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Abstract

Supervised training has led to state-of-the-art results in
image and video denoising. However, its application to real
data is limited since it requires large datasets of noisy-clean
pairs that are difficult to obtain. For this reason, networks
are often trained on realistic synthetic data. More recently,
some self-supervised frameworks have been proposed for
training such denoising networks directly on the noisy data
without requiring ground truth. On synthetic denoising
problems supervised training outperforms self-supervised
approaches, however in recent years the gap has become
narrower, especially for video. In this paper, we propose
a study aiming to determine which is the best approach to
train denoising networks for real raw videos: supervision
on synthetic realistic data or self-supervision on real data.
A complete study with quantitative results in case of natural
videos with real motion is impossible since no dataset with
clean-noisy pairs exists. We address this issue by consider-
ing three independent experiments in which we compare the
two frameworks. We found that self-supervision on the real
data outperforms supervision on synthetic data, and that in
normal illumination conditions the drop in performance is
due to the synthetic ground truth generation, not the noise
model.

1. Introduction

For both images and videos, denoising is still an active
research subject. All the more so in the case of real noise,
where the real distribution of the noise may be unknown or
at least hard to model. In recent years, data-driven methods
based on training convolutional neural networks (CNNs)
have taken over the state of the art in several image and
video restoration tasks. In addition to their superior per-
formance, CNNs offer a greater flexibility as they can be
trained to denoise potentially any type of noise [7,8,23,45].
In contrast, traditional model-based approaches require a
tractable model of the noise, and specific algorithms for

each type of noise, e.g. [4,12,18,29,31,42,54]. This makes
learning-based approaches an ideal candidate for restoration
of real videos. Yet, this is still rather unexplored, with most
of the research that considers real data focusing on single
image denoising. The main reason for this is the lack of
available training datasets for video denoising.

The standard approach to data-driven methods is via su-
pervised learning, for which a dataset of pairs of input and
expected output is used to train the network. Network ar-
chitectures trained in a supervised manner yield state-of-
the-art results. However, supervised training requires large
datasets with pairs of clean-noisy signals, which are very
hard to obtain in the case of real images [2, 8, 38], and even
more so for real videos. The classical solution is to train
networks on synthetic datasets where a clean video is arti-
ficially degraded. Nonetheless, CNNs are very sensitive to
mismatches between the data distributions at training and
testing times [38]. Addressing this issue is currently one
of the most important problems in learning-based image
restoration, and has recently attracted a lot of attention.

One research trend focuses on generating realistic syn-
thetic datasets for supervised training. The noise in
the raw sensor is commonly approximated as an addi-
tive heteroscedastic Gaussian with a signal dependent vari-
ance [17]. A more accurate model is the Poisson-Gaussian
model [17], which still has some limitations as it does not
take into account non-linear behavior of the sensor (e.g.
clipping), dead pixels, heavy tails of read noise, efc. It has
been shown that more comprehensive models of the noise
yield better results [47]. Other works rely on data driven
generative approaches to synthesize noise [1,6,9,25,48,50].
Creating synthetic datasets requires synthesizing the clean
data too. This is straightforward for RGB denoising, but it
is far from trivial for raw denoising [5, 46, 52] or for other
imaging modalities.

Another research trend is based on developing self-
supervised approaches that do not require any ground truth,
i.e. they can be trained directly on the degraded data. An
additional advantage is that, in principle, no complex noise
modeling is required in order to apply these methods. The
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Figure 1. Comparison of video denoising networks trained with supervision on synthetic data (b) or self-supervision on real data (c-d).
All network architectures are based on UDVD [43], MF2F (c) uses the self-supervised framework of [14] and blind-spot (d) uses [43].
(top-brick wall I1SO 3200) Self-supervised networks recover more details. (middle top-bench ISO12800) Natural texture of the stones and
the granularity of the ground are removed by the supervised network. (middle bottom-trees ISO 3200) Self-supervised networks have a
better reconstruction of the texture of the trees (bottom-wire-grid ISO12800) The structure of the wire grid is better reconstructed with the

self-supervised networks.

main principle of these techniques is to exploit the signal
regularity, and train the network to predict one part of the
signal from the rest. Self-supervised methods exist for both
images [3, 13,16,26,33,41] and videos [14,43] denoising,
demosaicing [ | 5] and super-resolution [35,36]. On artificial
datasets, supervised training outperforms self-supervised
approaches. However, recent self-supervised methods have
shown competitive results, specially in video denoising.

The natural question is then, what is the best approach to
train denoising neural networks for real videos? Is it better
to train with ground truth supervision on realistic synthetic

datasets, or should one train directly on the real data with
a self-supervised approach? The former suffers from the
generalization gap between simulated and real data, while
the latter pays the price of not having supervision from a
clean ground truth. The question is which is the lesser evil.

Contribution. In this paper, we study the question of
which training framework has to be used for video de-
noising networks: supervised on synthetic data or self-
supervised on real data. This requires to compare quanti-
tatively and fairly both approaches in a controlled setting.



Ideally, this should be done by testing them on evaluation
datasets of real natural videos with ground-truth. However,
there are no such datasets due to the inherent complexity
of simultaneously acquiring noisy and noiseless videos for
natural dynamic scenes. We circumvent this problem by
considering two surrogates for real data: 1) a synthetic raw
dataset with a comprehensive noise model, and 2) a real
dataset of static scenes for which ground truth can be esti-
mated via frame averaging. Finally, we evaluate both ap-
proaches on real natural videos visually. In all cases, we
apply arigorous training methodology to make sure that we
compare fairly the training approaches.

The next section reviews the related work. In Section 3,
we present the architecture used in this study as well as a de-
scription of the self-supervised trainings. The overall proto-
col of the study (including datasets and training strategies)
is detailed in Section 4. Experiments details and results are
presented in Section 5.

2. Related work

Self-supervised training methods are often compared to
supervised training on synthetic datasets [3, 14, 16,26, 43].
In this setting, supervised training is optimal (e.g. with re-
spect to the MSE) and the goal is to achieve the same per-
formance with self-supervision. Our situation is different,
since we are interested on the performance on real data of a
supervised network trained on synthetic data.

In the case of still images, it is possible to acquire real
datasets with ground truth. The ground truth can be either
estimated by acquiring a burst of images of static scenes and
averaging them [2, 8] or using long exposure times [38]. In
such datasets it is possible to train with supervision on real
data, and it has been observed that training a network with
unrealistic simulated data leads to worse results [1,47].

This motivated research into how to better simulate real
noise. The simplest noise model for raw images is the het-
eroscedastic Gaussian noise model [30] which supposes the
noise to be additive, zero-mean and with a variance as a
affine function of the intensity. This corresponds to the sum
of two noise sources: the shot noise modeling photons ar-
riving at the sensor and the readout noise introduced by the
electronics. In spite of its known limitations, this model is
widely used [5,19,21,39,46,52]. In [10] the authors use an
additive and zero-mean heteroscedastic Gaussian noise but
the variance does not follow an affine model. In [53,55] a
Gaussian mixture model is used. In [47], the shot noise is
considered Poissonian and a Tukey-Lambda distribution is
used to model heavy tails in the readout noise. Addition-
ally, other noise sources are also modeled like the banding
pattern noise (e.g. row noise) or quantization noise.

Other approaches for simulating real noisy sequences
use data-driven generative methods, such as adversarial
generative models [9, 25, 50]. In these works, a genera-

tive network is trained to generate a noise close to the real
one while a discriminative network is trained to determine
whether a noise sample is real or has been generated. In [1]
a neural network entirely composed of invertible layers is
used to simulate realistic noise from clean data. It was
trained on the SIDD dataset [2] and can reproduce the real-
istic noise of the five cameras with a smaller KL-divergence
with respect to the real noise than the heteroscedastic Gaus-
sian noise. Similarly in [48], a CNN is trained to generate
realistic degraded data from clean ones.

For raw denoising, it is important also to simulate the
raw clean ground truth, a problem that has received less
attention. The standard approach is to use SRGB images
and apply a simple inverse camera pipeline to generate the
raw [5, 19]. In [52] the inverse pipeline is implemented by
a network that is learned from real data.

3. Self-supervised training methods

Self-supervised learning methods learn directly from the
noisy data by exploiting differences in the correlation struc-
ture of signal and noise. A part of the input is withheld from
the network, which is trained to predict the withheld part. If
the noise of the withheld part is independent from the one
given to the network, then the network can only minimize
the loss by predicting the clean signal.

The state of the art in self-supervised video denoising
is represented by Multi Frame-to-Frame (MF2F) [14] and
Unsupervised Deep Video Denoising (UDVD) [43]. Both
techniques were found to be efficient on the real raw video
denoising task, and thus we are going to include both of
them in our comparison. We will describe them below.

3.1. UDVD: blind-spot network for video denoising

The UDVD method relies on the blind-spot technique
recently introduced in [3, 26-28]: a special convolutional
network architecture is used, which has a blind-spot at the
center of its receptive field. The network is trained to pre-
dict the value of this pixel in the noisy video. It is predicted
from the surrounding neighbors (both spatial and temporal),
exploiting the spatio-temporal regularity of the clean video.
The blind-spot technique decreases the denoising perfor-
mance compared with a non blind-spot (normal) network,
as many details are lost. This gap is significant in the case
of image denoising, but it is less discernible for video.

Network architecture. For our experiments, we use the
architecture of UDVD [43]. This video denoising network
takes a stack of five frames as input. It consists of two cas-
caded Unets (as in [44]). The first Unet is applied three
times on each group of three contiguous frames. This pro-
duces three outputs that are fused by a second Unet into the
final denoised output. The input stack is rotated by the four
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Figure 2. Architecture of the network introduced in [43]. The
input stack is firstly rotated by multiples of 90° (1). Each four
rotated stacks is processed by the cascaded Unets (2), producing
four outputs (3) which are combined together after the rotations
are inverted and a 1 X 1 convolution (4).

multiples of 90° and denoised by the network. The four
outputs are finally combined by a 1 x 1 convolution. The
architecture is shown in Figure 2.

To generate the blind-spot, the first Unet uses asymmet-
ric convolutional filters that are vertically causal so that the
four outputs only depend on the pixels above. In this way,
the receptive field does not contain the central pixel. The
blind-spot can be removed by shifting the input data one
pixel down after the rotation. The UDVD architecture is
also bias-free [32], which has proved to generalize better to
unseen noise level at test time.

UDVD training. The self-supervised UDVD blind-spot
network is trained by minimizing the L2 loss between the
output of the network and the corresponding noisy input
frame.

3.2. MF2F training

In MF2F, the weights 6 of a network JFy are updated
by minimizing the loss ||x¢ o (Wi —1Fo (St) — fiz1) |1,
where k; is an occlusion mask, W, ;_; is a warping operator
from frame at time ¢ to ¢ — 1 (based on an estimated optical
flow), S; is the stack of frames [fi—4, fi—2, ft, ft—2, ft+4]
and f;_1 is the first past frame serving as target (to prevent
the trivial identity mapping, it is out of the input stack). The
alignment requires a high quality optical flow plus a mask
for alignment errors, which are estimated on the noisy data.
The MF2F results strongly depends on the optical flow ac-
curacy, which is computed using the TV-L1 method [37,51].

The application of the warping operator W; ;1 requires
interpolating the network output at subpixel positions. In-
terpolating the raw image is problematic. A naive approach
would be to pack the raw as a 4 channels image of half
the resolution and warp each channel. However, these low
resolution channels are heavily aliased. We found better
results applying a demosaicing D to the network output,
warping on the RGB domain, and re-mosaicing it after-
wards. That is, our warping operator can be expressed as

raw _ rgb . ..
rie1 = MW,5 1D, where M is the remosaicing op-

erator. For the demosaicing we use the Hamilton-Adams
method [20,22].

4. Methodology

Our goal is to compare two strategies for training a de-
noising network for raw real videos: supervised training on
realistic synthetic data, or self-supervised training directly
on the real data. To that aim we need a dataset of synthetic
noisy videos and one of real natural videos for evaluation.
In the following, we describe our evaluation protocol (see
Figure 3).

Dataset of real videos. Since there are no datasets of real
natural videos with ground truth, we will consider two sur-
rogates: (1) synthetic videos with a comprehensive noise
model, and (2) static real videos with ground truth gener-
ated by frame averaging. The first will allow us to measure
the effect of an oversimplified noise model in the synthetic
dataset of dynamic scenes with natural motion. The sec-
ond is static, but will be useful to have a quantitative eval-
uation on real data. Lastly, we will consider a dataset of
real natural videos for visual evaluation. More details about
these datasets will be given respectively in Sections 5.1, 5.2
and 5.3. For simplicity we will talk about the surrogate
real dataset (abridged to surrogate dataset) in the follow-
ing, even though it might not be actually real data, but our
proxy for real data. The surrogate real dataset is repre-
sented in green in the diagrams of Figure 3.

Dataset of synthetic videos. For each surrogate dataset
we generate a synthetic realistic dataset with clean-noisy
pairs for supervised training (represented in red in Figure 3).
We use the REDS 120 dataset [34] which consists of 270
dynamic sequences (split in 240 training and 30 validation
sequences) of outdoors scenes taken in daylight conditions,
with frame rate 120 fps and of size 1280 x 720. We tem-
porally downsampled each sequence by taking one frame
over three, resulting sequences with 166 frames at 40 fps.
Note that this makes the task more complicated for MF2F
whose results highly depend on the optical flow estimation
accuracy, and therefore on the amount of motion.

These clean sSRGB sequences are unprocessed back to
the raw domain following [5], which we adapted to our
specific case. First, we use a fix color correction matrix
throughout all the dataset. We sample random white bal-
ance coefficients for each sequence, and use the same coef-
ficients for all frames in the sequence. In the supplementary
material, we give more details about our unprocessing pro-
cedure steps. This gives us a dataset of clean raw video
sequences.

Finally, we add realistic noise to the unprocessed
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(b) Fine-tuning on the surrogate dataset

cylinder, the synthetic dataset is in red. (a) The model-supervised is trained with

supervision on the synthetic dataset with synthetic noise (either with or without blind-spot). (b) The previous model-supervised are fine-
tuned on the surrogate dataset. The steps are (1) fine-tune on real data (2) (when possible) fine-tune on real clean data but with synthetic
noise (3) Self-supervised fine-tuning directly on noisy data (UDVD and MF2F).

ground-truth for simulating real noisy sequences from the
clean ones. For that purpose, a heteroscedastic Gaussian
noise model is estimated from the surrogate dataset [30].
More details about the noise estimation can be found in the
supplementary material.

Note that the synthetic dataset is tailored to model the
surrogate dataset: we use the same Bayer pattern, the
ranges of both datasets are matched and the parameters of
the synthetic noise model are fitted to approximate the noise
in the surrogate dataset.

4.1. Networks

We will use for our experiments the UDVD architecture
described in the previous section. This network is compu-
tationally costly and has a significant memory footprint. In
this paper, we do not focus on achieving the state of the art
and reduce this architecture by a factor 4 by using 1/4 of the
channels in all layers. This architecture can be used with or
without the blind-spot.

Due to the small size of the surrogate dataset, we fol-
lowed [14,49] and pre-trained the network with supervision
on the bigger synthetic dataset.

We pre-trained this architecture with a blind-spot as well
as without the blind-spot (denoted as normal). The reason
is that we do not need a blind-spot network for applying
MF2F as well as for other supervised training strategies
discussed later; while the self-supervised UDVD requires
a blind-spot.

For comparing the supervised and self-supervised frame-
works, we consider different training strategies. Figure 3
summarizes them. Note that once trained, the evaluation of
networks trained with or without supervision requires the
same amount of time and computational resources. We now
describe the different networks and how we trained them.

Model-supervised net This network is trained with su-
pervision on the synthetic dataset. We train two versions of

this network: normal and with the blind-spot. The latter will
be used as the pre-trained network for the self-supervised
blind-spot fine-tuning, while the former is the supervised
network trained on synthetic data that we wish to compare
with the self-supervised approaches.

Gold standard net The gold standard solution for such
training is to train with supervision directly on the real data.
Although this is not possible in practice because it requires
to have access to a large dataset with clean-noisy pairs, it is
possible here to fine-tune the normal model-supervised net
on the surrogate dataset. This will give us a reference of
the best training that could be achieved to situate the perfor-
mance of the other trainings.

Noise-ablation net Two kinds of modeling were used for
the supervised trainings: the unprocessing of sSRGB to gen-
erate synthetic raw clean videos and the noise. When possi-
ble, we fine-tune an noise-ablation net that will allow us to
differentiate the impact of the noise model from that of the
generation of the clean data by eliminating the unprocessing
step. To this aim, we generate noisy images by adding syn-
thetic heteroscedastic Gaussian noise to the clean ground
truth of the surrogate dataset. We fine-tune the normal
model-supervised net on this data with supervision from the
real ground truth.

Self-Supervised blind-spot We fine-tune the pre-trained
UDVD architecture with blind-spot on the surrogate dataset
with self-supervision following [43].

MF2F net A second self-supervised network is trained
following the MF2F framework as explained in the Sec-
tion 3.2. Given that MF2F does not requires the network to
have a blind-spot, we use the weights of the pre-trained
normal model-supervised net as starting point of the fine-
tuning.
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Figure 4. Comparison of the different training strategies for the Exp I.

5. Experiments

In this section, we first describe the setting of each of
the three experiments together with the obtained results for
both approaches. For better visualization, the video frames
displayed in this section have been gamma corrected (with
v = 2.2), demosaicked with [24] and white-balanced.

5.1. Exp I: dynamic scenes with simulated noise

In this experiment we use the REDS 120 dataset to
generate the clean raw data for both the surrogate dataset
and the synthetic dataset. The difference lies on the noise
model: we use the Poisson-Tukey lambda distribution
of [47] as noise model for the surrogate dataset. This noise
models extreme low-light conditions. In [47] the authors
provide parameters for three cameras. We use the noise
parameters estimated for the Nikon D850. The noise in
the synthetic dataset is the heteroscedastic Gaussian with
parameters set to approximate the Poisson-Tukey lambda
noise of the surrogate dataset. All networks are pre-trained
on the training split of the synthetic dataset, and the fine-
tunings are performed using the training split of the surro-
gate dataset.

Results. The first row of Table | summarizes the aver-
age PSNR on our surrogate validation set for the different
training strategies. The results show that the self-supervised

approaches outperform the supervised training in the syn-
thetic dataset: the self-supervised blind-spot network sur-
passes the model-supervised network by almost 0.7dB and
has a much higher SSIM value. The results of the MF2F
network have a PSNR similar to the model-supervised, but
has a higher SSIM.

From Figure 4, we notice that both self-supervised net-
works recover more details and have a better reconstruc-
tion of the textures. The self-supervised blind-spot is even
close to the gold standard. The result of MF2F has a small
color shift, which is why it has a lower PSNR. As the het-
eroscedastic Gaussian noise model does not fully approx-
imate the noise of the surrogate real test set, the model-
supervised net results contain denoising artifacts which de-
crease its performance. On the contrary the self-supervised
networks learn the actual noise of this simulated camera and
produce results which compete with the gold standard.

5.2. Exp II: real static videos as surrogate data

In the previous experiment, we use artificial ground
truth in the surrogate dataset. In this section, we are in-
terested in the comparison between model-supervised and
self-supervised on real data. To provide quantitative re-
sults, we use the Smartphone Image Denoising Dataset
(SIDD) [2], as it has ground truth. It provides images of
ten static scenes, taken by five real cameras with different
ISO levels, shutter speeds or illuminations levels. For each,



Supervised networks Self-supervised networks
Exp Gold standard | Noise-ablation Model—superw.sed ME2F blind-spot
net net normal blind-spot
I 29.90/.8393 N/A 28.77/.7886 | 27.89/.8862 || 28.76/.8153 | 29.46/.9325
II 50.03/.9913 50.03/.9913 | 47.22/.9847 | 46.55/.9938 || 47.42/.9849 | 48.71/.9965

Table 1. Average PSNR and SSIM over all the sequences of the surrogate real test dataset. The model-supervised normal do not have
a blind-spot. The model-supervised with blind-spot serves as a pre-trained for the self-supervised UDVD. In Experience I, the surrogate
dataset is synthetic. Thus we cannot derive an noise-ablation net for this experiment as it would be identical to the model-supervised
normal.

(e) Model-supervised normal

(f) Model-supervised blind-spot

(g) MF2F (h) self-supervised blind-spot

Figure 5. Comparison of the different training strategies for the Experience II: the normal network trained with supervision (e) recovers less
details than networks trained with self-supervision (see the red rectangles) and does not preserve correctly the colors (colors are washed in

the orange and red pens). Furthermore, the model-supervised leaves some residual noise (see the blue rectangles).

1SO Supervised Self-supervised
model-sup. normal MF2F blind-spot

3200 42.10/.9865 43.63/.9875 | 41.79/.9840

12800 35.91/9681 38.80/.9711 | 37.93/.9688

Table 2. Evaluation on the indoor CRVD dataset [49]. No network
was trained on this dataset (even the self-supervised ones).

the authors give an estimated ground-truth image obtained
by averaging a burst of frames. We generate a ground truth
constant video from the ground truth image, as there is no
motion in the scene. We use eight static sequences of about
150 frames each obtained with the Google Pixel camera for
ISO level 800. This surrogate dataset is split into six se-
quences as a fine-tuning pool and two as a testing/validation
pool. For both supervised and self-supervised networks,
quantitative results are evaluated on the testing pool of this
surrogate dataset.

Results. The average PSNR and SSIM on the real valida-
tion set are presented in Table 1. As for Experiment I, the
trainings with self-supervision lead to a better performance
than the trainings done in a supervised setting. On aver-
age, the self-supervised blind-spot outperforms the model-

supervised by 1.5dB. In Figure 5, the results with the self-
supervised networks are sharper and have more details. Fig-
ure 6 shows that the model-supervised network creates also
artifacts (see near the text).

In this experiment, the synthetic dataset differs from the
surrogate both in the noise model and the ground truth.
In order to differentiate this effects, we look at the results
of the noise-ablation network, which is trained using clean
real data as ground truth, with the simulated heteroscedastic
noise. It is remarkable that the result of the noise-ablation
network matches exactly with the one of the gold standard
(both in PSNR and SSIM). Visual inspection confirms that
both results are indeed very similar. We deduce from this
that in this case, the heteroscedastic noise model is a good
approximation of the real noise, and therefore the problem
of the model-supervised network is most likely due to the
unprocessed synthetic clean data. On the contrary, in Exper-
iment I, the clean data was the same for both the surrogate
and synthetic datasets, thus the failure of model-supervised
net was caused by a bad noise modeling.

5.3. Exp III: real dynamic scenes

In our final experiment, we will use the dataset intro-
duced in [49] for a visual comparison. It consists of real
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Figure 6. Comparison of the different training strategies for the Experience II: the model-supervised normal leaves some residual noise

(see around the letters).

noisy raw videos of 10 outdoor dynamic scenes acquired
with a surveillance camera for five ISO levels. For such real
data, we do not have ground-truth. As before we pre-train
the networks on the synthetic REDS 120 dataset with het-
eroscedastic noise. We considered two ISO levels: 3200
and 12800, and fit the parameters of the noise model to ap-
proximate the real noise for each ISO level.

Results. Visual results are shown in Figure 1. In this set-
ting as well, the self-supervised training yields more details
leading to a better global reconstruction of the objects.

In [49], the authors also acquire a dataset of videos with
ground-truth of indoor scenes taken with the same camera
(denoted CRVD). To simulate motion the authors produced
stop-motion videos: the camera is fixed on a tripod and sev-
eral images are taken for ground-truth estimation via aver-
aging. Then, objects in the scene are slightly moved and the
process is repeated to acquire new frames. This results in an
unnatural motion. As an additional study, we evaluated the
previous networks (trained on either the synthetic dataset
or the real outdoor data with real motion) on this indoor
dataset. No fine-tunings were done to the indoor dataset as
it is very small (10 sequences of only 7 frames each). In
particular, the self-supervised networks were trained for the
CRVD outdoor dataset and all the networks were trained for
real motion. This study is another illustration of the network
behavior in case of dataset bias. The quantitative results for
two ISO levels 3200 and 12800 are gathered in Table 2. For
both ISOs, self-supervised outperforms the supervised net-
work.

6. Conclusion

In this work we propose a protocol to compare in fair
conditions two training approaches for denoising real raw
videos: supervised training on synthetic data and self-
supervised training on the real data. The difficulty of ac-
quiring real videos with ground truth prevents us for doing
a simple comparison. To address this issue, we set three
experiments covering different use cases such as low light
conditions, real motion, real noise at different ISO levels.
In all cases, the self-supervised approaches outperformed
the supervised one. Among self-supervised techniques, the
blind-spot approach UDVD gave better results than MF2F.
The main caveat of UDVD is that blind-spot networks tend
to be costlier. MF2F can be used to train any multi-frame
network architecture. Our experiments also shed light on
how to improve the supervised approach. For normal illu-
mination conditions (such as in the SIDD dataset) the main
cause of the generalization gap of supervised training on
synthetic data, is not necessarily the simple heteroscedastic
Gaussian noise, indicating that more effort needs to be put
in better modeling of the clean raw data.
Acknowledgments. Work supported by a grant from
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1. Unprocessing of SRGB dataset

Our synthetic dataset is synthesized from the REDS
dataset [4]. It consists in clean SRGB videos with real mo-
tion. In order to create the synthetic dataset, we need two
steps: unprocess back sRGB data to the raw domain and
adding realistic noise. In this section, we talk about the un-
processing steps. We follow Brooks et al. [2], with some
modifications to adapt it to our case. First the REDS dataset
is made with 8-bits quantized frames. To reduce the ef-
fect of the quantization we add a quantization noise to each
pixel value sampled from uniform distribution in the range
[—1/2,1/2]. Originally, the authors of [2] provide the Cam-
era Color Matrix for four different cameras from the Darm-
stadt Noise Dataset (DND) [5]. In our case we want to sim-
ulate a single camera, thus we use only one of them.

The white balance is image dependent and thus invert-
ing it is not straightforward. In [2], the authors estimated
a range of realistic red and blue gains from DND (normal-
ized with respect to the green gain being set to 1). They
found that the red gain gR has to be sampled uniformly in
[1.9,2.4] and the blue gain ¢® in the range [1.5,1.9]. They
also consider a global gain ¢#°* applied to all channels (to
invert the brightness adjustment in the forward pipeline).
This global gain is sampled from a Gaussian distribution
N(0.8,0.1). The total per-channel gain for channel ¢ is
then g&'°®d /g¢. Occasionally the global gain can become
greater than 1, which causes saturation later in the pipeline.
This is wanted by Brooks et al. to create highlights and
saturation. However, none of our surrogate datasets con-
tains saturated areas, thus we prevent our per-channel gain
to exceed one by sampling a global gain from a truncated
Gaussian instead, clipping its value to one.

For each experiment, the clean synthetic raw dataset is
tailored to model the surrogate dataset. We use the same
Bayer pattern and we match the ranges of both datasets. For
that purpose, we apply to the synthetic videos an affine tone
mapping that maps the 1% and the 99% percentiles of the
synthetic dataset to those of the surrogate dataset.

The next subsection describes how we generate the noisy

counterpart of the clean raw data.

2. Simulating realistic noise

Let {u; } 1 be the set of unprocessed clean data and {9, } s
be a dataset of real noisy data (the surrogate dataset).
Given the clean data {u;}; we can generate realistic noisy
data {v;}; by applying the heteroscedastic Gaussian noise
model. For that purpose, the steps to follow are:

(1) Estimate from {9;}; the parameters a and b of an het-
eroscedastic Gaussian noise model.

(2) Simulate a set of sequences with synthetic noise {v;}s
where each v; = u; + n; withn; ~ N (O, vau; + b). The
pairs of sequences ({u;}r, {v;}) can then be used for train-
ing with supervision.

For addressing the point 1, we used two different strate-
gies. For the Experiment I, we model a camera with a syn-
thetic noise generator [7] and thus we can simulate the ac-
quisition of flat-field images. Contrarily for the Experiment
II and III, we want to model the noise model of a given cam-
era having only a few noisy sequences. We followed two
different methods to evaluate the noise model parameters.
Both are described in the next subsection.

2.1. Noise parameters estimation

Estimation for Experiment I. In Experiment I we use
the noise model introduced in [7], which models extreme
low-light noise as a sum of a Poisson and a Tukey lambda
distributions. In that sense, we have a simulated camera and
the goal is to model its noise by a heteroscedastic Gaussian
model whose variance is 0?(u) = au + b, where u is the
clean frame. To calibrate the a, b parameters, we simulate
the acquisition of flat-field images, which is the usual way
to calibrate signal dependent noise models.

We sample a range of constant patches P; with intensity
level <. For each patch P; we generate a noisy patch P, us-
ing the Poisson-Tukey lambda noise model and compute the
variance o; of the noisy patches. The parameters a and b are
deduced from the points cloud (4, o;) using the least square
error method. Figure 2 shows a plot of this points cloud and
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Figure 1. Example of actual histogram of the physic-based noise
model ( [7]) and the heteroscedastic Gaussian fitting (the y-axis is
in logarithmic scale).
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Figure 2. Variance of the noise model [7] and the estimated linear
model.
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Figure 3. Difference of the variance of the noise model [7] and the
estimated linear model.

the estimated linear model. The variance estimated from
the Poisson-Tukey lambda noise is (as expected) an affine
function of the intensity, therefore the affine model fits per-
fectly. Figure 3 shows the difference between the actual
variance and the estimated linear model. We can see that the
error is very small relatively to the variance value. The het-
eroscedastic Gaussian model will have the same intensity-
variance curve, but the distributions are very different. Fig-
ure | shows the histogram of the variance for a patch of
middle range intensity. The estimated Gaussian distribution

is also displayed. It can be seen that around the mean, the
Poisson-Tukey lambda noise is well approximated by the
Gaussian distribution. However, the Tukey lambda compo-
nent has heavier tails than the Gaussian distribution.

Estimation in the Experiments IT and III. In the case of
Experiments II and III, the surrogate datasets consist of real
noisy sequences but cannot generate more samples. Thus
we need to estimate the camera noise level function (NLF)
directly from the real data (SIDD [!] in Experiment II or
CRVD [8] for the Experiment III). For that purpose, we es-
timate the NLF of each frame from each sequence of the
surrogate dataset using the method of Ponomarenko [3, 6].
For each individual noisy frame v;, this method estimates a
set of intensity-variance points which are samples from the
NLF. We gather estimated intensity-variance points of each
frame into a large point cloud. Figure 4 shows this point
cloud for Experiment II (one camera of the SIDD dataset).
We use transparent points, thus the level of opacity gives an
indication of the density in the point cloud. We then fit an
affine model 02 (u) = au+b by minimizing the least square
error.
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