
Isolated Sign Language Recognition based on Tree Structure Skeleton Images

David Laines*, Miguel Gonzalez-Mendoza, Gilberto Ochoa-Ruiz*
Tecnologico de Monterrey, School of Sciences and Engineering

Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, N.L.
*Corresponding: davidlainesv@outlook.com, gilberto.ochoa@tec.mx

Gissella Bejarano
Universidad Peruana Cayetano Heredia

Av. Honorio Delgado 430, Urb Ingenierı́a, Lima, Perú

Abstract
Sign Language Recognition (SLR) systems aim to be em-

bedded in video stream platforms to recognize the sign per-
formed in front of a camera. SLR research has taken advan-
tage of recent advances in pose estimation models to use
skeleton sequences estimated from videos instead of RGB
information to predict signs. This approach can make HAR-
related tasks less complex and more robust to diverse back-
grounds, lightning conditions, and physical appearances.
In this work, we explore the use of a spatio-temporal skele-
ton representation such as Tree Structure Skeleton Image
(TSSI) as an alternative input to improve the accuracy of
skeleton-based models for SLR. TSSI converts a skeleton se-
quence into an RGB image where the columns represent the
joints of the skeleton in a depth-first tree traversal order,
the rows represent the temporal evolution of the joints, and
the three channels represent the (x, y, z) coordinates of the
joints. We trained a DenseNet-121 using this type of in-
put and compared it with other skeleton-based deep learn-
ing methods using a large-scale American Sign Language
(ASL) dataset, WLASL. Our model (SL-TSSI-DenseNet)
overcomes the state-of-the-art of other skeleton-based mod-
els. Moreover, when including data augmentation our
proposal achieves better results than both skeleton-based
and RGB-based models. We evaluated the effectiveness
of our model on the Ankara University Turkish Sign Lan-
guage (TSL) dataset, AUTSL, and a Mexican Sign Language
(LSM) dataset. On the AUTSL dataset, the model achieves
similar results to the state-of-the-art of other skeleton-based
models. On the LSM dataset, the model achieves higher re-
sults than the baseline. As far as we know, our work is the
first to try TSSI for sign language recognition and our re-
sults suggest it presents a real alternative for isolated sign
language representation. Code has been made available at:
https://github.com/davidlainesv/SL-TSSI-DenseNet.

1. Introduction
In recent years, we have witnessed enormous progress in

the domain of Human Action Recognition (HAR), includ-
ing sports analysis, video surveillance, and sign language
recognition (SLR), among many others. SLR is an impor-
tant task not only from a technical point of view but also
from a social perspective. Currently, the deaf community
does not have equal access to all areas of society due mainly
to the lack of sign language users [11]. Isolated Sign Lan-
guage Recognition (ISLR) is an instance of SLR that aims
to map an isolated sign language video into a word of a
written language or a gloss. Robust ISLR models can be
embedded in search engines to support sign language and
self-paced teaching frameworks to make sign language ac-
quisition easily accessible to hearing people when sign lan-
guage teachers are not available.

In the last decade, deep learning (DL) methods such
as 3D convolutional neural networks (3DCNNs) have been
proposed to tackle ISLR [12,23]. 3DCNNs directly map the
RGB data of a video into a label. However, 3DCNNs usu-
ally require a large number of parameters to obtain dimen-
sional representations, which increases the computational
complexity of the model [22]. This is not suitable in sce-
narios where the model is required to run directly on mobile
devices to avoid sending private information to the internet.

Skeleton-based features can be used to produce less com-
plex HAR models while being robust to changes in the
background, lightning conditions, and physical appearance
[34]. To process skeleton-based features, graph neural net-
works (GNN), convolutional neural networks (CNN), and
Transformers have been proposed. CNN-based methods
usually encode a skeleton sequence into an image which al-
lows the use of 2D convolutional neural networks (2DCNN)
to process the image. GNNs represent the spatio-temporal
characteristics of a skeleton sequence as a graph data struc-
ture and directly operate on it whereas Transformers take a
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Figure 1. Selection of keypoints and connections taken from the MediaPipe holistic model to generate a base skeleton graph. The keypoint
indicated with -1 represents the inner chest calculated at the middle of the shoulders.

skeleton sequence as a single vector. Previously GNNs and
Transformers have been applied to ISLR [2,4,30], but there
is still little research applying CNN-based methods.

In this work, we propose the use of the Tree Structure
Skeleton Image (TSSI) method [33] to represent the spatio-
temporal characteristics of isolated sign language skeleton
sequences. In contrast to conventional HAR, the body pose
joints are not sufficient to classify sign language signs. As
noted by [31], facial expression has an important signifi-
cance in SLR, as much as the hands. We extend the work
of [33] to take into account not only the body pose joints
but also the facial and fine-grained hand joints in the con-
struction of the base skeleton graph that is required for gen-
erating TSSI images. Moreover, we process the generated
TSSI images with a less complex deep learning network
than the originally proposed, the Dense Convolutional Net-
work (DenseNet) [13], a very well-known 2DCNN network
for image classification. Finally, we evaluate our approach
with a large-scale and popular video dataset for SLR, the
WLASL dataset. Additionally, we evaluate the effective-
ness of our approach on the AUTSL dataset and a publicly
available Mexican Sign Language (LSM) dataset [20]. To
estimate the skeleton data from the sign language video
datasets, we decided to use MediaPipe [19], a pose esti-
mation model that estimates human pose along with hands
and facial keypoints from video frames. Hereinafter we use
joints and keypoints interchangeably.

The main contributions of this paper are:

• Applying the TSSI method, for the first time, to 3 ISLR
datasets, WLASL, AUTSL, and an LSM dataset.

• Proving that TSSI brings competitive results when
used with a DenseNet while keeping a low number

of parameters in comparison to other skeleton-based
models and RGB-based models.

The rest of the paper is organized as follows. In Sec-
tion 2, we compare previous works on ISLR and describe
their main characteristics. In Section 3 we introduce the
proposed skeleton-based sign language representation. In
Section 4 we describe the selected dataset used in our ex-
periments, present the experimental setup and provide an
analysis of the results. Finally, in Section 5 we present the
conclusions of our work.

2. Related Work
In this section, we review previous works for HAR that

represent skeleton sequences as images and process the im-
ages with convolutional neural networks (CNNs). These
methods are categorized in the literature as CNN-based
methods.

In [7], one of the first CNN-based works, the joints of
a human skeleton are divided into 5 groups, i.e., left arm,
right arm, left leg, right leg, and trunk. The joints are listed
together in a vector of joints v of length N that holds a new
order of joints sorted by group. Consequently, a skeleton se-
quence of T frames is represented as an RGB image I such
that I = [p1,1, pi,j , ..., pN,T ] where N indicates the total
number of joints, T indicates the total number of frames,
and pi,j indicates the pixel describing the (x, y, z) coordi-
nates in the (r, g, b) channels, respectively, of the joint at vi
and frame at index j.

As convolutional operations aggregate neighboring pix-
els across the layers of a CNN, [15] proposed a model ar-
chitecture that maps the skeleton joints in the channel di-
mension of the layers of the network to preserve the rela-



Figure 2. A base skeleton graph (left) is used to build a tree structure (middle) starting from the root joint (in red). DFS is applied to the
tree to get an ordered list of joints (right).

tion between all joints for longer sequences. In [1], rather
than using the raw coordinates of the joints to represent the
pixels of an image for further classification, the authors use
instead the values of the angles and the distances between
subsets of joints across the frames.

Other works opted for fusing the raw coordinates with
additional measures obtained from the skeleton joints. For
example, in [15], the authors fuse the output of processing
an image generated using the raw coordinates with another
image generated using the temporal difference of the joints
between consecutive frames. In [32] they fuse the raw co-
ordinates with a heatmap representation of the joints.

A better selection of the order of the joints is important
to better exploit the mathematical properties of the convo-
lutional operations made by the CNNs. [33] proposed the
Tree Structure Skeleton Image method that traverses a naive
skeleton graph with depth-first-search (DFS) to find an or-
der of joints that represent the connections among them.
The order of the joints in the resulting path is represented
as the columns of the image and the temporal evolution of
the joints is represented as rows.

In [21] they noted that augmentation functions can im-
prove the performance of a model. In this work, they use 5
augmentation functions: scale, shift, noise, subsample, and
time interpolation. Their experimental results on datasets of
different sizes showed that the augmentation functions have
a greater impact on small datasets due to their capability to
extend the diversity of the training set during the learning
process of a model.

Very recently, [9] used 3D heatmap volumes to represent
skeleton sequences and a lightweight version of a 3D-CNN
to process the input. They outperformed GNN-based meth-
ods in performance, robustness, and efficiency across dif-
ferent HAR datasets. However, in contrast to GNNs, the
CNN-based approach has not been fully explored for Sign
Language Recognition.

3. Methodology
Herein, we describe in detail the components of the pro-

posed representation.

3.1. Order of joints

A base human skeleton was represented by a graph G =
(E, V ) where V is the set of nodes w.r.t. skeletal joints,
and E is the set of edges that connect the nodes where e =
(vi, vj), e ∈ E and vi, vj ∈ V . The nodes and the edges
of the graph were designed based on the physical structure
used by the MediaPipe holistic model. This model locates
543 keypoints representing the joints of the human body
and defines their connections. We selected a subset of 68
keypoints based on the work of [20]. As shown in Figure 1
the joints include 6 body keypoints, 20 face keypoints, 21
left-hand keypoints, and 21 right-hand keypoints. Due to its
importance [31], the face keypoints include four points for
each eyebrow, four points around each eye, and four points
around the mouth.

As shown in Figure 2, we took the base skeleton graph
to build a tree structure taking the joint at the middle of the
shoulders as the root node. Subsequently, we performed
Depth-First-Search (DFS) over the tree to get a path of
joints in the order they were visited. We obtained an ordered
list of joints with a length of 135. We used this ordered list
of joints to generate a Tree Structure Skeleton Image (TSSI)
in further steps.

3.2. TSSI representation

Given a video, we extracted the skeleton data at each
frame with MediaPipe and used the path of joints obtained
by DFS to generate a Tree Structure Skeleton Image (TSSI)
as shown in Figure 3. The skeleton data was normalized to
[0.0, 1.0] by the image width and height, respectively. We
discarded the frames where MediaPipe could not estimate



Figure 3. Process to generate a TSSI representation from a video. The skeleton data is extracted with MediaPipe at every frame of the
video. Then, an image is generated such that the joints are placed in DFS order in the column dimension, the frames are stacked in the row
dimension, and the coordinates (x, y, z) of the joints in the channel dimension.

the body pose. When MediaPipe failed to estimate the left
and right hand coordinates, we replaced those coordinates
with the coordinates of the wrist. When MediaPipe failed to
estimate the face coordinates, we replaced those coordinates
with the coordinates of the nose.

In a TSSI, the rows contain the skeleton data of every
frame in the video, the columns contain the skeleton data
of every joint of the skeleton in the order they were visited
by DFS and the channels (r, g, b) contain the (x, y, z) co-
ordinates of the joints, respectively. Specifically, given an
ordered list of joints v (described in Section 3.1) of length
N and a video with a total number of frames T , a TSSI rep-
resentation I is generated such that I = [p1,1, pi,j , ..., pN,T ]
where pi,j indicates the pixel describing the (x, y, z) coor-
dinates in the (r, g, b) channels, respectively, of the joint at
vi and frame at index j.

As the documentation of the MediaPipe holistic model
advises that, currently, the estimation of the z-axis is not
reliable, we opted for setting the blue channel to 0 in all the
pixels to form a full RGB image. Due to that videos can
have varying lengths, we resized the generated images to a
uniform size of 135xH (width x height) where H is a fixed
length based on the mean length of the sequences in the
training set. If the height of the resulting TSSI was greater
than H pixels, we resized it using bilinear interpolation. On
the other hand, if it was smaller, we padded the image with
zeros.

4. Experiments and Analysis

Here, we describe the datasets used in our experiments
and the experimental setup. Furthermore, we provide a
quantitative and qualitative analysis of the results.

4.1. Datasets

We selected three sign language datasets designed for
ISLR covering three different sign languages, American,
Turkish, and Mexican sign language.

4.1.1 WLASL (WLASL-100 subset)

The Word-Level American Sign Language dataset
(WLASL) [16] is a large-scale dataset of isolated ASL
videos. It contains 2,000 unique classes distributed across
21,083 videos and 119 unique signers. In each video, the
signer performs a single sign in a nearly-frontal view. The
videos are collected from 20 different websites including
ASLU, ASL-LEX, and YouTube, providing a very diverse
amount of videos with different backgrounds and lighting
conditions, as shown in Figure 4. The WLASL dataset is
divided into 3 subsets, WLASL-100, WLASL-300, and
WLASL-2000. The WLASL-100 subset contains 100
classes distributed across 2038 videos and 119 unique
signers. This subset is split into train, validation, and
testing sets. 1442 videos by 91 unique signers for training,
338 videos by 69 unique signers for validation, and 258
videos by 56 unique signers for testing. The videos are
decoded with 25 fps (frames per second) and resized to
256x256 pixels. In this work, we used the WLASL-100
subset to estimate the skeleton sequences.

4.1.2 AUTSL (RGB data track)

The Ankara University Turkish Sign Language dataset
(AUTSL) [25] is a large-scale and diverse collection of
isolated Turkish Sign Language (TSL) videos, comprising
226 signs performed by 43 distinct signers, with a total of
36,302 video samples. It contains 20 different backgrounds
and includes signers who are deaf, coda, TSL instructors,



Figure 4. Illustration of the WLASL dataset containing videos with multiple backgrounds, illumination conditions, and signers with
different appearances.

TSL translators, TSL students, and trained individuals. The
dataset is split into train, validation, and testing sets. 28,142
videos for training, 4,418 videos for validation, and 3,742
videos for testing. The dataset was recorded using Mi-
crosoft Kinect v2 and contains the RGB data of the videos
in addition to the depth. In this work, we used only the RGB
data track to estimate the skeleton sequences.

4.1.3 LSM Dataset (Mejı́a-Pérez [20])

This dataset consists of 3,000 individual sign language sam-
ples, covering 30 unique signs of Mexican Sign Language
(LSM). Each sign was performed 25 times by four different
signers. The signs were recorded using an OAK-D camera,
with 20 consecutive frames captured for each sign. At each
frame, 543 keypoints from the face, body, and hands were
extracted using MediaPipe. A subset of 67 keypoints is pro-
vided as follows: 20 for the face, 5 for the body, and 21
for each hand. The coordinates of the keypoints were trans-
formed to meters using the focal length and the depth data
captured by the camera. The coordinates were normalized
with respect to the inner chest to compensate for the varia-
tions in the distance between the camera and the signer. We
performed a slight modification to the base graph depicted
in Figure 1 to account for the 67 keypoints excluding the
nose.

4.2. Experimental Setup

We tested the proposed input representation TSSI with a
very well-known deep learning architecture for image clas-
sification, DenseNet-121 [13], as shown in Figure 5. This
network is designed to improve feature reuse and gradient
flow through the use mainly of 4 dense blocks of multiple
layers connected densely, each block separated by a transi-
tion layer that performs down-sampling via convolution and
pooling, ending with a global pooling and a fully connected
layer. We used the implementation available in the Keras
library [3]. We added dropout before the last layer to boost
the generalization performance and modified the number of

units of the last layer to match the number of classes of the
datasets.

The experiments were carried out using an NVIDIA
DGX workstation with a V100 GPU. We used a stratified
5-fold cross-validation strategy to perform hyperparameter
tuning. Then, we trained the model with the training and
validation set of the datasets using its best hyperparameters.
We used 100 epochs for the WLASL-100 dataset and 24
epochs for the AUTSL and the LSM dataset. Finally, we
evaluated the models on the test set to measure the perfor-
mance. At every training, we used the cross-entropy loss
and the stochastic gradient descent with Nesterov momen-
tum and momentum = 0.98 for optimization. We used the
pre-trained weights in the ImageNet dataset as initializa-
tion [5] except when training on the AUTSL and the LSM
dataset.

For hyperparameter tuning, we followed the procedure
proposed by [27] that uses learning rate range tests to select
the learning rate range and other hyperparameters such as
weight decay, dropout, and batch size for a cyclical learning
rate schedule. We performed a grid search of the follow-
ing hyperparameter configurations: batch size = [32, 64],
dropout = [0.1, 0.3, 0.5], weight decay = [1e-5, 1e-6, 1e-7],
learning rate range = (0.001 - 1.0). Table 1 shows the final
hyperparameters used in each dataset.

Dataset BS WD DO LRR

WLASL-100 64 1e-5 0.3 0.001-0.0065
AUTSL 64 1e-5 0.5 0.01-0.5
LSM 64 1e-5 0.3 0.01-0.1

Table 1. Hyperparameters used for each dataset. “BS” : batch
size, “WD” : weight decay, “DO” : dropout, “LRR” : learning
rate range.



Figure 5. The TSSI representation of a skeleton sequence with dimensions 135xHX3 (width, height, channels) is processed by a DenseNet-
121 network to output a predicted label for classification. “H” is set to the mean sequence length in the training set.

4.3. Quantitative Results

We report the categorical top-1 accuracy achieved on
the testing sets of the WLASL-100, AUTSL, and the LSM
dataset. The results are compared to existing skeleton-based
and RGB-based methods excluding multi-modal architec-
tures.

Method Input Accuracy

I3D (baseline) [16]
RGB

65.89
TK-3D ConvNet [17] 77.55
Full Transformer Network [8] 80.72

GCN-BERT [28]
Skeleton

60.15
Pose-TGCN [16] 55.43
SPOTER [2] 63.18

SL-TSSI-DenseNet (ours) Skeleton 73.02
SL-TSSI-DenseNet (ours) + DA 81.47

Table 2. Comparison of the state-of-the-art in the WLASL-100
dataset including our model. “Input” : input modality. “RGB”:
Raw RGB videos as input. “Skeleton”: it uses any form of skele-
ton data as input. “DA”: ”Data Augmentation”.

Method Input Accuracy

CNN + FPM + BLSTM
+ Attention (baseline) [25]

RGB
49.22

I3D + RGB-MHI [26] 93.53
ResNet2 + 1D [14] 95.00
SlowFast + Slow + TSM
(wenbinwuee team) [24] 96.55

Multi-stream SL-GCN
(2D Keypoints) [14] Skeleton 96.47
SSTCN [14] 93.37

SL-TSSI-DenseNet (ours) Skeleton 93.13

Table 3. Comparison of the state-of-the-art in the AUTSL dataset
including our model. “Input” : input modality. “RGB”: Raw RGB
videos as input. “Skeleton”: it uses any form of skeleton data as
input.

Method Input Accuracy

RNN (baseline) [20]
Skeleton

92.44
LSTM [20] 96.66
GRU [20] 97.11

SL-TSSI-DenseNet (ours) Skeleton 98.0

Table 4. Comparison of the state-of-the-art in the LSM dataset
including our model. “Input” : input modality. “Skeleton”: it uses
any form of skeleton data as input.

4.3.1 WLASL-100

Table 2 shows that our model achieves better results than
other skeleton-based models and competitive results against
RGB-based models. Some of the most well-known state-
of-the-art models for SLR to which we compare treat skele-
tons as graphs, and others introduce them in transformers
architectures. We overcome models such as GCN-BERT
[28], SPOTER [2], and Pose-TGCN [16]. GCN-Bert pro-
cesses a skeleton sequence as a graph with a graph con-
volutional neural network (GCN) to model the spatial rela-
tionships and BERT [6] to learn temporal representations.
Pose-TGCN introduces the temporal dimensionality in a
GCN to also process an entire skeleton sequence as a graph.
SPOTER receives a skeleton sequence as a vector and pro-
poses a slight modification of the original Transformer [29]
by feeding the decoder with the class representation of the
sample to process it.

Similarly, when compared to RGB-based input repre-
sentations, SL-TSSI-DenseNet overcomes models such as
I3D which uses 52M parameters while our model only
uses 7.2M parameters. However, our model falls short
when compared to Full Transformer Network [8] and TK-
3D ConvNet [17], probably for the difference in complex-
ity represented by the size of the models. For instance,
Full Transformer Network works with 20M parameters, and
TK-3D ConvNet with 52M parameters, approximately. Af-
ter adding data augmentation, our SL-TSSI-DenseNet over-
comes all RGB-based and skeleton-based models.



4.3.2 AUTSL (RGB data track)

The results obtained on the AUTSL dataset are compared
to other skeleton-based and RGB-based methods in Table
3. Even though our model does not overcome the other
skeleton-based methods it presents competitive results with
93.13% accuracy while keeping a lower number of parame-
ters. For instance, Multi-stream SL-GCN [14] uses around
19.2M parameters and employs spatio-temporal graph con-
volutional modules to process four graph representations of
a skeleton sequence based on the joints and the bones vec-
tors. On the other hand, the RGB-based model proposed by
the wenbinwuee team for the ChaLearn LAP Large Scale
Signer Independent Isolated Sign Language Recognition
Challenge [24] uses at least 33M parameters as it processes
the RGB data using SlowFast [10], SlowOnly [10] and TSM
[18] independently and fuses the class scores at the end to
produce a final prediction.

4.3.3 LSM dataset (Mejı́a-Pérez)

The results obtained in the LSM dataset are presented in
Table 4. The baseline methods proposed by [20], RNN,
LSTM, and GRU take the skeleton data as a vector input
and involve the use of recurrent dropout and a dense layer at
the end of the network. Our model overcomes these models
with 98.0% test accuracy. This dataset has not been bench-
marked by any other model yet.

4.4. Qualitative Results

The qualitative analysis of the results is based on the re-
sults obtained on the WLASL-100 dataset. We obtained the
confusion matrix of the testing set and visualized the signs
along with the sign with which they were mostly misclassi-
fied. As shown in Figure 6, signs such as “thin”, “family”
and “bird” were misclassified as “hot”, “book” and “drink”,
respectively. This might be due to that the signs are per-
formed with similar hand positions and shapes. This leads
us to enhance the capability of the model to pay attention
more specifically to the hand shapes through attention mod-
ules or other mechanisms.

4.5. Ablation study

We performed an ablation study using the WLASL-100
dataset to evaluate the effect of pre-training and data aug-
mentation of the model. We used 3 data augmentation tech-
niques that transform the spatial and temporal characteris-
tics of the skeleton motion: 1) Scale, scales the skeleton by a
random factor between 0.5 and 1.0 to mimic different body
sizes, 2) Flip, flips horizontally the skeleton with a random
probability of 0.5, and 3) Speed, resizes vertically the TSSI
to a random number of frames between 48 (25th percentile)
and the 74 (75th percentile) of the training set video length
using bilinear resizing.

(a) “thin” (upper) vs “hot” (lower)

(b) “family” (upper) vs “book” (lower)

(c) “bird” (upper) vs “drink” (lower)

Figure 6. Similar signs predicted incorrectly.

As shown in Table 5, a baseline model (A) trained with-
out pre-training or data augmentation achieves 39.15% ac-
curacy. By adding only data augmentation, model (B) ob-
tains an increase of around 19% in accuracy. By adding
only pre-training, model (C) obtains an increase of around
34% in accuracy. Finally, by adding both pre-training and
data augmentation, the model (D) obtains an increase of
around 42% in accuracy. The results show that the accu-
racy in WLASL-100 increases with pre-training despite the
fact that the pre-trained weights come from the ImageNet
dataset, which belongs to a different domain than sign lan-
guage.

Table 6 shows the results of an ablation study to deter-
mine the effects of the data augmentation techniques in the
best model obtained with pre-training and data augmenta-
tion. The results show that the speed augmentation tech-



Model Pre-training Augmentation Accuracy
A 7 7 39.15
B 7 3 58.45
C 3 7 73.02
D 3 3 81.47

Table 5. Average top-1 accuracy on 5 runs of models generated
with different configurations.

nique is the most important as the accuracy drops down to
65.82% when it is removed. It also shows that the flip aug-
mentation and the scale augmentation do not have a sub-
stantial impact when they are removed as the accuracy drops
by only 1

DA Technique None Flip Speed Scale

Accuracy 81.47 80.78 65.82 81.25

Table 6. Average top-1 accuracy on 5-fold cross-validation after
removing individually the data augmentation techniques “Flip”,
“Speed” and “Scale”. The column “None” represents the result of
not removing any data augmentation technique.

5. Conclusions
We showed that our proposed approach, SL-TSSI-

DenseNet, which uses TSSI to convert a skeleton sequence
into an image and process the image with a DenseNet-
121, represents an alternative for isolated sign language rep-
resentation. Our model offers superior performance than
other skeleton-based models in the WLASL-100 dataset.
Furthermore, using data augmentation, it can overcome
RGB-based models while being less complex, in terms of
size. We validated the effectiveness of our approach in two
other datasets, the AUTSL dataset, and the LSM dataset. In
the AUTSL dataset, we achieved a competitive performance
in comparison to other skeleton-based methods. In the LSM
dataset, a recent-published dataset that has not been bench-
marked yet by other models, we obtained a higher perfor-
mance than the baseline. Future work can explore the ef-
fects of using weights pre-trained on HAR or SLR datasets
instead of the ImageNet dataset. Additionally, future work
can explore the effects of adding an attention mechanism to
the model and using depth data.
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