

FYZ“ = TTNT("'(TTNz (Ter (FIZT))))v
F;& = TTNA("'(TTNz (Ter (FILA))))7
FXZ/ = TTNV("'(TTN2 (Ter (F}V))))>

where, i € [1, k.

&)

Here, T'r is the operation function of the transformer en-
coder.

The corresponding feature maps associated with the text,
visual and audio (i.e., Fpr, Fy, F4) are passed to a novel
Multi-Head Attention Fusion module that helps the network
in incorporating visual and acoustic information. The net-
work architecture of the attention fusion module is also de-
picted in Figure 3. Here, the text features Frr are used as
input to fusion module as Query (Q) and Value (V) for
the multi-head attention operation, and then the visual Fy
and acoustic F4 features for the dialog are used as Key
(K) in order to modulate the attention given to each utter-
ance at any time-step. Hence, each individual modality is
now mapped to the text vector space, and the respective fea-
tures are concatenated and passed to a fully connected layer
which outputs a vector € R*P7_ The output of the fusion
layer is passed through the next fusion layer along with the
previous F4 and Fy feature maps. Here, the m number of
multi-head attention fusion layers stacked together in order
to generate the final feature outcome (F'tysion) as demon-
strated below:

F}usianl = (bl(FivF’liﬁF\i/)?
= ‘I)m("'(q)Q(F}b F;usionlvF\l/)))a (6)
where, i € [1,k].

I
Ffusionm

In the above equation, ® indicates the learning function of
the proposed Multi-Head Attention Fusion layer. The main
difference in our Fusion strategy compared to the previous
work using Multi-Head Attention is that our strategy in-
volves changing the key across modalities while keeping the
Query and Value the same to better modulate inter utterance
attention and incorporate inter-modal information.

The feature outcome of the last multi-head attention fu-
sion layer (i.e., F'ysion,,) iS concatenate with visual and
acoustic feature maps (i.e., Fy and F'4) as expressed be-
low:

F}inal = Concate(F}usionm ’ Fiﬁ’ F‘Z/) (7)

Finally, we append two fully connected layers (FC)
which generates the desired predicted output (i.e., Ypi =<
Y5, Yy, -y, >, where, i € [1, k]) of our proposed system.

y;) = FC(FC(F}znal)) (8)
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Figure 4. Network design of the proposed Extractor network.

3.3. Feature Extractor Module

In order to fetch deep features from audio and visual
contents, we propose a new feature extractor model and
the same is illustrated in Figures 4. The proposed extrac-
tor is designed based on triplet network to leverage the im-
portance of triplet loss function [25]. Initially, the anchor,
positive and negative samples have been generated as sug-
gested in [25] for audio and visual modalities. Then these
samples are passed through encoder network followed by
projector module. Here, we use standard ResNet18 [9] as a
backbone of the encoder network while the projector con-
sists a linear fully connected layer which project the em-
bedding of encoder network to desired representations (i.e.,
Z = [z1,...2n] € RY*4) composed of N representations
with dimension d.

The proposed extractor model is trained using weighted
combination of three loss function i.e., adaptive margin
triplet loss (i.e., L apr7), covariance loss (i.e., Looy) and
variance loss (i.e., Ly 4,-) functions. It can be expressed as
follow:

Lrg =X -Layr+ A2 Looy + A3 - Lvar, )

where, A1, A2 and A3 are weighting factors that controls the
distribution of different loss functions.

In [25], authors design the triplet loss function used to
learn good representations of faces based on anchor, posi-
tive and negative samples. Here, authors have used a fixed
margin value in their triplet loss function that helps to sep-
arate out the representations of positive and negative sam-
ples. However, in some cases where the positive or negative
samples have the same distance with the anchor or the pos-
itive sample is only a bit closer to the anchor than the nega-
tive sample, the loss would be zero, and there would be no
correction even though it should still be pulling the positive
sample closer and pushing the negative sample away from
the anchor. To overcome this issue, we propose a triplet
loss function based on a adaptive margin value. This can be
mathematically written as

D&n 4 ppn

Layr = D3P — 5

+man.  (10)



Here, D3P, D&™ and D?™ denotes the euclidean distance
based similarity metric between representations of anchor
and positive, anchor and negative, positive and negative
samples, respectively. m 4, is the adaptive margin which
is calculated based on similarity and dissimilarity measures
as

stm dissim
MAM = MpAp + MYgas

2
mil; =1+ 5w an
mdissim =14+ 2
AM 6_4.ng"+4

In addition, we also utilize the variance loss function pro-
posed by Bardes et al. [1] which helps the proposed model
to tackle the mode collapse issue. Mathematically, the vari-
ance loss function can be presented as,

(12)

Here, Var(Z) (ie., xi7 S (Z" — Z)?) denotes the
variance obtained from the corresponding representations,
while Z is mean of the corresponding representation.

To decorrelate the different dimensions of the represen-
tations, we adopt the covariance loss function [1] and the the
same can be expressed mathematically for representation as

Loow = Z LC()’U(Zk);

ZCO’U Z)F )ijs

#J

Zk: = Zaa Zpa Zn
(13)
LCO’U Zk

where, Cov(Z) = x5 SN (21— Z)(Z' — Z)7 indicates
the covariance matrix of corresponding representation.

4. Experimental Analysis and Discussion
4.1. Dataset

For fair comparison with state-of-the-art methods, we
evaluate our proposed network (M2FNet) on Interactive
Emotional Dyadic Motion Capture (IEMOCAP) [2], and
Multimodal EmotionLines Dataset (MELD) [22] bench-
mark datasets. The statistics of these datasets are reported
in Table 1 and details are provided in Section 1 of the sup-
plementary material. Both IEMOCAP and MELD are mul-
timodal datasets with textual, visual, and acoustic data.

MELD: The MELD [22] is a multimodal and multi-
party dataset containing more than 1,400 conversations and

Table 1. Statistics of the testing benchmark datasets: MELD and
IEMOCAP

Statistics MELD IEMOCAP
Splitting ~ # Dialog  # Utterance # Dialog # Utterance
Train 1098 9989 100 4778
Dev 114 1109 20 980
Test 280 2610 31 1622
No. of

Classes 7 6

13,000 utterances from the Friends TV series. The utter-
ances are annotated with one of the seven emotion labels
(anger, disgust, sadness, joy, surprise, fear, and neutral).
We use the pre-defined train/val split provided in the MELD
dataset. The details of this dataset are given in Table 1.

IEMOCAP: The IEMOCAP database [2] is an acted,
multimodal and multi-speaker database consisting of videos
of dyadic sessions having approximately 12 hours of audio-
visual data with text transcriptions. Each video contains a
single conversation, which is segmented into multiple ut-
terances. Each utterance is annotated with one of six emo-
tion labels, i.e., happy, sad, neutral, angry, excited, and frus-
trated. The database statistics are given in Table 1. We ran-
domly select 10% of training conversations as evaluation
split for computing the hyperparameters.

4.2. Training Setups and Hyper-parameter Tuning

All experiments are carried out using a single NVIDIA
GeForce RTX 3090 card. We adopt AdamW [17] as the
optimizer with an initial learning rate 5e-4 with Lo weight
decay ranges between 5e-4 and 5e-5. Dropout is used with
a rate between 0.4 and 0.5. The number of encoder lay-
ers in each modality’s encoder (i.e., Ny, N4, Ny ) is tuned
using a greedy scheme and set to 1 and 5 for MELD and
IEMOCAP validation datasets, respectively. The number of
multi-head attention fusion layers is set to 5 (i.e., = m) for
both dataset. The proposed M2FNet framework is trained
using the categorical cross-entropy on each utterances soft-
max output for each of M dialogs and their k utterances.
Section 2 of the supplementary material provides training
and validation performance details.

M

k
Loss = ——— Z

=1 j=11

C
Doyt log(yyt). (14
=1

To extract deeper features from audio and visual con-
tents, we introduce a new feature extractor model. Here,
ResNet18 [9] is used as encoder module while the projec-
tor module consists a fully connected layer which projects
the embeddings of encoder network to desired representa-
tions (i.e., Z). Here we set the number of representations as
Z = 300. For audio task, the extractor model is trained on
Mel Spectrograms obtained from the corresponding audio



Table 2. Ablation Studies based comparison to validate the impact
of each modality.

Table 5. Ablation Studies based comparison to validate the impact
of multi-head attention fusion layers.

Models Remarks IEMOCA]? MELD .
Accuracy Weighted Accuracy Weighted
Average F1 Average F1

Only Audio — 26.56 21.79 49.04 39.63
Only Visual — 20.39 13.10 45.63 32.44
Visual + Audio Concat 35.12 31.35 48.35 35.74
Only Text — 66.30 66.20 67.24 66.23
Text + Audio Concat 66.52 66.48 67.80 66.32
Text + Visual Concat 66.64 66.67 67.81 66.35
Text + Visual + Audio ~ Concat 67.16 67.12 67.28 66.81
Text + Visual + Audio  Fusion 69.69 69.86 67.85 66.71

Table 3. Ablation Studies based comparison to validate the impact
of dual network.

Models IEMOCAE MELD A
Accuracy Weighted Accuracy Weighted
Average F1 Average F1
Scene Embeddings 67.65 67.70 65.23 64.23
Weighted Face Embeddings 67.32 67.28 66.37 65.67
Proposed 69.69 69.86 67.85 66.71

Table 4. Ablation Studies based comparison to validate the impact
of no. of transformer encoders.

No. of
Transformer Encoders IEMOCAP MELD
(i.e., Ny = Npr = Ny)
Weighted Weighted
Accuracy Average F1 Accuracy Average F1
1 69.32 69.36 67.85 66.71
2 69.07 69.21 67.16 65.82
3 69.32 69.44 66.86 66.06
4 69.13 69.22 67.20 66.06
5 69.69 69.86 67.47 66.38
6 69.13 69.26 67.24 65.48

signals while in case of visual feature extraction, it is trained
on well-known CASIA webface database [35]. Here, the
extractor model is trained using the loss function mentioned
in Equation no. 9 in which the weighting factors A;, Ay and
As are set to 20, 5 and 1, respectively. The proposed extrac-
tor model is trained upto 60 and 100 epochs for audio and
visual task, respectively using Adam optimizer with learn-
ing rate of le-4 and decay rate of 1e-6.

We mainly employ weighted average F1 score as eval-
uation metric due to its suitability to test with imbalance
dataset. Additionally, we present our results in terms of
classification accuracy to evaluate the model performance.

4.3. Ablation studies

To better understand the contribution of different mod-
ules in the proposed M2FNet model, we have conducted
several ablation studies on both [IEMOCAP and MELD
datasets. The corresponding results are compared in terms
of accuracy and weighted average F1 scores for MELD and
IEMOCAP testing datasets.

To validate the impact of each modality, we train the pro-

No. of Attention

. IEMOCAP MELD
Fusion Layers
Weighted Weighted
Accuracy Averfge Fl1 Accuracy Averfge Fl1
1 67.22 67.34 66.63 66.11
2 68.08 68.19 67.47 66.50
3 69.13 69.25 67.47 66.65
4 69.01 68.95 67.59 66.51
5 69.69 69.86 67.85 66.71
6 68.95 69.08 66.82 65.32

posed network with and/or without Text, Video, and Au-
dio as input and without using the proposed Fusion module.
From Table 2, one can observe that concatenation of multi-
modal input with all three modalities obtain higher accu-
racy and weighted average F1 score than other scenarios
such as using only one or two modalities. Furthermore, our
fusion mechanism helps to enhance the accuracy by 2.53%
and 0.57% for IEMOCAP and MELD datasets, respectively.
However, in the case of weighted average F1 score, it ob-
tains slightly inferior performance for the MELD dataset
while improving it by 2.74% for the IEMOCAP dataset.

On the visual end, we utilize scene and weighted face
embeddings. For understanding the importance of both
embeddings, two more experiments have been carried out
where the proposed network with individual embedding has
been trained, and the corresponding results are given in Ta-
ble 3. From the table, it can be observed here that the
weighted face model or the scene encoding network on their
own do not improve the results; however, when the network
can access both, it significantly improves the results. This
shows that both the context from the scene and the people
in the scene are equally important for emotion recognition.

We also observe the effect of transformer encoders in
the proposed framework. In these experiments, we set same
number of transformer encoders (i.e., N4 = Ny = Nrp) for
each modality and observe its effect for different numbers.
The corresponding results are presented in Table 4 where it
is observed that Ny = Ny = Np = 1 gives best perfor-
mance for MELD dataset while the Ny = N = Ny =5
setting helps the proposed framework to obtain higher per-
formance for IEMOCAP testing dataset.

In the proposed model, we have set m = 5 number of
Multi-Head Attention Fusion modules. To validate this,
we train the proposed model with different numbers of the
Multi-Head Attention Fusion modules and observe the cor-
responding accuracy and weighted average F1 score. This
analysis is demonstrated in Table 5 where one can observe
that the proposed model with five Multi-Head Attention Fu-
sion modules (i.e., m = 5) obtains higher quantitative mea-
sures on both datasets.
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Figure 5. Predictions made by the network on the MELD and
IEMOCAP test sets

Table 6. Quantitative comparison with text-based state-of-the-art
methods in terms of weighted average F1 score.

Name Year MELD IEMOCAP
BERT+MTL [16] 2020  61.90 —
Hi-Trans [14] 2020 61.94 64.50
TRMSM-Att [15] 2020 62.36 65.74
DialogXL [26] 2020 62.41 65.94
COSMIC [6] 2020  65.21 65.28
SumAggGIN [28] 2020 58.45 66.61
DialogueGCN [7] 2019  58.10 66.76
CESTa [33] 2020 58.36 67.10
DialogueCRN [10] 2021  58.39 66.20
EmoBERTa [11] 2021  65.61 67.42
DAG-ERC [27] 2021  63.65 68.03
TODKAT [38]* 2021  65.47 61.33
EmotionFlow [29] 2022  66.50 —
M2FNet 2022 66.71 69.86

* The performance of TODKAT model is updated by
its author in their official repository.

4.4. Model Performance

Figure 5 presents the performance of our model in terms
of the weighted average F1 score of different emotions.
Here, we can see that our model has obtained the highest
F1 score of 82.11% for the Sad emotion of the [IEMOCAP
dataset. Similarly, for MELD dataset, it obtained highest
score for Neutral emotion.

4.5. Comparative Analysis

To validate the robustness of the proposed network, we
compare our proposed network with state-of-the-art text-
based ERC systems in terms of weighted average F1 score
and the same is presented in Table 6. Here, one can no-
tice that the proposed network has a state-of-the-art perfor-
mance by obtaining superior quantitative results than previ-
ous methods on both datasets (i.e., 0.21% higher than previ-
ous best EmotionFlow [29] model on MELD dataset while
1.83% higher than that of the previous best DAG-ERC [27]
model on IEMOCAP testing dataset).

When compared with the existing multi-modal meth-
ods, our proposed M2FNet network shows a substantial im-

Table 7. Quantitative comparison with multimodal-based state-of-
the-art methods on MELD and IEMOCAP datasets. Here, top two
performances are highlighted with bold font texts.

Name of Model MELD IEMOCAP
Weighted Weighted
Accuracy Averagge F1 Accuracy Averagge F1
BC-LSTM-Att [21] 57.50 56.44 56.32 56.19
DialogRNN [19] 59.54 57.03 63.40 62.75
ConGCN [36] — 57.40 64.18 64.18
Xie at al. [34] 65.00 64.00 — —
DialogueTRM [20] 65.66 63.55 68.92 69.23
M2FNet 67.85 66.71 69.69 69.86

provement compared to state-of-the-art multi-modal ERC
methods. The obtained results are presented in Table 7
where one can notice that the proposed M2FNet model ob-
tains 2.19% and 2.71% higher accuracy and weighted av-
erage F1 score on MELD dataset than that of previous best
performance. Similarly, it set 0.77% and 0.63% higher ac-
curacy and weighted average F1 sore than that of previ-
ous best DialogueTRM model [20] on IEMOCAP testing
dataset.

5. Limitations

Our model sometimes gets confused and miss-classifies
similar or close emotions such as Frustration and Anger,
Happy and Excited. We can also observe that for highly im-
balance data, our model misclassifies many emotions as the
emotion with higher number of data samples. For example,
many emotions are overwhelmingly predicted as Neutral for
MELD dataset.

6. Conclusion

In this paper, we propose a robust multi-modal fusion
network called M2FNet for the task of Emotion Recogni-
tion in Conversation. In M2FNet, we propose a multi-head
fusion attention module that helps the network to extract
rich features from multiple modalities. A new feature ex-
tractor model is introduced in the proposed design to learn
the audio and visual features effectively. Here, a new adap-
tive margin triplet loss function is introduced, which helps
the extractor module to learn representations effectively. A
new weighted face model is proposed in our framework
to learn the rich facial features. Detailed analysis shows
that encoding both scene and face-related information is
essential for emotion recognition. Similarly, we observed
that multi-modal fusion is necessary to leverage informa-
tion from multiple modalities present in an utterance. Fi-
nally, our experiments validate the robustness of the pro-
posed network quantitatively on both benchmark datasets.
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