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Abstract

Generating textual descriptions from visual inputs is a
fundamental step towards machine intelligence, as it entails
modeling the connections between the visual and textual
modalities. For years, image captioning models have relied
on pre-trained visual encoders and object detectors, trained
on relatively small sets of data. Recently, it has been ob-
served that large-scale multi-modal approaches like CLIP
(Contrastive Language-Image Pre-training), trained on a
massive amount of image-caption pairs, provide a strong
zero-shot capability on various vision tasks. In this paper,
we study the advantage brought by CLIP in image cap-
tioning, employing it as a visual encoder. Through exten-
sive experiments, we show how CLIP can significantly out-
perform widely-used visual encoders and quantify its role
under different architectures, variants, and evaluation pro-
tocols, ranging from classical captioning performance to
zero-shot transfer.

1. Introduction

Image captioning is a task at the intersection between vi-
sion and language, whose challenges come both from each
modality and, most importantly, their interaction. In fact,
to properly describe an image, not only the ability to pro-
duce meaningful and grammatical sentences is needed, but
correctly understanding its content is crucial. To this end,
image representation plays a key role, making this aspect
of great interest to the community working on image cap-
tioning and, in general, on tasks connecting vision and lan-
guage. For years, image captioning approaches have re-
lied on visual representations based on detected visual enti-
ties [2, 27], among which relations have been modeled via
graphs [49, 51] or attention mechanisms [6, 8, 28, 31].

Despite the remarkable performance of these ap-
proaches, their applicability is somewhat limited since the
set of objects the detector can distinguish defines what can
be described in an image. For this reason, approaches re-
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Figure 1. Relationship between zero-shot classification capabil-
ity (expressed in terms of top-1 accuracy on Imagenet) and image
captioning performance (expressed in terms of CIDEr on COCO)
of CLIP-like features. The marker sizes are proportional to the
number of parameters of the considered models.

sorting to learning grid-based features from scratch are be-
ing reconsidered. In fact, this paradigm eases large-scale
pre-training even on noisy image-text pairs, automatically
collected from the web, resulting captioning approaches
that obtained state-of-the-art performance [14, 47].

On this line, recent developments in multi-modal con-
trastive training have led to effective CLIP-like models [33]
able to extract rich visual features that are suitable for a va-
riety of down-stream tasks [39]. Inspired by the role that
CLIP features are exhibiting in other tasks, in this paper
we investigate and quantify their role for image caption-
ing. To this aim, we devise a general yet effective image
captioning architecture, which is later employed for all ex-
periments both in cross-entropy training and in self-critical
fine-tuning [36]. We evaluate CLIP features, under different
variants, in comparison with traditional detection-based fea-
tures, as well as features coming from recent classification
and self-supervised architectures [4, 11]. Further, we ana-
lyze both in-domain and out-of-domain performances and
zero-shot transfer over a variety of datasets.

Our results show that CLIP features provide a signif-



icant improvement in terms of caption quality, out-of-
domain performance, and zero-shot performance, and that
are largely superior to features used in previous lines of
research. Indeed, a simple Transformer-based captioner,
equipped with CLIP features, can largely overcome state of
the art approaches based on significantly more complex ar-
chitectures. This effectiveness is quantified both as a func-
tion of the visual encoder architecture and as a function
of the training data by running comparisons with models
trained on fewer data. As a side contribution, we also as-
sess the value of CLIP as a metric for image captioning.

Overall, our work is intended to be a “progress report” on
visual features for image captioning, sheds new light on the
role of emerging large-scale and multi-modal features, and
provides effective baselines for future vision and language
works.

2. Related Work
Image captioning requires both a deep understanding of

the visual content within an image, its objects, attributes,
and relationships and the capability of a language model
to generate syntactically and semantically correct descrip-
tions. In particular, the language model is asked to generate
a sentence conditioned on the image representation, whose
role is key for obtaining satisfactory results [41].

To represent the visual input, CNN-based solutions have
been proposed for extracting global features [18,36] or grids
of features [26, 48], and further improved through object
detectors [2, 27] for obtaining a region-based features rep-
resentation, and self-attention. As for the language model,
in earlier works it was implemented as a recurrent neural
network [15, 18, 20, 36], while more recent approaches em-
ploy Transformer-based fully-attentive models [5,8,28,56].
The success of this latter strategy has also encouraged the
proposal of multi-modal early-fusion strategies [14,22,54],
which proved the effectiveness of building a semantic rep-
resentation of the image by exploiting also the text at the
early stages of the captioning pipeline.

Representing the image via region-based features, in
combination with an attention mechanism, has been the
standard design choice for years. More recently, however,
fully-attentive models exploiting Transformer-like architec-
tures [11, 43] and grid features became more popular, ei-
ther combined with a CNN [56] or directly applied to im-
age patches [25]. Thanks to the competitive performance of
such models, grid features have been reconsidered [17, 39],
and their suitability has been demonstrated also as start-
ing point for large-scale vision-and-language pre-trained
models such as SimVLM [47] and CLIP [33], whose fea-
tures are employed in recent state-of-the-art captioning ap-
proaches [3, 7, 29, 39].
Contrastive Image-Language Pre-Training. The Con-
trastive Language-Image Pretraining (CLIP) paradigm

adopted in [33] has allowed leveraging a large amount of
weakly-labeled data for pre-training large models able to
encode rich semantic information from multi-modal data.
Due to the success of this idea, variants of CLIP have
been developed. To gain efficiency, cross-modality param-
eter sharing [52] has been proposed. Moreover, some ap-
proaches go towards the direction of fully exploiting the
noisy training data by modifying the training objective with
self-supervision [30], within-modality loss terms [9, 23],
and training data refinement [21, 44]. Finally, other ap-
proaches refine the granularity of the image-text alignment
by proposing to exploit text paired with pixel [34], re-
gions [57] or visual-textual tokens pairing [50].

The rich features from CLIP-like models can then be em-
ployed for a number of downstream tasks, both visual-only,
such as image classification [33], action recognition [45],
semantic segmentation [46], and visual-textual tasks such
as text-guided image generation [32] and image and video
captioning [7, 29, 39, 42]. In this work, we focus on the
image captioning task and experimentally evaluate features
from CLIP-like models to quantitatively assess their suit-
ability for this task combining vision and language.

3. CLIP-Captioner

The goal of a captioning module is that of modeling
an autoregressive distribution probability p(wt|wτ<t,V),
where V is an input image and {wt}t is the sequence of
words comprising the generated caption. This is achieved in
existing models by training a language model conditioned
on visual features to mimic ground-truth descriptions.

Recent works have employed both encoder-decoder [8]
and encoder-only architectures [22, 54], in which multi-
modal connections are realized with a late-fusion or early-
fusion strategy, respectively. While none of the two alterna-
tives has demonstrated clear superiority [16], in this work
we opt for an encoder-decoder model which separates vi-
sual and textual features inside the architecture and which
can amplify the role of different visual descriptors. Even if
a comparison with an encoder-only model is left for future
work, we expect our findings to transfer seamlessly to an
encoder-only model.

Architecture. We represent each training sample as a pair
of image and text (V,W), where V is encoded with a set of
fixed-length visual descriptors. The text input is tokenized
with lower-cased Byte Pair Encodings [37].

For multimodal fusion, we employ an encoder-decoder
Transformer [43] architecture, in which the encoder is in
charge of processing visual features through multi-head
self-attention (MSA) and feed-forward layers, while the
decoder generates output words through multi-head self-
and cross-attention (MSCA) and feed-forward layers. For
enabling text generation, sequence-to-sequence attention
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Figure 2. Overview of the considered CLIP-based captioning ar-
chitecture.

masks are employed in each self-attention layer of the de-
coder. The visual descriptors V = {vi}Ni=1 are encoded
via bi-directional attention in the encoder, while the token
embeddings of the caption W = {wi}Li=1 are inputs of
the decoder, where N and L indicate the number of visual
embeddings and caption tokens, respectively. The overall
network operates according to the following schema:

encoder ṽi = MSA(vi,V)

decoder Owi
= MSCA(wi, Ṽ, {wt}it=1), (1)

where O is the network output, MSA(x,Y) a self-attention
with x mapped to query and Y mapped to key-values, and
MSCA(x,Y,Z) a self-attention with x as query and Z as
key-values, followed by cross-attention with x as query and
Y as key-values. We omit feed-forward layers and the de-
pendency between consecutive layers for ease of notation.
Both encoder and decoder are, however, implemented with
a sequence of Transformer layers.
Training objective. As in the case of early and late fu-
sion, current literature has been investigating bidirectional
masked losses as well as autoregressive language modeling
losses. In contrast to concurrent works, which have adopted
a bidirectional Masked Language Modeling objective that
tends to be suboptimal for sequence generation, we train our
network by following a unidirectional loss based on cross-
entropy, i.e.

L = −E(V,W)∼D

(
L∑

t=1

log p(Owt |V,wτ<t)

)
, (2)

where D indicates the training dataset.
Following a standard practice in image captioning [2,

36], after pre-training with cross-entropy we also adopt a

fine-tuning stage using reinforcement learning. We employ
a variant of the self-critical sequence training approach [36]
on sequences sampled using beam search [2]: to decode,
we sample the top-k words from the decoder probability
distribution at each timestep and always maintain the top-k
sequences with the highest probability. Following previous
works [2], we use the CIDEr-D score as reward and baseline
using the mean of the rewards in a beam [8].

Inference. Once the model is trained, at each time step t,
the model samples a token ŵt from the output probability
distribution. This is then concatenated to previously pre-
dicted tokens to form a sequence {ŵτ}tτ=1, which is em-
ployed as the input for the next iteration. Since the represen-
tation of output tokens does not depend on subsequent to-
kens, the past intermediate representations are kept in mem-
ory to avoid repeated computation and increase efficiency at
prediction time.

Visual features. To obtain the set of visual features V for
an image, we employ a CLIP-like visual encoder pre-trained
to match vision and language [33]. CLIP [33] and similar
approaches employ either ResNet-based or ViT-based vi-
sual encoders. In the case of ViT-based architectures, we
employ the grid of features coming from the last encoder
layer for preserving spatial awareness and a better feature
granularity. We also include the output of the [CLS] token,
which is usually employed as a global feature vector for
contrastive learning. On the other hand, in CLIP, ResNet-
based backbones replace the global average pooling layer
with an attention pooling mechanism. In this case, we em-
ploy the grid of features of the last residual block as visual
descriptors. As in this case the global feature vector used
in contrastive learning is obtained by applying an attention
operator between the average pooled representation of the
image and the grid of features we drop it to avoid redun-
dancy.

4. Experimental Analysis

4.1. Implementation details

Visual features are projected into d-dimensional vectors
with d = 384 and fed to our Transformer-based caption-
ing model, which has three layers in the encoder and three
layers with six attention heads in the decoder. For effi-
ciency, the length of the output token sequence is limited
to 80 tokens. For training with cross-entropy loss, we use
the LAMB optimizer [53] and the learning rate schedul-
ing strategy as in [43], with minibatch size equal to 1,080.
For the CIDEr-based fine-tuning, we adopt the SCST strat-
egy [36] sampling over the k = 5 best sequences from a
beam-search scheme, with the Adam optimizer [19] and
learning rate of 5× 10−6.



Table 1. Results on the COCO Karpathy-test split.

Cross-Entropy Training CIDEr Optimization

# Params (M) B-4 M R C S BERT-S CLIP-S CLIP-SRef B-4 M R C S BERT-S CLIP-S CLIP-SRef

Faster R-CNN [2, 35] 65.4 35.3 27.4 56.1 111.4 20.2 93.8 0.727 0.788 37.7 28.3 57.6 124.8 21.9 94.0 0.737 0.792

DINO-ViT-B/16 [4] 85.8 32.4 25.8 54.0 101.1 18.7 93.5 0.719 0.777 33.8 26.5 55.2 112.5 20.0 93.6 0.721 0.777
ViT-B/32 [11] 88.3 34.8 27.2 55.8 110.7 20.2 93.8 0.735 0.792 37.2 27.9 57.3 122.4 21.6 93.8 0.741 0.797
ViT-B/16 [11] 86.9 35.6 27.9 56.5 115.2 20.8 93.8 0.741 0.799 37.7 28.5 57.9 126.2 22.3 94.1 0.745 0.802

CLIP-RN50 [33] 38.3 35.6 27.5 56.4 113.1 20.5 93.8 0.739 0.796 36.8 28.0 57.4 125.0 21.5 93.5 0.739 0.794
CLIP-RN101 [33] 56.2 36.0 28.0 56.6 116.0 21.0 93.8 0.748 0.802 38.0 28.5 57.9 126.8 22.3 94.0 0.757 0.807
CLIP-RN50×4 [33] 87.1 37.3 28.3 57.4 118.9 21.3 93.9 0.743 0.801 39.2 29.2 58.8 133.0 22.7 93.8 0.753 0.808
CLIP-RN50×16 [33] 167.3 38.4 28.7 58.3 123.1 21.7 94.0 0.746 0.805 40.0 29.4 59.4 137.1 23.2 93.9 0.750 0.808

CLIP-ViT-B/32 [33] 87.8 36.0 27.8 56.5 114.9 20.8 93.9 0.750 0.803 37.9 28.5 57.7 128.0 22.3 94.0 0.757 0.807
CLIP-ViT-B/16 [33] 86.2 37.2 28.4 57.5 119.9 21.3 94.0 0.747 0.805 38.7 29.2 58.8 132.7 23.0 94.2 0.750 0.805
CLIP-ViT-L/14 [33] 304.0 38.7 29.3 58.6 126.0 22.5 94.2 0.754 0.811 40.6 30.0 59.9 139.4 23.9 94.1 0.760 0.814

4.2. Evaluation protocol

To assess the role of visual features extracted from CLIP-
like models in image captioning, we consider a number of
datasets employed for the task, both in its standard defi-
nition and variants, to explore the suitability of such fea-
tures in standard and more challenging image captioning
settings. We use the commonly adopted COCO dataset [24],
by following the splits defined by Karpathy et al. [18].
In addition, we consider a dataset collected for studying
novel object image captioning, nocaps [1]. The images
in this dataset contain around 400 objects that are not in
COCO and are grouped into three subsets depending on
their semantic distance to COCO (i.e. in-domain, near-
domain, and out-of-domain images). We also take into ac-
count two domain-specific datasets, i.e. the VizWiz [12] and
TextCaps [40] datasets. The former contains images taken
from visually-impaired people for everyday activities, while
the latter images with text that must be included in the cap-
tion. Moreover, we consider the large-scale pre-training
Conceptual Captions (CC3M) dataset [38], which contains
pairs of images and a single noisy caption for each image.

In our evaluation, we express the performance in terms of
the standard image captioning metrics and learning-based
metrics such as BERT-S [55] and CLIP-S [13], in its stan-
dard version comparing image and generated caption di-
rectly, and its variant considering also the reference captions
(CLIP-SRef). These learning-based metrics exploit pre-
trained embeddings from the text-only BERT [10] model
and the multi-modal CLIP [33], respectively.

4.3. Quantitative results

Effectiveness of CLIP features. Features based on object
detections are currently the most popular choice in image
captioning [14, 54] when feature learning is not performed
from scratch [47]. Recent literature, however, has devel-
oped visual backbones by improving both in architectural
terms, with ViT-based solutions [11] and self-supervised

and multi-modal training strategies. In Table 1 we compare
detection features with classification and self-supervised vi-
sual features and CLIP-based backbones.

Performance on COCO reveals that a self-supervised ar-
chitecture like DINO [4] fails to provide the same perfor-
mance of a Faster R-CNN trained on Visual Genome [2]. In
contrast, a sufficiently large and fine-grained Vision Trans-
former [11] trained for classification provides a significant
improvement with respect to detection features (111.4 vs.
115.2 CIDEr points, in XE). This outlines that modern grid-
like features can overcome traditional detection features and
that ViT is an appropriate feature extraction architecture for
image captioning.

Moving to features that are trained to match vision and
language, we compare different CLIP backbones based on
ResNet and ViT. The smallest CLIP model in terms of num-
ber of parameters, CLIP-RN50, improves over detection-
based features (111.4 vs. 113.1 CIDEr). Remarkably, this
performance margin increases as model and input size in-
crease in ResNet-based backbones. Increasing model depth
from 50 to 101 layers brings CIDEr from 113.1 to 116.0,
while adopting EfficientNet-style architectures further im-
proves performance, with CLIP-RN50×16 reaching 123.1
CIDEr points. When employing ViT-like architectures, in-
stead, we notice that reducing input patch size can pro-
vide similar results to CNN-based architectures: CLIP-ViT-
B/16, for instance, reaches 119.9 CIDEr points while be-
ing comparable to CLIP-RN50×4 in terms of number of
parameters. Increasing model depth and further reducing
patch size clearly improves performance, with CLIP-ViT-
L/14 reaching 126.0 CIDEr points after XE pre-training.
Overall, this amounts to a 13.1% relative improvement over
the traditional Faster R-CNN features.

The aforementioned considerations transfer seamlessly
to the corresponding models trained with CIDEr optimiza-
tion, highlighting that the role of visual features is main-
tained between the two learning stages. CLIP-ViT-L/14, in
particular, attains 139.4 CIDEr points. Overall, this outlines
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Figure 3. Relationship between CIDEr and learned image captioning metrics on the COCO Karpathy-test split.

that multi-modal features learned by matching vision and
language are more effective than traditional features learned
on vision only and that CLIP is one of the best visual feature
extractors available at present. However, it shall be noted
that there is no experimental evidence that grid-based fea-
ture extraction is superior to a detection-based strategy. In-
deed, (i) the Faster R-CNN feature extraction employs an
RN50 architecture, and thus, it could be improved in archi-
tectural terms; (ii) ViT and CLIP models have been trained
on a significantly larger amount of data. Further research is
thus needed to separate the role of data and architecture and
to assess the role of detection-level pooling.

Out-of-domain performance. Beyond evaluating the per-
formance on in-domain captioning with COCO, we also as-
sess the role of visual features on the nocaps dataset [1]
which contains both in-domain and out-of-domain images.
Also in this case, CLIP shows an increased performance,
especially when employing larger models or models hav-
ing a higher input resolution. Interestingly, ResNet-based
backbones work slightly better than ViT-based ones, given
a fixed amount of parameters on out-of-domain data. For in-
stance, CLIP-RN50×4 is superior to CLIP-ViT-B/16. The
best performance, however, is again reached by CLIP-
ViT-L/14. Interestingly again, in this case, ViT models
trained on classification provide a significant boost on out-
of-domain data compared to Faster R-CNN features, sug-
gesting that training on large-scale data helps to obtain bet-
ter features for out-of-domain captioning. This is further
confirmed when comparing the performance gain provided
by CLIP with respect to Faster R-CNN on nocaps (28.5
CIDEr points) and on COCO (13.6 CIDEr points).

Self-supervised and contrastive learning. In Table 3 we
further compare with SLIP [30], which has been trained by
using a self-supervised criterion in addition to contrastive
learning, but on a subset of YFCC100M, thus on signif-
icantly less data than CLIP. SLIP features appear to be
weaker than CLIP’s ones, with a drop that ranges between
6.9 CIDEr points and 9.0 CIDEr points when comparing

Table 2. Results on the nocaps validation set.

In Near Out Overall

C S C S C S C S CLIP-S

Faster R-CNN [2, 35] 81.1 12.0 64.1 11.0 34.5 8.7 60.5 10.8 0.640

DINO-ViT-B/16 [4] 70.3 10.5 54.9 10.0 31.7 8.2 52.4 9.7 0.623
ViT-B/32 [11] 82.3 11.8 68.9 11.1 46.5 9.4 66.3 10.9 0.667
ViT-B/16 [11] 86.9 12.0 72.9 11.4 51.5 9.8 70.5 11.2 0.674

CLIP-RN50 [33] 91.2 12.0 73.7 11.3 45.3 8.9 70.5 10.9 0.673
CLIP-RN101 [33] 98.0 12.9 78.5 12.0 60.0 10.2 77.6 11.8 0.699
CLIP-RN50x4 [33] 98.7 13.1 84.0 12.2 60.3 10.2 81.0 11.9 0.696
CLIP-RN50x16 [33] 100.1 12.9 86.5 12.2 64.8 10.0 83.1 11.9 0.691

CLIP-ViT-B/32 [33] 89.6 12.7 75.5 11.8 51.2 9.6 72.6 11.5 0.689
CLIP-ViT-B/16 [33] 93.2 12.3 80.4 12.2 57.1 10.2 77.5 11.8 0.683
CLIP-ViT-L/14 [33] 104.5 13.5 92.2 13.0 67.6 10.7 89.0 12.6 0.708

Table 3. Comparison between CLIP-based and SLIP-based encod-
ings with the same backbones on the COCO Karpathy-test split.

# Params (M) B-4 M R C S CLIP-S

SLIP-ViT-B/16 [30] 85.8 36.6 28.5 57.4 125.8 22.2 0.742
CLIP-ViT-B/16 [33] 86.2 38.7 29.2 58.8 132.7 23.0 0.750

SLIP-ViT-L/16 [30] 303.3 38.5 28.9 58.5 130.4 22.6 0.750
CLIP-ViT-L/14 [33] 304.0 40.6 30.0 59.9 139.4 23.9 0.760

models with similar dimensionality and architecture. Con-
sidering that SLIP is superior to CLIP in zero-shot classifi-
cation when trained on the same amount of data, the drop in
captioning performance should be attributed to the lack of
training data.

In Figure 1, we also compare the zero-shot classification
capabilities of the aforementioned models with their CIDEr
scores. As it can be seen, there is a weak but relevant cor-
relation between the two quantities, especially when con-
sidering models with similar dimensionalities. This further
highlights the dependency between CLIP’s performance as
a feature extractor and the data on which it has been trained
and suggests that collecting large-scale datasets with suffi-
cient quality will be crucial for further V&L research.

CLIP for image captioning evaluation. Other than as a



Table 4. Zero-shot results on CC3M, VizWiz, and TextCaps validation splits.

CC3M VizWiz TextCaps

B-4 M R C S CLIP-S B-4 M R C S CLIP-S B-4 M R C S CLIP-S

DINO-ViT-B/16 [4] 1.5 5.6 15.1 18.7 6.1 0.595 11.5 12.4 36.0 18.1 5.8 0.574 12.2 13.1 34.1 24.1 8.6 0.583
ViT-B/32 [11] 1.7 6.2 16.0 24.1 7.9 0.637 14.2 14.2 38.4 26.3 7.7 0.613 13.8 14.1 35.2 29.6 10.2 0.621
ViT-B/16 [11] 1.8 6.6 16.6 27.2 8.8 0.647 14.3 14.3 38.7 28.2 7.9 0.628 14.3 14.7 36.0 31.6 10.9 0.629

CLIP-RN50 [33] 1.8 6.5 16.6 26.1 8.2 0.655 14.9 14.4 39.4 27.2 7.5 0.628 14.8 14.8 36.8 32.9 10.8 0.636
CLIP-RN101 [33] 1.9 6.8 16.8 28.2 8.8 0.674 15.0 15.1 39.7 31.1 8.3 0.653 15.3 15.2 36.7 34.8 11.4 0.657
CLIP-RN50x4 [33] 2.1 7.0 17.4 30.8 9.3 0.673 15.9 15.2 40.1 32.5 8.4 0.650 15.7 15.3 37.0 35.6 11.5 0.652
CLIP-RN50x16 [33] 2.2 7.1 17.7 31.9 9.5 0.673 17.1 15.7 41.4 36.3 9.0 0.651 16.0 15.5 37.4 36.3 11.6 0.649

CLIP-ViT-B/32 [33] 2.0 6.7 17.0 27.1 8.4 0.667 15.0 14.7 39.4 29.0 8.0 0.645 15.0 14.8 36.7 33.3 10.9 0.646
CLIP-ViT-B/16 [33] 2.0 6.9 17.0 29.0 9.1 0.662 15.4 15.3 39.6 31.4 8.8 0.640 15.0 15.0 36.4 34.5 11.4 0.641
CLIP-ViT-L/14 [33] 2.4 7.5 18.1 34.9 10.4 0.688 16.9 16.1 41.1 39.9 9.6 0.657 16.8 15.7 37.9 38.7 11.9 0.659

visual encoder, CLIP can benefit image captioning also as
the building block for an evaluation score, which led to the
definition of the CLIP-S [13]. The score is obtained as the
adjusted cosine similarity of image and candidate caption
representations, and thus, it does not need ground-truth an-
notations, making it applicable also in an unpaired caption-
ing scenario. Nevertheless, if available, reference captions
can be exploited in the CLIP-SRef variant of the score.

Despite assessing the suitability of the CLIP-S as an im-
age captioning metric is beyond the scope of this work, in
Tables 1-4 we also report the performance of the consid-
ered models in terms of CLIP-S and deepen the analysis
of its relation with the standard CIDEr metric on COCO
in Fig. 3. It can be observed that CLIP-S highly correlates
with the CIDEr, both in the standard and reference-based
definitions, with a Pearson correlation coefficient equal to
0.72 and 0.91, respectively. This unveils that the reference-
based metric could be employed as a replacement of classi-
cal metrics, while the reference-free counterpart should be
used with higher caution, although providing a significant
correlation with CIDEr.

In Fig. 3, we also report the relationship between the
CIDEr and the single-modality learning-based BERT-S.
The correlation between the two scores is weaker compared
to the CLIP-based scores (with a Pearson correlation co-
efficient of 0.54). This suggests that the multi-modal em-
bedding obtained from CLIP allows giving more precise
insights into the performance of image captioning models
even when no ground-truth captions are available, with re-
spect to text-only embeddings comparing candidate and ref-
erence captions but disregarding the image.

Zero-shot captioning transfer. As an additional analysis,
we perform experiments in a zero-shot captioning setting.
In particular, we consider the web-scale CC3M dataset,
the VizWiz dataset [12], which contains images originating
from blind people, and TextCaps [40], with images contain-
ing text. Although all of them represent distinct visual and
semantic distributions from those of COCO, images from

Table 5. Comparison with the state of the art the COCO Karpathy-
test split.

Web-Scale Training B-4 M R C S

Up-Down [2] - 36.3 27.7 56.9 120.1 21.4
AoANet [15] - 38.9 29.2 58.8 129.8 22.4
M2 Transformer [8] - 39.1 29.2 58.6 131.2 22.6
X-Transformer [31] - 39.7 29.5 59.1 132.8 23.4
DLCT [28] - 39.8 29.5 59.1 133.8 23.0
RSTNet [56] - 39.3 29.4 58.8 133.3 23.0
CLIP-Captioner (RN50×16) - 40.0 29.4 59.4 137.1 23.2
CLIP-Captioner (ViT-L/14) - 40.6 30.0 59.9 139.4 23.9

OSCARlarge [22] ✓ 41.7 30.6 - 140.0 24.5
VinVLlarge [54] ✓ 41.0 31.1 - 140.9 25.2
SimVLMhuge [47] ✓ 40.6 33.7 - 143.3 25.4
LEMONhuge [14] ✓ 42.6 31.4 - 145.5 25.5

VizWiz and TextCaps have been manually annotated, while
CC3M contains automatically-collected captions obtained
by cleaning alt-text pairs from the web.

Table 4 reports the results obtained by testing models
trained exclusively on COCO on the validation splits of the
three considered datasets. CLIP-ViT-L/14 provides the best
performances on all the three considered datasets, confirm-
ing that the choice of the visual backbone does not strictly
depend on that of the dataset. Further, employing CLIP-like
descriptors helps also in this case and provides a large mar-
gin with respect to descriptors trained for classification or
in a self-supervised manner.

Comparison to the state of the art. Finally, in Table 5
we compare with state-of-the-art approaches for image cap-
tioning, either trained exclusively on COCO (upper portion
of the table) or using external data as well (bottom part of
the table). The considered baseline captioner outperforms
all approaches trained on COCO only and which employ
detection-based features. For instance, the encoder-decoder
captioner reaches 139.4 CIDEr points when used in con-
junction with CLIP-ViT-L/14, which is superior to the re-
cent RSTNet [56].

Further, we notice that the same captioner reaches simi-
lar results to OSCAR [22] and VinVL [54] in their “Large”



configurations, although having a significantly lower num-
ber of parameters. Overall, a baseline captioner based
on CLIP features is only 6.1 CIDEr points lower than
the current state of the art, LEMON [14], which employs
detection-based features and trains on large-scale data. This
underlines the high-quality level reached by CLIP features
and the need for revisiting captioning baselines in light of
the role of visual features. Future works that will deal with
out-of-domain data and that are likely to employ CLIP-
based features, indeed, will need to design careful baselines
to achieve fair comparisons with previous literature.

5. Conclusion
In this paper, we have extensively explored the effective-

ness of CLIP features in image captioning. In particular, we
have considered CLIP-like visual encoders with different
backbones, both based on ResNet and ViT, and used them
in conjunction with an encoder-decoder image captioning
approach. The performance of these variants has been as-
sessed on the benchmark COCO dataset and tested on other
captioning datasets in a zero-shot fashion. The experimen-
tal results obtained demonstrate the superior suitability of
CLIP-based encoders compared to non-CLIP-based, for a
multi-modal task such as image captioning.
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