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Figure 1. Comparison with SOTA face animation methods on reconstruction and reenactment tasks. Left: FOMM [42] often produces
artifacts and over-smoothing textures, while FADM is capable of rectifying the distortions and enriching the fine-grained details. Right:
Face vid2vid [49] suffers from typical unnatural facial details, while FADM prominently improves the overall visual quality.

Abstract

Face animation has achieved much progress in com-
puter vision. However, prevailing GAN-based methods suf-
fer from unnatural distortions and artifacts due to sophis-
ticated motion deformation. In this paper, we propose a
Face Animation framework with an attribute-guided Diffu-
sion Model (FADM), which is the first work to exploit the
superior modeling capacity of diffusion models for photo-
realistic talking-head generation. To mitigate the uncon-
trollable synthesis effect of the diffusion model, we de-
sign an Attribute-Guided Conditioning Network (AGCN)
to adaptively combine the coarse animation features and
3D face reconstruction results, which can incorporate ap-
pearance and motion conditions into the diffusion process.
These specific designs help FADM rectify unnatural arti-
facts and distortions, and also enrich high-fidelity facial
details through iterative diffusion refinements with accurate
animation attributes. FADM can flexibly and effectively im-
prove existing animation videos. Extensive experiments on
widely used talking-head benchmarks validate the effective-
ness of FADM over prior arts. The source code is available
in https://github.com/zengbohan0217/FADM .

*These authors contributed equally.
†Corresponding Author: bczhang@buaa.edu.cn.

1. Introduction

Face animation, referring to the task of animating a
still face with poses and expressions provided by a driving
video, has drawn increasing attention due to its wide appli-
cation scenarios, such as photography, online conferencing,
social media, and video production. With the progress of
generative models such as Generative Adversarial Networks
(GANs), recent face animation methods have achieved im-
pressive performance in synthesizing high-fidelity talking
faces. However, they still suffer from undesirable artifacts
and distortions in generated results.

Existing face animation methods are mostly based on
GAN models, which mainly divide the generation process
into warping and rendering. They utilize the difference of
expressions and poses between the source image and the
driving video to calculate the motion flow, which can guide
the further warping process of the encoded source features.
After that, the warped features are fed into a decoding mod-
ule for rendering and synthesizing the final results. These
methods can be roughly classified into three categories:
model-free [4, 41, 42, 50], landmark-based [48, 54, 55] and
3D structure-based [7, 27, 49]. They obtain promising per-
formances in preserving the identity and appearance of the
source and generate relatively accurate motion from the
driving video. However, due to the restricted ability of
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adversarial learning on high-fidelity appearance reconstruc-
tion, these GAN-based methods focus more on face distri-
butions but not much on facial details, and thus they might
generate unnatural artifacts and distortions (see Fig. 1).

Recently, the great success of denoising diffusion prob-
abilistic models (DMs) in computer vision, such as in-
painting [5, 17, 28, 31, 38–40, 45], video synthesis [14, 18,
53, 57], and 3D points cloud modeling [32, 33, 59], indi-
cates their superior capacity in generative tasks. They can
model highly complex data distributions through a sequence
of diffusion refinement steps. Based on optimizing a variant
of the variational lower bound, diffusion models can effec-
tively avoid the distortion problem encountered by GANs
and generate high-fidelity facial details. However, existing
DMs tend to encode images into arbitrarily high-variance
latent spaces without specific attribute restrictions, which is
unqualified for face animation that has explicit requirements
on the facial appearance, pose, and expression.

In this paper, we enable face animation with an itera-
tive denoising diffusion process to rectify the distortions
and unnatural artifacts, while ensuring accurate animation
attributes. We propose a Face Animation framework with
an attribute-guided Diffusion Model (FADM) for photo-
realistic talking-head generation. Specifically, we introduce
a Coarse Generative Module (CGM) to obtain the prelim-
inary animation results, which provide low-resolution fea-
tures for the diffusion process. To mitigate the high vari-
ability of DMs, we design an Attribute-Guided Condition-
ing Network (AGCN) to incorporate appearance and mo-
tion conditions into the iterative refinement process. On
the one hand, we utilize an encoder network to extract the
appearance code from the driving frames and coarse fea-
tures and introduce an MSE loss to align them. On the
other hand, we leverage a 3D reconstruction module to pre-
dict the poses and expressions of the source and driving
frames. Based on these, AGCN uses a Multi-Layer Per-
ceptron (MLP) to assign different confidence values for the
multi-resolution features, to adaptively adjust the expressed
ratio of the coarse features and fuse them effectively as mo-
tion condition. Therefore, the diffusion refined process is
well guided to synthesize accurate and fine-grained talking-
head videos, as shown in Fig. 1. Moreover, it is worth
noting that FADM can also be directly applied to improv-
ing the quality of existing animation videos as a flexible
talking-head rectification tool. The contributions of this pa-
per are summarized as follows:

• We propose a Face Animation framework with an
attribute-guided Diffusion Model (FADM) to rectify
the distortions and unnatural artifacts, which can also
enrich the facial details through an iterative diffusion
refinement process.

• We design an Attribute-Guided Conditioning Network

(AGCN) to adaptively extract appearance and motion
conditions for the diffusion process and ensure the va-
lidity of generated results. Moreover, FADM can flexi-
bly and effectively improve the quality of available an-
imation videos.

• Extensive experiments are conducted to compare
FADM with state-of-the-art methods. The results show
that FADM generates overall best qualitative and quan-
titative results on widely used talking-head bench-
marks, and genuinely achieves photo-realistic face an-
imation.

2. Related Work
2.1. GAN-based Face Animation Models

Model-free methods [4, 41, 42, 49, 50, 52] learns the mo-
tion field for the deformation of face images in a self-
supervised manner without additional facial priors. Mon-
keyNet [41] predicts sparse key-points to complete mo-
tion transfer. In particular, the First Order Motion Model
(FOMM) [42] significantly improves the performance of
face animation with a rigorous first-order mathematical
model. Face vid2vid [49] extends FOMM by introducing
3D representations and achieves realistic face animation.
Nevertheless, it has a considerable computational cost and
performs poorly in expression transformation. Landmark-
based methods [1, 10, 13, 48, 54, 55] utilize 2D facial land-
marks as conditions for reenactment. However, these meth-
ods often cannot handle identity preservation well during
the generation process. More recently, many 3D structure-
based works [7,23,24,27,36,47,56] resort to the geometric
prior of 3D faces and achieve impressive results on realis-
tic talk-head synthesis. HeadGAN [7] takes the rendered
3D mesh as input and predicts the depth to deform the face,
but it fails in expression transferring. Conditioned on the
parameters of the 3D Morphable Model (3DMM) [3], Sty-
leRig [46] and GIF [11] respectively employ pre-trained
StyleGAN [21] and StyleGAN2 [22] to warp face images.
PIRenderer [36] controls the face motions and predicts a
flow field for deformation. And FNeVR [56], AD-NeRF
[12] adopt the NeRF [34] to generate high-quality face ani-
mation.

Unfortunately, all of these methods rely on the GAN
models to generate animated faces, which also brings un-
natural distortions and artifacts. This paper enables cur-
rent face animation methods with diffusion refinements to
achieve high-fidelity face animation.

2.2. Diffusion Probabilistic Models

Diffusion Probabilistic Models (DMs) are first presented
in [43] as a kind of generative models, which use a Markov
chain to gradually add noise to obtain a latent variable,
and then gradually transform the latent variable to obtain
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Figure 2. FADM framework. It consists of the coarse face animation generator, the encoder of the 3D face reconstruction model DECA [8],
and the core diffusion rendering module (blue box). We first obtain the coarsely generated result and the facial expression and pose
information, on which AGCN is then performed to estimate the appearance and motion conditions for further rendering by the diffusion
model.

the generated results through a learned iterative denoising
process. Recently, DMs have achieved state-of-the-art re-
sults in various synthesis tasks, including image synthe-
sis [16, 17, 39], speech synthesis [26, 29], and 3D cloud re-
lated tasks [32, 33, 59]. In image synthesis, [16] and [44]
show the superior capability of diffusion models to gener-
ate high-quality images in many computer vision tasks. For
example, [5, 9, 17, 28, 31, 38–40, 45] exhibit impressive per-
formance on image super-resolution and in-painting. Partic-
ularly, the stable diffusion model [38] has been applied to
various practical application scenarios, such as text-image
generation, and has given rise to a wave of DMs. Likewise,
the amazing performance of DMs in semantic segmenta-
tion [2], point cloud completion and generation [32,33,59],
and video generation [14, 18, 53, 57] again demonstrates
their excellent capabilities.

However, given that current DMs mostly have no strict
requirements on the attributes of the generated results, the
results often lie in an arbitrarily high-variance space. In
contrast, face animation strictly demands animating the
source with explicit poses and expressions provided by
the driving video, while preserving the appearance of the
source.

3. Method

Since GANs have limited capability to model complex
facial structures and motion for our task, existing methods

often suffer from essential distortions and unnatural arti-
facts. To address this problem, we propose the Face Ani-
mation framework with a Diffusion Model (FADM), which
is comprised of: (1) a coarse generative module, (2) a 3D
face reconstruction model, (3) an attribute-guided condi-
tioning network, and (4) a diffusion rendering module. The
overview of FADM is shown in Fig. 2. In this section,
we describe the details of FADM and elaborate on how it
rectifies current face animations with explicit and accurate
attributes through a sequence of diffusion refinement steps.

3.1. Coarse Generative Module

In FADM, we first use a Coarse Generative Module
(CGM) such and FOMM [42] or Face vid2vid [49] to gen-
erate coarse animation images. Given a source image s and
the driving frames d, the objective of CGM is to deform s
with the expression and pose information derived from d,
while keeping the appearance information of s. It includes
two steps: warping the source features first according to
the expressions and poses of the driving frames, and then
rendering warped features to obtain final animation images.
Intuitively, the general process of generating the coarse an-
imation results g can be conducted as:

g = G(Warp(s, expd, posed)), (1)

where G represents the generative model, and expd and
posed denote the expressions and poses of the driving
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Figure 3. Architecture of AGCN during inference, where © indi-
cates the channel-wise concatenation.

frames, respectively. Although the coarse results have a
promising performance in preserving the appearance of s
and transferring motion from d, there often exist undesir-
able distortions in the facial details and the background area
beyond the face. To alleviate this problem, we leverage a
diffusion process with explicit conditions to renovate the
coarse results.

3.2. Diffusion Rendering Module

To handle the distortion problem caused by CGM, a dif-
fusion rendering module (the blue box in Fig. 2) is designed
in FADM to synthesize photo-realistic images through an it-
erative diffusion process from coarse to fine. Here we first
give the preliminaries of DMs, and then describe this mod-
ule for face animation.

3.2.1 Preliminaries of Diffusion Models

Following [16], we define the inference process pθ of DMs,
which denoises a normally distributed variable xT to a tar-
get image x0 as:

pθ(x0:T ) =p(xT )

T∏
t=1

pθ(xt−1|xt),

p(xT ) =N (xT | 0, I) ,

pθ(xt−1|xt) =N (xt−1;µθ(xt, t),Σθ(xt, t)),

(2)

where x1, ...,xT are latent features with added noise,
pθ(x0:T ) represents the joint distribution which performs
the image generation process and is defined as a Markov
chain with learnable Gaussian transitions pθ(xt−1|xt). In-
versed to the inference process, the forward process gradu-
ally adds Gaussian noise to x0 over T iterations, which can
be expressed as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) =N (xt;
√

1− βtxt−1, βtI),

(3)

where β1, ..., βT are the variance schedule. By optimizing
the negative log-likelihood of the data distribution through

the variational lower bound, the optimization objective can
be interpreted as learning an equally weighted sequence of
a denoising model zθ(xt, t), t ∈ {1, 2, ..., T}:

Lθ =Ex0,z∼N (0,1),t[‖ z − zθ(xt, t) ‖22]. (4)

3.2.2 Diffusion Rendering for Face Animation

In order to avoid the mismatch between the DM’s high-
variance encoding and the explicit attribute requirements
of face animation, the DM needs to generate the render-
ing face frames in strict conformity with the appearance of
the source, having the poses and expressions of the driving
frames. Accordingly, we formulate the inference process of
our diffusion rendering model as:

pd(x0:T ) =p(xT )

T∏
t=1

pd(xt−1|xt,a,m),

pd(xt−1|xt,a,m) =N (xt−1;µd(xt, t,a,m),Σd(xt, t,a,m)),
(5)

where a donates the appearance code of the source image,
and m donates the motion condition derived from the vari-
ation between the source image and driving frames’ poses
and expressions. Consequently, the optimization objective
of our diffusion rendering model is defined as a conditional
diffusion loss Ld:

Ld =Ex0,(a,m),z∼N (0,1),t[‖ z − zd(xt, t, (a,m)) ‖22]. (6)

To minimize Ld with (a,m), we design an Attribute-
Guided Conditioning Network (AGCN) to extract appropri-
ate appearance and motion conditions, and fuse them adap-
tively for navigating the diffusion process, as shown in Fig.
3. The appearance condition is used to provide the diffu-
sion process with faithful characteristics of the source im-
age, while the motion condition can impose restriction on
the generated poses and expressions and dynamically mod-
ify the facial details.

Appearance Condition. Considering the current training
style of using the same identity of the source and the driving
frames, we note that the driving frames are the most appro-
priate conditions to provide faithful appearance information
for the subsequent diffusion process, while only the coarse
animation results are available during the inference process,
which are the sub-optimal choice. Formally, we design a
CNN encoder PConv to extract the appearance code a:

a =

{
PConv(↓∗ (d)), in training

PConv(↓∗ (g)), in inference,
(7)

where ↓∗ denotes the downsampling operation. As stated
above, since the coarse animation results might involve un-
expected interference with the appearance, we aim to allevi-
ate the interference and guarantee the creditability of a pro-
vided during inference. Specifically, we respectively input



the driving frames and coarse animation results into PConv,
and then align the appearance conditions predicted from d
and g through an MSE loss Lcolor as:

Lcolor =MSE(PConv(↓∗ (d)), PConv(↓∗ (g))). (8)

Here d and g are both fixed features irrelevant to t. Lcolor
works by facilitating PConv to extract the most valuable ap-
pearance information from g. Consequently, PConv is capa-
ble of providing faithful appearance conditions during the
inference, which are comparable with those provided by d
in the training process.

Motion Condition. Considering FADM aims to improve
the quality of the coarse animation results, taking them as
the motion condition seems to be an intuitively effective
choice for the diffusion process. Nonetheless, they may also
bring distortions in the diffusion process. Empirically, the
coarse results suffer from extreme distortions when the mo-
tion changes dramatically between the source and the driv-
ing frames. In this case, features with a higher resolution
tend to contain more distortions, while features with a lower
resolution could weaken them. In other words, compared
with high-resolution features, low-resolution features allow
the diffusion process to synthesize richer facial details to
compensate for the distortions. Based on this observation,
we handle this problem in an adaptive way, seeking a bal-
ance in fusing multi-resolution coarse animation results as
the motion condition, to alleviate the distortions and enrich
the facial details on the basis of ensuring accurate animation
attributes.

Specifically, we first utilize the downsampling operation
to process the coarse animation result into three coarse an-
imation features with different resolutions. Meanwhile, we
exploit the advanced 3D face reconstruction model DECA
[8] to extract the facial poses pose and expressions exp from
the source and the driving frames, and concatenate them as
the motion state. Then, an MLP fθ is introduced as a motion
measuring function to model the changing amplitude of the
motion between the source image and the driving frames,
so as to obtain the motion weight w. The process (Fig. 3) is
represented as :

w =fθ(Concat(exps, poses)− Concat(expd, posed), t), (9)

where t is an arbitrary timestep of the diffusion process.
With the initial weight, we assign a larger value to the

features with a lower resolution when the motion changes
drastically. If the motion does not change much, the features
with a higher resolution should be allocated greater weights
for guaranteeing high-fidelity generation. Formally, we cal-
culate the motion condition m by:

wi =
K − i
K

· exp(w − α) +
i

K
· exp(−w + α),

m =

K∑
i=1

wi · Pmotion(gi,a),

(10)

where α is a hyper-parameter, gi and wi denote the coarse
generated images and the motion weights for refined images
with different resolutions, respectively, K is the number of
resolutions, and Pmotion is a CNN to generate the motion
conditions in different resolutions. Note that we set α = 0.3
in this paper.

Lastly, we introduce a CNN Pcond to fuse the appear-
ance condition a and the motion condition m together. In
general, the objective of our diffusion model is rewritten as:

Ld =Ex0,(a,m),z∼N (0,1),t[‖ z − zd(xt, t, Pcond(a,m, t)) ‖22],
(11)

where zd denotes the diffusion denoising model. Follow-
ing [44], we employ an U-net architecture as the denoising
model which is optimized to iteratively remove the noise,
and synthesize high-fidelity target faces in 100 timesteps.

It is worth noting that our FADM can be directly used to
improve the visual quality of existing animated videos by
setting the first frame as the source image, bringing great
convenience in practice. Related analysis and visual results
are provided in the supplementary materials.

4. Experiments

4.1. Implementation Details

Datasets. We evaluate the performance of FADM on three
datasets: VoxCeleb [35], VoxCeleb2 [6], and CelebA [30].
VoxCeleb contains about 100,000 videos covering 1,251
different speakers. VoxCeleb2 has more than 1M videos of
different celebrities. CelebA consists of 200,000 images of
10,000 different persons with different genders and multi-
age groups. Note that we use the images from CelebA as
the source images to evaluate the performance on the reen-
actment task. Following FOMM [42], we preprocess the
data by cropping faces from the videos and resizing them to
256×256.

Training Details. We use the pretrained FOMM [42] or
Face vid2vid [49] to generate the coarse face animation
results and then train FADM for about 100 epochs with
the images from the videos repeating 75 times per epoch.
We adopt the Adam [25] optimizer with learning rate η =
2×10−4, γ1 = 0.5 and γ2 = 0.9. Furthermore, we use four
24GB NVIDIA 3090 GPUs for training.

Evalution Metrics. The evaluation metrics include: (1)
L1, PSNR, and SSIM [51] (2) LPIPS [58] and FID [15]
(3) Average Keypoint Distance (AKD) and Average Eu-
clidean Distance (AED) as set in [42]; (4) identity preserva-
tion cosine similarity (CSIM) [20, 37] calculated by Circu-
larFace [20]



Table 1. Quantitative comparison of same-identity reconstruction on VoxCeleb [35].

Method L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑ AKD ↓ AED ↓
Bilayer [54] 0.1753 0.5733 12.802 0.3201 13.83 0.0564
PIRender [36] 0.0574 0.2225 21.154 0.6564 2.249 0.0321
FOMM [42] 0.0451 0.1479 23.422 0.7521 1.456 0.0247
Face vid2vid [49] 0.0456 0.1395 23.279 0.7487 1.615 0.0258
DaGAN [19] 0.0468 0.1465 23.449 0.7564 1.546 0.0257
FADM 0.0402 0.1379 24.434 0.7841 1.392 0.0241

Source Driving FOMM Face vid2vid DaGAN FADM

Figure 4. Qualitative comparison with SOTA methods on the reconstruction task. Evidently, our FADM can produce more fine-grained
details, and is effective to rectify the unnatural parts.

4.2. Comparison with State-of-the-Art Methods
Methods. We compare our FADM with five state-of-the-
art methods: FOMM [42], Face vid2vid [49], Bilayer [54],
DaGAN [19], and PIRenderer [36]. For Bilayer, FOMM,
DaGAN, and PIRenderer, we use their official pre-trained
models for evaluation, while for Face vid2vid, we adopt a
widely recognized unofficial model due to the absence of
the official code. All of these models are pre-trained on
VoxCeleb.

Same-Identity Reconstruction. We conduct quantitative
and qualitative comparisons of the same-identity recon-
struction task on the VoxCeleb dataset, where FOMM [42]
is used to generate the coarse face animation results. In or-

der to accelerate the inference, we randomly select several
short-time videos from the testing dataset of VoxCeleb for
quantitative comparison, and the selected video list is avail-
able in the supplementary materials. As shown in Table 1,
compared to other SOTA methods, it is evident that FADM
achieves the best performance in all metrics, especially the
reconstruction faithfulness L1 and the visual quality LPIPS,
demonstrating the superiority of our FADM in generating
high-fidelity face animation. Moreover, we show the visual
results of FADM and existing SOTA methods in Fig. 4.
FADM exhibits overall better quality with more fine details
than other methods.
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(a)

(b)

Figure 5. Visual comparison with SOTA methods on the reenactment task. (a) Results on VoxCeleb [35]. (b) Results on VoxCeleb2
[6]. On both testing datasets, our FADM can produce more identity-preserving and photo-realistic results compared with other methods.
Particularly, compared with the most outstanding existing method Face vid2vid, FADM can effectively alleviate the unnatural artifacts on
the generated face images.

Table 2. Quantitative comparison for cross-identity reenactment on the testing datasets of VoxCeleb [35], VoxCeleb2 [6], and CelebA [30].

Method
VoxCeleb VoxCeleb2 CelebA

FID↓ CSIM ↑ FID↓ CSIM ↑ FID↓ CSIM ↑
FOMM 106.9 0.5491 138.1 0.5228 96.29 0.5410
Face vid2vid 106.6 0.6447 148.6 0.6290 93.44 0.6218
DaGAN 110.3 0.5305 139.6 0.4932 96.47 0.4983
FADM 106.6 0.6598 151.7 0.6320 86.55 0.6366

Cross-Identity Reenactment. We validate the effective-
ness of FADM on the testing datasets of VoxCeleb, Vox-
Celeb2, and CelebA for the cross-identity reenactment task,
where Face vid2vid [49] is used to generate the coarse an-
imation results. Specifically, we randomly select 10 source
images and 14 driving videos with different identities from
the testing datasets of VoxCeleb and VoxCeleb2 to form var-
ious groups. We also use the driving videos of VoxCeleb
to animate 10 randomly selected source images from the
testing dataset of CelebA. Table 2 shows the quantitative
results of the reenactment task. Our FADM outperforms
other SOTA methods on the testing datasets of VoxCeleb
and CelebA. On VoxCeleb2, FADM exhibits better identity
preservation capability, but performs not well in terms of
FID. In fact, FID measures the similarity of the data dis-
tributions extracted from the two groups. The data quality

of VoxCeleb2 is quite poor, including low resolution (the
original image size is 224×224) and blurred textures, while
FADM tends to generate fine-detailed images, resulting in
mismatching between them. Therefore, we think that our
FID result on VoxCeleb2 is reasonable.

To prominently show the effectiveness of FADM, we
specially select several samples in which the source im-
age and driving videos come from different genders or age
groups, and visualize their results in Fig. 5. As we can
observe, when the appearance and motion change dramat-
ically, existing SOTA methods may encounter severe dis-
tortions or artifacts. In contrast, our FADM can effectively
rectify these distortions and enrich the facial details, while
ensuring faithful appearance and motion, thereby generat-
ing photo-realistic animation results.



Figure 6. Visualization of the ablation study. Without (w/o) the proposed appearance condition, the animation model performs poorly in
synthesizing realistic facial areas (eyes, mouth, and hair). We also specially mark the noteworthy areas in the right part, demonstrating the
effectiveness of the designed motion condition in modifying the facial details.

Table 3. Ablation study for same-identity reconstruction on VoxCeleb [35].

Method L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑ AKD ↓ AED ↓
w/o color condition 0.0428 0.1774 23.835 0.7701 1.488 0.0263
w/o motion condition 0.0407 0.1408 24.110 0.7818 1.400 0.0243
FADM 0.0402 0.1379 24.434 0.7841 1.392 0.0241

4.3. Ablation Study

We conduct comprehensive experiments on the same-
identity reconstruction task to demonstrate the effective-
ness of the appearance and motion condition mechanism in
AGCN, and elaborate why the designed AGCN is the rel-
atively optimal choice for face animation diffusion model
over other possible designs.

Appearance Condition. In AGCN, we employ an en-
coder PConv, which is optimized by Lcolor, to extract the
appearance condition from the driving frames during train-
ing, and take the coarse animation results as the appearance
motion in the inference process. Here we construct another
possible design as a comparison model: using the coarse an-
imation results as appearance condition in both training and
inference. As shown in the left part of Fig. 6, directly using
the coarse animation results may fail to synthesize realis-
tic facial regions, Moreover, we show the quantitative com-
parison in Table 3, in which AGCN obtains better results,
illustrating the rationality of our appearance condition.

Motion Condition. We further evaluate the effectiveness
of the motion condition in AGCN. Specifically, we adopt
a comparison model directly using the coarse generated re-
sults as the motion condition without the dynamical adjust-
ment according to the 3D reconstruction results in AGCN.
The visualization is shown in the right part of Fig. 6. We can
observe that with the designed motion condition, FADM
can enrich more fine-grained details, while the comparison

model are prone to generate over-smoothing results. Table
3 also illustrates that the motion condition in AGCN is ef-
fective to improve the quality of generated results.

5. Conclusion

In this paper, we propose an attribute-guided Diffusion
Model for face animation (FADM), which introduces the
iterative diffusion steps to improve the quality of the ani-
mation results. To guarantee the generated facial attributes,
including appearance and motion, and meet the require-
ments of face animation, we design an Attribute-Guided
Conditioning Network (AGCN) to extract faithful appear-
ance and motion conditions for the subsequent diffusion
process. Based on the coarse generated results and disen-
tangled poses and expressions predicted by the advanced
3D face reconstruction module, AGCN adaptively modu-
lates the appearance and motion conditions and navigates
the diffusion denoising model to synthesize ideal facial de-
tails and rectify the distortions. Moreover, FADM can be
directly used to improve the quality of talking-head videos
without extra modulation. Extensive experiments demon-
strate that our FADM achieves new state-of-the-art perfor-
mance.
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