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Figure 1. 3D (top) and 2D (bottom) networks processing point clouds and images of the same scene extract features that contain comple-
mentary information. Indeed, 2D and 3D effective receptive fields [34] centered on a point n focus on different portions of the scene, i.e.,
2D or 3D neighborhoods respectively. Thus, corresponding features have different content by construction. We exploit this property to
reduce the domain gap in 3D semantic segmentation.

Abstract

3D semantic segmentation is a critical task in many real-
world applications, such as autonomous driving, robotics,
and mixed reality. However, the task is extremely chal-
lenging due to ambiguities coming from the unstructured,
sparse, and uncolored nature of the 3D point clouds. A pos-
sible solution is to combine the 3D information with others
coming from sensors featuring a different modality, such
as RGB cameras. Recent multi-modal 3D semantic seg-
mentation networks exploit these modalities relying on two
branches that process the 2D and 3D information indepen-
dently, striving to maintain the strength of each modality.
In this work, we first explain why this design choice is ef-
fective and then show how it can be improved to make the
multi-modal semantic segmentation more robust to domain
shift. Our surprisingly simple contribution achieves state-
of-the-art performances on four popular multi-modal unsu-
pervised domain adaptation benchmarks, as well as better
results in a domain generalization scenario.

1. Introduction

3D semantic segmentation is a critical task in many
real-world applications, such as autonomous driving and
robotics. It involves assigning labels to 3D points in a point
cloud based on their semantic meaning. However, this task
can be extremely challenging due to ambiguities coming
from the unstructured, sparse, and uncolored nature of the
3D point clouds. Fortunately, combining 3D information
with others coming from sensors with a different modality,
such as RGB cameras, can help to address these shortcom-
ings. Indeed, by combining multi-modal data, we can lever-
age the strengths of each modality to produce more com-
prehensive and accurate segmentations. For example, in au-
tonomous driving scenarios, RGB cameras and LiDARs are
commonly used together. RGB cameras provide dense, col-
ored, and structured information, but they may fail in dark
lighting conditions. On the other hand, LiDARs are robust
to light conditions, but the point clouds present the prob-
lems highlighted above. By combining these two modali-
ties, we can obtain a richer understanding of the environ-
ment and make more robust and precise 3D segmentations.
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Several recent approaches for multi-modal 3D semantic
segmentation [24, 25, 39, 51, 68] leverage a peculiar two-
branch 2D-3D architecture, in which images are processed
by a 2D convolutional network, e.g., ResNet [18], while
point clouds by a 3D convolutional backbone, e.g., Spar-
seConvNet [15]. By processing each modality indepen-
dently, each of the two branches focuses on extracting fea-
tures from its specific signal (RGB colors or 3D structure
information) that can be fused effectively due to their in-
herent complementarity in order to produce a better seg-
mentation score. Indeed, averaging logits from the two
branches provides often an improvement in performance,
e.g., a mIoU gain from 2% to 4% in almost all experiments
in [24]. Although we agree that each modality embodies
specific information, such as color for images and 3D coor-
dinates for point clouds, we argue that the complementarity
of the features extracted by the two branches is also tightly
correlated to the different information processing machin-
ery, i.e., 2D and 3D convolutions, which makes networks
focusing on different areas of the scene with different re-
ceptive fields. Indeed, in Fig. 1, given a point belonging to
the red car, we visualize the effective receptive field [34] of
the 2D and 3D networks (red ellipses). As we can clearly
see from the receptive fields in the right part of the figure,
the features extracted by the 3D network mainly leverage
points in a 3D neighborhood, i.e., include points of the car
surface. In contrast, the features extracted by the 2D net-
work look at a neighborhood in the 2D projected space, and
thus they depend also on pixels of the building behind the
car, which are close in image space but far in 3D. We ar-
gue that this is one of the main reasons why the features
from the two branches can be fused so effectively. Based
on the above intuition, we propose to feed 3D and RGB
signals to both networks as this should not hinder the com-
plementarity of their predictions, with the goal of making
the network more robust to the change of distributions be-
tween the training and the test scenarios. This problem is
typically referred to Domain shift in the literature. Feed-
ing both branches with both modalities would make: i) the
2D network more robust to domain shifts, as depth infor-
mation (z coordinates of point clouds projected into image
space) is more similar across different domains, as shown
in several papers [6, 9, 44, 48, 61, 65]; ii) the 3D network
more capable of adapting to new domains thanks to RGB
information associated with each point which allows learn-
ing better semantic features for the target domain, when
this is available, using Unsupervised Domain Adaptation
(UDA) approaches. Thus, we propose a simple architec-
ture for multi-modal 3D semantic segmentation consisting
of a 2D-3D architecture with each branch fed with both
RGB and 3D information. Despite its simplicity, our pro-
posal achieves state-of-the-art results in multi-modal UDA
benchmarks, surpassing competitors by large margins, as

well as significantly better domain generalization compared
to a standard 2D-3D architecture [25]. Code available at
https://github.com/CVLAB-Unibo/MM2D3D. Our
contributions are:

• shining a light on the intrinsic complementarity of re-
cent multi-modal 3D semantic segmentation networks
based on 2D-3D branches;

• proposing a simple yet remarkably effective baseline
that injects depth cues into the 2D branch and RGB
colors into the 3D branch while preserving the com-
plementarity of predictions;

• our network achieves state-of-the-art results in popular
UDA benchmarks for multi-modal 3D semantic seg-
mentation and surpasses standard 2D-3D architectures
in domain generalization.

2. Related works
Point Cloud Semantic Segmentation. 3D data can be

represented in several ways such as point clouds, voxels,
and meshes, each with its pros and cons. Similarly to pix-
els in 2D, voxels represent 3D data as a discrete grid of the
3D space. This representation allows using convolutions
as done for images. However, performing a convolution
over the whole 3D space is memory intense, and it does
not consider that many voxels are usually empty. Some 3D
CNNs [45, 54] rely on OctTree [35] to reduce the mem-
ory footprint but without addressing the problem of man-
ifold dilation. SparseConvNet [15] and similar implemen-
tations [11] address this problem by using hash tables to
convolve only on active voxels, allowing the processing of
high-resolution point clouds with only one point per voxel.
Aside from cubic discretization, some approaches [75, 77]
employ cylindrical voxels. Other methods address the prob-
lem with sparse point-voxel convolutions [53]. Differently,
point-based networks process directly each point of a point
cloud. PointNet++ [42] extract features from each point,
and then extract global and local features by means of max-
pooling in a hierarchical way. Many improvements have
been proposed in this direction, such as continuous convo-
lutions [55], deformable kernels [55] or lightweight alter-
natives [23]. In this work, we select SparseConvNet [15]
as our 3D network as done by other works in the field
[24, 39, 51, 68] since it is suitable for 3D semantic segmen-
tation of large scenes.

Multi-Modal Learning. Exploiting multiple modalities
to learn more robust and performant networks is a well-
studied field in the literature [1, 38]. Among them, sev-
eral approaches address the problem of semantic segmen-
tation exploiting RGB and 3D structure information, either
with the final goal of segmenting images, e.g., RGB-D net-
works [17, 58] or point clouds, e.g., LiDAR + RGB ap-
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Figure 2. Framework overview. The RGB image and the sparse depth map obtained from the projection of the corresponding point cloud
are fed to a custom 2D architecture to extract point-wise features. The same point cloud and sampled colors from the RGB image are
given in input to the 3D Network. Then, two main classifiers output the main predictions to be used at test time. Moreover, two auxiliary
classifiers are used at training time only to allow the exchange of information across branches.

proaches [16, 28, 68]. To speed-up research in this promis-
ing field, several datasets have been collected [3, 5, 13, 14]
with 3D point clouds, images, and annotations for tasks
such as 3D object detection or 3D semantic segmentation.
Recently, some multi-modal methods [24, 39, 51, 68] show
that a framework composed of a 2D and a 3D network can
obtain very good performance in popular 3D segmentation
benchmarks when averaging the scores coming from the
two branches. This result is ascribed to the complemen-
tarity of the predictions due to the different modalities pro-
cessed by each branch (either RGB or point clouds). In this
paper, we analyze the improvement obtained by fusing the
scores, and we argue that it mainly depends on the fact that
the two networks extract complementary features because
of the different receptive fields of the 2D and 3D networks.
Based on this intuition, we propose a simple yet effective
modification of the 2D-3D framework, that consists of pro-
viding both modalities as input to both branches.

Unsupervised Domain Adaptation. Unsupervised Do-
main Adaptation is the research field that investigates how
to transfer knowledge learned from a source annotated do-
main to a target unlabelled domain [63]. In the last few
years, several UDA approaches have been proposed for
2D semantic segmentation, using strategies such as style-
transfer [8,10,19,27,31,37,41,67,71,73], adversarial train-
ing to learn domain-invariant representations [4, 20, 56, 57,
59, 62, 64, 69, 74] or self-training [7, 21, 22, 72, 78]. Re-
cently, some works demonstrated the effectiveness of using
depth information to boost UDA for 2D semantic segmen-
tation [6, 9, 43, 44, 48, 61, 65]. In our work, we take inspi-
ration from these findings, and we feed the projected point
cloud in input to also to the 2D network, considering depth
as a rich source of information robust to the domain shift.
Recently some works address UDA also for semantic seg-

mentation of point clouds [2, 26, 29, 40, 46, 49, 66, 70, 76].
Very recently, some works have addressed the challenging
multi-modal 3D semantic segmentation task [24,25,39,51].
XMUDA [24] is the first work that focuses on UDA in the
above setting, it defines a new benchmark and a baseline ap-
proach to adapt to a new target domain with an unsupervised
cross-modal loss. [25] extend it, by proposing a more solid
and comprehensive benchmark. DsCML [39] also extends
XMUDA deploying adversarial training to align features
across modalities and domains. In our work, we address the
same multi-modal UDA scenarios introduced in [25], and
we propose a simple yet effective architecture that is more
robust to domain shift and can be adapted to new unlabelled
target domains. Our framework, depicted in Fig. 2.

3. Method
Setup and Notation. We define input source samples

{x2D
s ,x3D

s } ∈ S and target samples {x2D
t ,x3D

t } ∈ T ,
with x2D being the 2D RGB image and x3D the corre-
sponding point cloud, with 3D points in the camera refer-
ence frame. Note that x3D contains only points visible from
the RGB camera, assuming that the calibration of the two
sensors is available for both domains and does not change
over time. We assume the availability of annotations y3D

s

only for the source domain for each 3D point. When tack-
ling the UDA scenario, we also have at our disposal the
unlabeled samples from the target domain. Our goal is to
obtain a point-wise prediction N × C for x3D

t , with N and
C being the number of points of the target point cloud and
the number of classes, respectively.

3.1. Base 2D/3D Architecture

We build our contributions upon the two independent
branches (2D and 3D) architecture proposed in [25]. The
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Figure 3. Depth comparison during daylight or night. Differently,
from the RGB image (left column), a sparse depth map obtained
by projecting a LiDAR scan into the image plane is not affected
by the light conditions.

2D branch processes images to obtain a pixel-wise predic-
tion given x2D and it consists of a standard 2D U-Net [47].
On the other hand, the 3D branch takes in input point clouds
to estimate the class of each point of x3D and it is imple-
mented as a 3D sparse convolutional network [15]. Thanks
to the fact that 2D-3D correspondences are known, 3D
points can be projected into the image plane to supervise
the 2D branch, as supervision is provided only for the sparse
3D points. We denote the 3D semantic labels projected into
2D with the symbol y3D→2D. As argued by [25], such de-
sign choice allows one to take advantage of the strengths of
each input modality, and final predictions can be obtained
by averaging the outputs of the two branches to achieve an
effective ensemble. In our work, we adopt the same frame-
work, and we give an intuitive explanation of why this de-
sign choice is particularly effective. In particular, we reckon
that the two predictions are complementary not only for the
input signals being different but also for the fact the two
branches focus on different things to determine their final
predictions. Indeed, 3D convolutions produce features by
looking at points that are close in the 3D space, while the 2D
counterparts focus on neighboring pixels in the 2D image
plane. Therefore, given corresponding 2D and 3D points,
the two mechanisms implicitly produce features containing
complementary information. In the right part of Fig. 1 we
visualize the Effective Receptive Fields (ERF) [34] of a 2D
U-Net with backbone ResNet34 [18] and of a 3D U-Net
with backbone SparseConvNet [15]. It is worth highlight-
ing that we do not focus on the theoretical yet on the effec-
tive receptive field, which is computed by analyzing the real
contribution of each input point to the final prediction (the
hotter the color intensity in the visualization, the larger the
point contribution). Comparing the re-projected 2D ERF
into 3D and the 3D ERF we can clearly appreciate that the
2D network focuses on sparse 3D regions, i.e., from the car
to the building in the background, while the 3D counter-
part reasons on a local 3D neighborhood (only car points).
With this intuition in mind, we argue that by feeding the
RGB signal to the 3D network, and the 3D information

Figure 4. 2D Network of our framework. It is composed of a
depth encoder and an RGB encoder to process the two inputs in-
dependently. The segmentation decoder leverages the multi-scale
features of both encoders to predict semantic segmentation labels.

to the 2D backbone, we would still obtain complementary
features that can be effectively fused together. Moreover,
it is well-known that employing depth information as in-
put to 2D segmentation networks can make it more robust
to domain shift [6, 17]. At the same time, we posit that
the 3D network with RGB information may be able to ex-
tract better semantic features. Differently from previous ap-
proaches that employ two independent architectures, based
on the above considerations, we propose our multi-modal,
two-branch framework named MM2D3D. In Sec. 3.2 we
show how a point cloud can be used to obtain a stronger and
more suitable input signal for the 2D network. Similarly, in
Sec. 3.3 we describe our multi-modal 3D network.

3.2. Depth-based 2D Encoder

In this section, we focus on how we can use point clouds
to make a 2D segmentation architecture more robust to do-
main shift. Inspired by [6, 17], we propose to use depth
maps as an input signal that is less influenced by the domain
gap. As we can observe from the two depth maps in Fig. 3,
it is hard to understand which one was captured during day
or night. At the same time, some objects such as the car
can be distinguished by only looking at depths (bottom right
of the second depth map). Thus, depth maps provide use-
ful hints to solve the task of semantic segmentation. Given
these considerations, we argue that exploiting such invari-
ant information may alleviate the domain shifts and can be
used to extract discriminative features for the segmentation
task. At a first glance, injecting 3D cues into the 2D branch
may seem redundant as the 3D network already has the ca-
pability to reason on the full 3D scene. However, given that
the two networks have very different receptive fields, we
can exploit such additional and useful information without
the risk of hindering the complementarity of the two signal
streams. Assuming point clouds expressed in the camera
reference frame and the availability of the intrinsic camera
matrix, we can project the original 3D point cloud to ob-
tain a sparse depth map. In practice, the value of the z axis
is assigned to the pixel coordinate (u, v) obtained by pro-
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jecting a 3D point into the image plane. Similarly to [17],
to process both inputs, we modify the 2D encoder of the
2D U-Net architecture by including an additional encoder
to process the sparse depth maps obtained from the point
cloud. As can be seen in Fig. 4, the two streams i.e. one for
the RGB image and the other for the sparse depth map, are
processed independently. Then, the concatenated depth and
RGB features are processed by a decoder, composed of a
series of transposed convolutions and convolutions in order
to obtain semantic predictions of the same size as the input
image. Moreover, features from layers of 1

2 to 1
16 of the in-

put resolution are concatenated using skip connections with
the corresponding layer of the decoder. This simple design
choice allows semantic predictions to be conditioned also
on the input depth signal, without altering the RGB encoder
that provides useful classification features. Furthermore,
without altering the RGB encoder, we can take advantage
of a pre-trained architecture on ImageNet [12] as done by
our competitors.

3.3. RGB Based 3D Network

In this work, we focus on the 3D convolutional network,
SparseConvNet [15], as it can segment large scenes effi-
ciently. In this network, the initial point cloud is first vox-
elized such that each 3D point is associated with only one
voxel. Then, rather than processing the entire voxel grid,
these models work with a sparse tensor representation ig-
noring empty voxels for the sake of efficiency. The net-
work associates a feature vector to each voxel, and convo-
lutions calculate their results based on these features. A
standard choice for the voxel features is to simply assign to
it a constant value, i.e., 1. Although these strategies have
been shown to be effective [50, 68], the feature vector can
be enriched to make it even more suitable for semantic seg-
mentation. Based on our intuition of the different receptive
fields, we can borrow information from the other modality
to improve the performance of each branch, still preserv-
ing 2D-3D feature complementarity. Thus, we use RGB
colors directly as features for each voxel of the SparseCon-
vNet. Moreover, we design a simple yet effective strategy
to let the 3D network decide whether to use or not this in-
formation. More specifically, the original RGB pixel values
are fed to a linear layer that predicts a scalar value α to be
multiplied by the color vector. For instance, learning this
scaling could be useful in the UDA scenario, where we can
train on unlabelled target samples, to discard RGB colors in
case they do not provide any useful information, e.g., dark
pixels in images acquired at night time.

3.4. Learning Scheme

Supervised Learning. Given the softmax predictions of
the 2D and 3D networks, P2D and P3D, we supervise both
branches using the cross-entropy loss on the source domain:

Lseg(xs,ys) = − 1

N

N∑
n=1

C∑
c=1

y(n,c)
s logP (n,c)

xs
(1)

with (xs,ys) being either (x2D
s ,y3D→2D

s ) or (x3D
s ,y3D

s ).
Cross-Branch Learning. To allow an exchange of in-

formation between the two branches, [25] and [39] add an
auxiliary classification head to each one. The objective of
these additional classifiers is to mimic the other branch out-
put. The two auxiliary heads estimate the other modal-
ity output: 2D mimics 3D (P2D→3D) and 3D mimics 2D
(P3D→2D). In practice, this is achieved with the following
objective:

LxM(x) = DKL(P
(n,c)
x ||Q(n,c)

x ) (2)

= − 1

N

N∑
n=1

C∑
c=1

P (n,c)
x log

P
(n,c)
x

Q
(n,c)
x

with (P ,Q) ∈ {(P2D, P3D→2D), (P3D, P2D→3D)} where P
is the distribution from the main classification head which
has to be estimated by Q. Note that in Eq. (2), x can belong
to either T or S. This means that, in the UDA scenario,
Eq. (2) can also be optimized for T , forcing the two net-
works to have consistent behavior across the two modalities
for the target domain as well without any labels.

Self-Training. Only in the UDA scenario, where unla-
belled target samples are available, as done by [25], we per-
form one round of Self-Training [78] using pseudo-labels
[30]. Specifically, after training the model with Eq. (1) for
the source domain and Eq. (2) on both domains, we gen-
erate predictions on the unlabeled target domain dataset to
be used as pseudo ground truths, ŷt. Following [25], we
filter out noisy pseudo-labels by considering only the most
confident predictions for each class. Then, we retrain the
framework from scratch the model minimizing the follow-
ing objective function:

L = Lseg(xs,ys) + λtLseg(xt, ŷt) (3)
+ λxsLxM(xs) + λxtLxM(xt)

4. Experiments
4.1. Datasets

To evaluate our method, we follow the benchmark in-
troduced in [25] because it comprehends several interesting
domain shift scenarios. The datasets used in the benchmark
are nuScenes [5] A2D2 [14], SemanticKITTI [3], and Virtu-
alKITTI [13] in which LiDAR point clouds and camera are
synchronized and calibrated so that the projection between
a 3D point and its corresponding 2D image pixel can always
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Modality Method USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

Baseline (Source only) 58.4 62.8 68.2 47.8 68.8 63.3 26.8 42.0 42.2 34.2 35.9 40.4

Uni-modal
MinEnt [60] 57.6 61.5 66.0 47.1 68.8 63.6 39.2 43.3 47.1 37.8 39.6 42.6
Deep logCORAL [36] 64.4 63.2 69.4 47.7 68.7 63.7 41.4 36.8 47.0 35.1 41.0 42.2
PL [32] 62.0 64.8 70.4 47.0 69.6 63.0 21.5 44.3 35.6 34.7 41.7 45.2

Multi-modal
xMUDA [24] 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
DsCML* [39] 52.9 52.3 56.9 51.2 61.4 61.8 31.8 32.8 34.8 25.4 32.6 33.5
MM2D3D (Ours) 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2

Oracle 75.4 76.0 79.6 61.5 69.8 69.2 66.3 78.4 80.1 59.3 71.9 73.6

Table 1. Results for UDA for 3D semantic segmentation with both uni-modal and multi-modal adaptation methods. We report per-
formance for each network stream in terms of mIoU. ‘Avg’ column denotes the obtained by taking the mean of the 2D and 3D predictions.
* indicates trained by us using official code.

be computed. It is important to note that only 3D points vis-
ible from the camera are used for both training and testing.
NuScenes consists of 1000 driving scenes in total, each of
20 seconds, with 40k annotated point-wise frames taken at
2Hz, and it is deployed to implement two adaptation scenar-
ios: day-to-night and country-to-country. The former ex-
hibits severe light changes between the source and the target
domain, while the latter covers changes in the scene layout.
In both settings adaptation is performed on six classes: ve-
hicle, driveable surface, sidewalk, terrain, manmade, veg-
etation. The third challenging benchmark foresees adap-
tation from synthetic to real data, and it is implemented
by adapting from VirtualKITTI to SemanticKITTI. Since
VirtualKITTI only provides depth maps, we use the same
simulated LiDAR scans from our competitor [25] for a fair
comparison. Note also that to accommodate for the differ-
ent classes in the two datasets, a class mapping is required
and we use the same defined in [25]. The last adaptation
scenario involves A2D2 and SemanticKITTI. The A2D2
dataset is composed of 20 drives, with a total of 28,637
frames. As the LiDARs sensor is very sparse (16 layers), all
three front LiDARs are used. All frames of all sequences are
used for training, except for the sequence 20180807 145028
which is left out for testing. The SemanticKITTI dataset
features a large-angle front camera and a 64-layer LiDAR.
Scenes from 0, 1, 2, 3, 4, 5, 6, 9, 10 are used for training,
scene 7 as validation, and 8 as a test set. In this case, only
the ten classes that are in common along the two datasets
are used: car, truck, bike, person, road, parking, sidewalk,
building, nature, other-objects.

4.2. Implementation details

We use the same data augmentation pipeline as our com-
petitors, which is composed of random horizontal flipping
and color jittering for 2D images, while vertical axis flip-
ping, random scaling, and random 3D rotations are used
for the 3D scans. It is important to note that augmenta-
tions are done independently for each branch. We imple-
ment our framework in PyTorch using two NVIDIA 3090
GPU with 24GB of RAM. We train with a batch size of

16, alternating batches of source and target domain for the
UDA case and source only in DG. The smaller dataset is
repeated to match the length of the other. We rely on the
AdamW optimizer [33] and the One Cycle Policy as a learn-
ing rate scheduler [52]. We train for 50, 35, 15, and 30
epochs for USA → Singapore, Day → Night, v. KITTI
→ Sem. KITTI, and A2D2 → Sem. KITTI respectively.
As regards the hyper-parameters, we follow [25] and set
λs = 0.8, λt = 0.1, λxs = 0.1, λxt = 0.01 in all settings
without performing any fine-tuning on these values.

4.3. UDA results

Following previous works in the field [25, 39], we eval-
uate the performance of a model on the target test set using
the standard Intersection over Union (IoU) and select the
best checkpoint according to a small validation set on the
target domain. In Tab. 1, we report our results on the four
challenging UDA benchmarks explained in Sec. 4.1. For
each experiment, we report two reference methods: a model
trained only on the source domain, named Baseline (Source
Only); a model trained only on the target data using anno-
tations, representing the upper bound than can be obtained
with real ground-truth, namely Oracle. We note that these
two models employ the two independent stream architecture
of [25]. In the columns Avg, we report the results obtained
by the mean of the 2D and 3D outputs after softmax which
is the final output of our multi-modal framework. For the
sake of completeness, we also report the results of each in-
dividual branch (2D and 3D only). We compare our method
with both Uni-modal and Multi-Modal approaches. In par-
ticular, we mainly focus on a comparison with xMUDA [25]
and DsCML [39], as they are the current s.o.t.a. methods
for UDA in our multi-modal setting. In particular, for the
latter, we use the official code provided by the authors 1 to
retrain the model on the new more exhaustive benchmark
defined by [25]. Overall, we note how our contributions
largely improve results over competitors across all settings
and modalities. In USA → Singapore, we observe a large
boost in both branches, and on average we report a +3%

1https://github.com/leolyj/DsCML
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Method USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

xMUDA* [24] 58.7 62.3 68.6 43.0 68.9 59.6 25.7 37.4 39.0 34.9 36.7 41.6
MM2D3D (Ours) 69.7 62.3 70.9 65.3 63.2 68.3 37.7 40.2 44.2 39.6 35.9 43.6

Table 2. Results for 3D for semantic segmentation in the Domain Generalization setting. We report performance for each network
stream in terms of mIoU. ‘Avg’ column denotes the obtained by taking the mean of the 2D and 3D predictions. * indicates trained by us
using official code.

Figure 5. Qualitative examples of the proposed framework in the UDA scenario. From left to right: RGB images, point cloud
segmentations projected into 2D for visualization purpose of the baseline source only model, our method, and the ground truth respectively.
From top to bottom: the four different adaptation scenarios. Comparisons are provided for the target domain.

(third row of the Multi-modal section). The large improve-
ment (+7.3%) for the 2D model, suggests that the depth
cues injected into a common 2D decoder can be quite use-
ful even if the light conditions are similar across domains.
In Day → Night, we observe a remarkable +15% for the
2D branch, which in turn rises the average score to +4.7%
when compared with the previous best model. We attribute
this boost in performance to the depth encoder, which is
able to provide useful hints when the RBG encoder has to
deal with large changes in light conditions. Remarkably,
our network surpasses even the performance of the two in-
dependent streams Oracle. Indeed, as discussed in Sec. 3.2,
the sparse depth is able to give useful details for the task of
semantic segmentation. Moreover, thanks to the fact that the
cross-modal loss Sec. 3.4 is optimized for both domains, the
network lean to use both encoders to make the final predic-
tions, leading to more robust performance when the encoder
receives a less informative RGB signal. In the challenging
synthetic-to-real case (v. KITTI → Sem. KITTI), we also
notice consistent improvements in both branches. We high-
light that even though RGB colors are here likely the main

source of the domain gap, they are still useful to obtain a
stronger 3D model (+3.6%). In the A2D2 → Sem. KITTI
setting, where the sensors setup is different, we still benefit
from the depth hints provided to the 2D network, and on av-
erage, our method surpasses by 2.2% xMUDA. In general,
we highlight that though we employed both modalities in
the 2D and 3D branches, the Avg performances are better
than those of each individual branch, supporting our core
intuition. In Fig. 5, we report some qualitative results ob-
tained with our framework.

4.4. Domain Generalization results

In this section, we test our contributions in the Domain
Generalization setting, in which the target data cannot be
used at training time. For this study we consider XMUDA
[25] as our baseline two-branch 2D-3D method, and we
show that our simple contribution can boost generalization
performances. Results are reported in Tab. 2. To imple-
ment this experiment we keep the same hyper-parameters
as used in the UDA scenario. We retrain [24] using the
official code, but without the target data. Also in this set-
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Method Depth RGB USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

xMUDA [25] 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
MM2D3D (Ours) ✓ 69.5 64.0 69.6 71.3 69.9 72.8 52.6 40.3 53.7 41.7 44.8 45.9
MM2D3D (Ours) ✓ ✓ 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2

Table 3. Modality-wise ablation of the proposed framework in the UDA scenario. Depth indicates the usage of the additional sparse
depth encoder, while RGB denotes the introduction of the RGB information in the 3D network.

Method USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

MM2D3D (Ours) 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2

xMUDA [25] + PL 67.0 65.4 71.2 57.6 69.6 64.4 45.8 51.4 52.0 41.2 49.8 47.5
MM2D3D (Ours) + PL 74.3 68.3 74.9 71.3 69.6 72.2 55.4 55.0 59.7 46.4 48.7 50.7

MM2D3D (Ours) + Fusion x x 74.0 x x 71.0 x x 60.4 x x 48.8

Table 4. Self-training Analysis. Results with different self-training strategies in the UDA scenario.

ting, we observe overall large improvements. We believe
that this can be ascribed especially to the introduction of
the depth encoder, which helps to achieve a better general-
ization. Evidence of this is well observable in the Day →
Night, where the 2D performance increases from 43% to
65.3% in terms of mIoU, but also for USA → Singapore
and (v. KITTI → Sem. KITTI), where we achieve +11%
and +12 respectively. In the Day → Night scenario, the 3D
branch experience a drop in performance. We think that it is
related to the large domain shift of RGB images. Differently
from the adaptation scenario in which we can train directly
on the unlabeled target data to counteract this problem, in
the generalization scenario, it influences badly the 3D per-
formance. However, we note that our final Avg prediction
still outperforms xMUDA.

4.5. Ablation Studies

Modality-wise analysis. In Tab. 3, we ablate our con-
tributions starting from the model proposed by [24] in the
UDA scenario. We start by activating our depth-based net-
work, introduced in Sec. 3.3. The performance boost given
by our proposal is remarkable across all settings. In cases
such as Day → Night, where the RGB gap is larger, the
depth cues injected with skip connections to the semantic
decoder greatly enhance performances in the target domain
(+15.8% for 2D and +5.4% in ”Avg). We note also a consis-
tent improvement for the remaining settings, in particular,
we highlight a +10.5% for the 2D scores on the challeng-
ing synthetic-to-real adaptation benchmark (v. KITTI →
Sem. KITTI). Furthermore, when feeding RGB colors to
the 3D network (last row of Tab. 3), we observe improved
performances in almost all settings. The largest improve-
ment is oberved in the synthetic-to-real setting, where we
achieve a +10% in terms of mIou for the 3D, which in turn
increased the average score from 53.7% to 56.5%. Better
performance is also achieved for both the 3D network and
the average score for A2D2 → Sem. KITTI.

Self-Training. In this section, we compare different self-

training strategies and report results in Tab. 4. As explained
in Sec. 3.4, for the self-training protocol we first need a
model trained on the source domain to produce the pseudo-
labels for the target domain in the second round. We report
in the first row of Tab. 4 the performance of this starting
model to better appreciate the effectiveness of self-training.
First, we note how thanks to our contributions, for USA →
Singapore, Day → Night, and v. KITTI → Sem. KITTI we
already surpass xMUDA [24] on the Avg column even with-
out the usage of pseudo-labels. When pseudo-labels from
the 2D and the 3D branches are used to supervise the 2D and
the 3D network respectively, we establish new state-of-the-
art performances for all four settings in the average predic-
tions (third row). Furthermore, in the fourth row of Tab. 4,
we deploy the strategy proposed in [24], where point-wise
features from the two networks are concatenated and used
to train a unique classifier). In this case, we observe mixed
results, indicating that this self-training strategy is not nec-
essarily better across all settings when compared to the stan-
dard self-training protocol.

5. Conclusions

In this paper, we shed light on the complementarity of
recent and emerging 3D-2D architectures for 3D semantic
segmentation. We provide an intuitive explanation based on
the notion of effective receptive field of why processing data
with these two networks grants orthogonal predictions that
can be effectively fused together. Based on this, we pro-
pose to feed both modalities to both branches. Despite the
simplicity of our approach, we establish new state-of-the-art
results in four common UDA scenarios and demonstrate su-
perior generalization performance over the baseline 2D-3D
architecture. A limitation of our work is that our method
is purely multi-modal, and it requires both modalities and
a valid calibration across sensors at test time. An interest-
ing future direction is to investigate how our approach may
generalize to other multi-modal 2D-3D architectures for se-
mantic segmentation.
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