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Abstract

Adapting a segmentation model from a labeled source
domain to a target domain, where a single unlabeled da-
tum is available, is one of the most challenging problems in
domain adaptation and is otherwise known as one-shot un-
supervised domain adaptation (OSUDA). Most of the prior
works have addressed the problem by relying on style trans-
fer techniques, where the source images are stylized to have
the appearance of the target domain. Departing from the
common notion of transferring only the target “texture” in-
formation, we leverage text-to-image diffusion models (e.g.,
Stable Diffusion) to generate a synthetic target dataset with
photo-realistic images that not only faithfully depict the
style of the target domain, but are also characterized by
novel scenes in diverse contexts. The text interface in our
method Data AugmenTation with diffUsion Models (DA-
TUM) endows us with the possibility of guiding the gener-
ation of images towards desired semantic concepts while
respecting the original spatial context of a single training
image, which is not possible in existing OSUDA methods.
Extensive experiments on standard benchmarks show that
our DATUM surpasses the state-of-the-art OSUDA meth-
ods by up to +7.1%. The implementation is available at :
https://github.com/yasserben/DATUM

1. Introduction
Semantic segmentation (SS) is one of the core tasks in

computer vision [9,56,59], where a neural network is tasked
with predicting a semantic label for each pixel in a given
image [12]. Given its importance, SS has received significant
attention from the deep learning community and has found
numerous applications, such as autonomous driving [6, 8],
robot navigation [28], industrial defect monitoring [37].

The task of semantic segmentation is known to require
pixel-level annotations which can be costly and impractical
in many real-world scenarios, making it challenging to train
segmentation models effectively. Moreover, the issue of do-
main shift [49] can cause segmentation models to underper-
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Figure 1. In existing OSUDA methods data augmentation is done
via stylization [17, 31]. In our proposed approach, we prompt the
text-to-image diffusion models [39] to generate new images that not
only depict the style of the target domain, but also more faithfully
capture the diversity of the scene content.

form during inference on unseen domains, as the distribution
of the training data may differ from that of the test data.
To make learning effective without needing annotations on

the target domain, several Unsupervised Domain Adaptation
(UDA) methods have been proposed for the task of semantic
segmentation [11,22,50,55]. Fundamentally, the UDA meth-
ods collectively use the labeled (or source) and the unlabeled
(or target) dataset to learn a model that works well on the
target domain. Despite being impressive in mitigating the
domain gap, the UDA methods rely on the assumption that a
considerably large dataset of unlabelled images is at disposal.
However, collecting a large target dataset before adaptation
poses as a bottleneck in the rapid adoption of segmentation
models in real-world applications. To circumvent this issue,
several works have investigated the feasibility of using just
a small subset of the unlabeled target samples (at times just
one sample) to adapt the model. This adaptation scenario
is known as One-Shot Unsupervised Domain Adaptation
(OSUDA) [3, 17, 31, 58], where, in addition to the source
dataset, only a single unlabelled target sample is available.

While the OSUDA setting is realistic and cost-effective,
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relying solely on a single target image makes it challeng-
ing for traditional UDA methods to estimate and align dis-
tributions. To address the lack of target data, the OSUDA
approaches generally overpopulate the target dataset with
source images stylized as target-like ones [17, 31]. Albeit
effective, these methods result in a target dataset that is
limited to the scene layouts and structures inherent to the
source dataset (Fig. 1 left). In this work, we argue that sim-
ply mimicking the style of the target is insufficient to train
a robust target model, especially when only limited infor-
mation about the target domain is available. Thus, we seek
for diversifying the scene content and spatial layout, more
than what the source images can offer. Moreover, generat-
ing high-fidelity images is yet another challenging problem.
Thus, in this work, we focus on denoising diffusion models
(DM) [21, 39], a family of generative models with excellent
capability in generating high-quality images. We propose
to leverage DMs to augment the target dataset with images
that not only resemble the target domain at hand, but also
contain diverse and plausible scene layouts due to rich prior
knowledge encoded in DMs (see Fig. 1 right).

In detail, we fine-tune a DM [21, 39] on the single target
sample to generate an auxiliary large target dataset. Follow-
ing recent work [15,43], we represent the target image with a
special, rare and unique token that encapsulates its visual ap-
pearance. Then, we exploit the vast knowledge of DMs about
the objects (or things classes) present in the source domain
for a driving scenario [14, 30, 44]. Specifically, we prompt
the model to generate a target dataset depicting such objects
in a multitude of scenes, while maintaining the appearance
tethered to the overall target domain style via the unique to-
ken. Once an augmented target dataset is made available, any
UDA method can be used to adapt to the target domain. We
thus present our method Data AugmenTation with diffUsion
Models (DATUM), for addressing OSUDA, as a connotation
to the setting of having access to a single “datum” from the
target domain. Our approach has the advantage of making
any UDA method compatible with the one/few-shot setting.
In our experiments, we add DATUM to existing UDA meth-
ods and compare against the state-of-the-art OSUDA. Our
results and analysis demonstrate the efficacy of DATUM and
its ability to diversify the target dataset. We believe that DA-
TUM can contribute significantly to semantic segmentation
as a plug-and-play module.

Our contributions are three-fold: (i) We demonstrate, for
the first time in the context of SS, the importance of generat-
ing semantically diverse and realistic target-like images in
OSUDA. (ii) We propose DATUM, a generic data augmen-
tation pipeline powered by DMs, for addressing the chal-
lenging yet relevant task of OSUDA, and (iii) while being
conceptually simple, we show with extensive experiments,
on standard sim-to-real UDA benchmarks, that DATUM can
easily surpass the state-of-the-art OSUDA methods.

2. Related Works

Unsupervised domain adaptation. To bridge the domain
gap between the source and target datasets, unsupervised do-
main adaptation (UDA) methods have been proposed, which
can be roughly categorized into three broad sub-categories
depending on the level where the distribution alignment is
carried out in the network pipeline. First, the feature-level
alignment methods aim at reducing the discrepancy between
the source and target domains in the latent feature space of
the network under some metric. As an example, these meth-
ods include minimizing the Maximum Mean Discrepancy
(MMD) [4] or increasing the domain confusion between the
two domains with a discriminator network [23,26,32,46,55].
The latent space being high dimensional, the second cat-
egory of UDA methods [35, 51, 52, 55] exploits the lower
dimensional and more structured output space of the network
to mitigate domain shift, while borrowing e.g., adversarial
alignment techniques. The third category includes meth-
ods [22,23,26,29,32,46,48,55] that align the source and the
target domains in the input (or pixel) space by generating
target-like source images via style transfer [16,27,64]. There
is yet another successful line of UDA works that exploit
self-training using a student-teacher framework [2, 24, 25].

While the above UDA methods are effective under the
standard adaptation setting to varying degrees, where the
entire target dataset is available for training, style transfer-
based methods are particularly effective when the target
data is inadequate to approximate a distribution. Different
from the existing methods [3, 17], which are just capable of
transferring style (or “appearance”) information to the source
images, our proposed DATUM can additionally generate
novel and structurally coherent content in the target domain.

Few-shot adaptation. To improve the sample efficiency of
the (UDA) methods, supervised few-shot domain adapta-
tion (FSDA) methods [13, 33, 57] relax the need of having
a large unlabeled target dataset, in favour of assuming ac-
cess to a few but labeled samples of the target domain. The
FSDA methods [60, 63] exploit the labeled target samples
to construct prototypes to align the domains. The setting of
OSUDA is a more challenging version of FSDA, where a
single target sample is available without any annotation. Due
to the lack of means of constructing prototypes or aligning
distributions with a single target sample, OSUDA meth-
ods [17, 31, 58] are based on transferring style from the
target sample to the source dataset to artificially augment the
target dataset. Once augmented, UDA methods such as self-
training [17], consistency training [31], prototypical match-
ing [58], are applied. Similar to [17], we use the self-training
framework DAFormer [24] to adapt to the generated target
images. However, unlike the prior OSUDA works [17,31,58],
DATUM’s data generation pipeline is stronger, conceptually
simpler and does not rely on many heuristics.
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Figure 2. The three stages of DATUM. In the personalization stage (a), we learn to map a unique token V∗ with the appearance of the
target domain using a single target image. In the data generation stage (b), we employ the personalized model to generate a large dataset
corresponding to the target distribution. Class names are used to improve diversity. Finally, the adaptive segmentation stage (c) consists in
training an existing UDA framework on the labeled source and the generated unlabeled pseudo-target datasets

Diffusion models. Very recently, diffusion models (DM) [21,
47] have brought a paradigm shift in the generative model-
ing landscape, showing excellent capabilities at generating
photo-realistic text-conditioned images [36, 39, 44]. To al-
low personalized and more fine-grained generation, works
such as DreamBooth [43], Textual Inversion [15] and Con-
trolNet [61] have extended DMs with different levels of
fine-tuning, offering more flexibility. However, a handful of
recent works [1, 19, 45] has explored the possibility of using
a latent diffusion model [39], a fast alternative to DM, for
generating class-conditioned synthetic datasets, as replace-
ments of the real counterparts, to solve image recognition
tasks. In contrast to these approaches, we specifically address
the problem of domain adaptation by augmenting the target
domain. We adopt a fine-tuning strategy [43] that explicitly
incorporates the appearance of the target domain. Our ap-
proach associates a word identifier with the content of the
target image, resulting in high-fidelity synthetic generations.

3. Method
In this work, we propose Data AugmenTation with

diffUsion Models (DATUM), a generic method for creat-
ing synthetic target dataset by using a single real sample
(and hence, one-shot) from the target domain. The syn-
thetic dataset is then used for adapting a segmentation model.
Sec. 3.1 introduces the task and gives a background about
DM, while Sec. 3.2 describes DATUM.

3.1. Preliminaries

Problem formulation. In this work, we address the problem
of One-Shot Unsupervised Domain Adaptation (OSUDA),
where we assume access to NS labeled images from a source
domain DS = {(XS

i , Y
S
i )}NS

i=1, where XS
i ∈ RH×W×3 rep-

resents an RGB source image and Y S
i ∈ RH×W×|C| the cor-

responding one-hot encoded ground-truth label, with each
pixel belonging to a set of C classes. Unlike, traditional UDA
methods [22,55], in OSUDA we have have access to a single

unlabeled target sample XT, where XT ∈ RH×W×3.
In the context of semantic segmentation, the goal in OS-

UDA is to train a segmentation model f : X → Y that can
effectively perform semantic segmentation on images from
the target domain. Given the sheer difficulty in training f(·)
with the single target image, our method seeks to generate a
synthetic target dataset by leveraging a text-to-image DM.
Background on Diffusion Models. Diffusion Models
(DM) [21] approach image generation as an image-denoising
task. We obtain a sequence of T noisy images X1..., XT

by gradually adding random Gaussian noises ϵ1..., ϵT to
an original training image X0. A parameterized neural net-
work ϵθ(·, t) is trained to predict the noise ϵt from Xt for
every denoising step t ∈ {1, ..., T}. Denoising is typically
carried out with a U-Net [41]. To enable conditioning, the
network ϵθ(Xt, y, t) is conditioned on an additional input
y. In the case of text conditioning, the embeddings from a
text-encoder τθ for the text y are used to augment the U-
Net backbone with the cross-attention mechanism [53]. For
a given image-caption pair, the conditional DM is learned
using the following objective:

LDM = EX,y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(Xt, t, τθ(y))||22

]
(1)

To improve efficiency, we employ a DM, which operates in
the latent space of a pre-trained autoencoder [39].

3.2. Data Augmentation with Diffusion Models

Our proposed DATUM works in three stages and is shown
in Fig. 2. In the first stage, called the personalization stage,
we fine-tune a pre-trained text-to-image DM model by using
multiple crops from the single target image (see Fig. 2a).
This steers the DM towards the distribution of the target do-
main of interest. Next, in the second data generation stage,
we prompt the just fine-tuned text-to-image DM to generate
a synthetic dataset that not only appears to be sampled from
the target domain, but also depicts desired semantic con-
cepts (see Fig. 2b). Finally, the adaptive segmentation stage

3



(a) Real images from the target domain (Cityscapes) for reference

(b) Synthetic images from out-of-the-box SD with the prompt p = “a photo of [CLS]”

(c) Synthetic target images with the prompt p = “a photo of V∗ urban scene” .

(d) Synthetic target images with the prompt p = “a photo of V∗ [CLS]”

Figure 3. Qualitative study illustrating the underlying motivations of our three-stage approach. (a) Real images from the Cityscapes
target domain. (b) Out-of-the-box Stable Diffusion (SD) can generate photo-realistic images given the [CLS] name in the prompt, but barely
have any resemblance to Cityscapes. (c) Fine-tuning SD on a single target image (personalization stage) leads to generations that truly mimic
the Cityscapes domain, but at the cost of losing diversity. (d) Our proposed prompting strategy (data generation stage) leads to synthetic
generations that are both photo-realistic and also ressembles Cityscapes-like images.The blue-framed image in (a) is the training image used
to generate the images in rows (c) and (d).

culminates the three stage pipeline of DATUM, where we
combine the labeled source data with the synthetic pseudo-
target data and train with a general purpose UDA method
(see Fig. 2c). Next, we describe each stage in detail.

Personalization stage. The goal of the personalization stage
is to endow the pre-trained DM with generation capabilities
that are relevant to the downstream task. This stage is crucial
because simply generating out-of-domain photo-realistic im-
ages is not useful for the downstream task. As an example, as
shown in Fig. 3(b), when an out-of-the-box DM is prompted
with p = “a photo of [CLS]”, where CLS represents a user-
provided object class from the dataset, the DM generates
high-fidelity images that truly depict the desired semantic
concept. However, when compared to the real target domain
(see Fig. 3(a)) the DM generated images of Fig. 3(b) have
little to no resemblance in appearance. Given that the labeled
source dataset already provides a rich prior to the segmenta-
tion model about the object classes of interest, having more
unrelated and unlabeled images is unappealing.

Thus, we strive to imprint the appearance of the target
domain into the synthetic dataset, while just using a single
real target sample, in order to obtain more targetted synthetic
data. Towards that end, we use DreamBooth [43], a recently

proposed technique for fine-tuning the DM, that allows for
the creation of novel images while staying faithful to the
user-provided subset of images. In detail, DreamBooth as-
sociates a unique identifier V∗ to the subset of images as
provided by the user by fine-tuning the DM weights. Simi-
larly, we fine-tune the DM on the single target image while
conditioning the model with the prompt p = “a photo of V∗
urban scene”. This results in the unique identifier V∗ captur-
ing the target domain appearance. Once trained, we prompt
the fine-tuned DM with p = “a photo of V∗ urban scene” and
report the results in the Fig. 3(c). We observe the stark im-
provement in the overall visual similarity with the reference
target domain images depicted in Fig. 3(a). As a result of the
personalization step with V∗, we can now condition the DM
to generate more samples of the desired target domain.

However, a thorough inspection of the generated images
in Fig. 3(c) reveals that the images lack diversity. The DM
overfits to the single target image and loses its ability to gen-
erate many other objects. For instance, some classes (such
as car) are repeated whereas others (such as bus, bike, truck)
never appear. To prevent this overfitting issue, we train the
DM for a limited number of iterations. Moreover, we disable
the class-specific prior-preservation loss used in Dream-
booth [43], designed for not forgetting other concepts, since
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our goal is to capture the essence of the target domain, rather
than generating a desired object in many unrealistic and un-
natural scenarios. For fine-tuning the DM, we optimize the
training objective described in Eq. (1).
Data generation stage. In the post personalization stage, our
goal is to generate a dataset of synthetic images of the target
domain. As we use just a single target image in the personal-
ization stage, the generation capability of the fine-tuned DM
model can still be limited to few scenes. Therefore, to elicit
diverse generations from the fine-tuned DM, at inference
we use more targetted prompts than the ones used during
training. Specifically, we employ class-wise prompts in the
form of: “a photo of a V∗ [CLS]”. The [CLS] corresponds
to the name of the things classes (e.g., bus, person, etc.)
we want to generate, as defined in [5]. Our choice of using
only the “things” classes is motivated by the fact that in
a driving application, the “things” classes mostly co-occur
with “stuff” classes (e.g., building, sky). Thus, explicitly
prompting the model to generate stuff classes is redundant.
As shown in Fig. 3(d), injecting the “things” class names
into the inference prompt leads to an improved diversity in
the generations, while staying close to the target domain
in appearance. This helps in combating the long-tailed phe-
nomenon of the semantic segmentation datasets, where some
minority classes (e.g., bike) appear less frequently than oth-
ers, such as cars, and road.
Adaptive segmentation stage. While the pseudo-target im-
ages in the synthetic dataset contain the user-desired ob-
ject, they still lack pixel-level information. To overcome
this limitation, we resort to UDA techniques that enable a
segmentation model to be adapted to an unlabeled target
dataset. In this work, we leverage UDA methods such as
DAFormer [24] and HRDA [25], but our approach is not
exclusive to these two methods. Notably, the optimization
objective of these two UDA methods remain unaltered. In
summary, our proposed DATUM can transform any UDA
method into an effective OSUDA method.

4. Experiments
4.1. Experimental set up

Dataset and settings. We follow the experimental settings
established in the OSUDA literature [17, 31, 58] and con-
duct experiments on two standard sim-to-real benchmarks:
GTA → Cityscapes and SYNTHIA → Cityscapes, where
GTA [38] and SYNTHIA [42] are the source domains in
the respective settings, and Cityscapes [10] is the target do-
main. In details, the GTA dataset comprises 24,966 synthetic
images with a resolution of 1914 × 1052. and SYNTHIA
contains 9400 synthetic images of resolution 1280 × 760.
Cityscapes contains 2975 training images and 500 validation
images of size 2048 × 1024, is captured under real-world
driving conditions. Note that, since we operate in the one-

shot adaptation scenario, as in [17, 31, 58], we assume to
have access to a datum from the target domain, which is
chosen at random during training.
Implementation details. We employ the Stable Diffu-
sion (SD) implementation of Latent Diffusion Models
(LDM) [39]. We use the publicly available Diffusers li-
brary [54] for all the experiments related to generating syn-
thetic data. In particular, for generating synthetic images in
the target domain, we start from the Stable Diffusion v1.4
checkpoint [40] and fine-tune it using the DreamBooth [43]
method. We refer the reader to LDM [39] for details about
the encoder, U-Net, and decoder architectures.

For fine-tuning SD, we randomly crop patches of 512 ×
512 from the original 2048 × 1024 resolution, and use a
generic prompt p = “a photo of a V∗ urban scene”, given
that the target domain Cityscapes was captured in an urban
set-up [10]. We train SD for 200 iterations, and we find that
for the one-shot setting longer training leads to overfitting on
the target scene. Once trained, we generate a synthetic target
dataset of cardinality 2975, which is equivalent in size to the
Cityscapes training set, by utilizing inference prompts of the
form p = “a photo of a V∗ [CLS]”. DreamBooth generates
images at the same resolution as the input, which is 512 ×
512. This generated dataset then serves as the target domain
for adaptation, as in UDA.

For training the final segmentation model on the source
and generated datasets, we use the network architecture from
state-of-the-art UDA methods [24] that use MiT-B5 [59] as
the encoder and a context-aware fusion [24] as the decoder.
This is analogous to the most popular ResNet-101 [18] as
a backbone, and DeepLabV2 [9] as the decoder. We also
experiment with another UDA method: HRDA [25]. For
both these experiments with DAFormer and HRDA, we keep
the training protocol and hyperparameters unchanged. Both
the ResNet-101 and MiT-B5 are pre-trained on ImageNet-1k.
Evaluation metrics. Following the standard protocol [31],
we report the mean Intersection over Union (mIoU) on the
validation set of Cityscapes. For the GTA → Cityscapes
benchmark, we compute mIoU over 19-classes, whereas
for SYNTHIA → Cityscapes, we report both mIoU13 and
mIoU16 for 13 and 16 classes, respectively [17].

4.2. Comparison with the state-of-the-art

Baselines. We compare our proposed method with the
state-of-the-art OSUDA methods and UDA methods adapted
to the OSUDA setting: CycleGAN [64], ASM [31], OST [3],
CACDA [17], SMPPM [58], DACS [50] which are also
methods based on data augmentation, as well as ProDA [62],
CBST [55], AdaptSeg [51], DAFormer [24] and HRDA [25].
Given that DATUM focuses primarily on data generation, we
pair it with the UDA methods DAFormer and HRDA under
the OSUDA setting. We denote these models as DAFormer
+ DATUM and HRDA + DATUM, which use purely syn-
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Table 1. Comparison with state-of-the-art methods for UDA and OSUDA on the GTA → Cityscapes benchmark. #TS denotes the
number of real target samples used during training, which are color coded as None , All and One . Methods using ResNet-101 [18] and
MiT-B5 [59] are shown in the top and bottom halves, respectively. As an example, DaFormer + DATUM denotes DAFormer trained using
the synthetic images generated by our DATUM. ⋆: results from CACDA [17]; ⋄: results from HRDA [25]; and †: results from ASM [31].
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Encoder: ResNet-101

Source-Only ⋆ None 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
CycleGAN † [64] All 81.7 27.0 81.7 30.3 12.2 28.2 25.5 27.4 82.2 27.0 77.0 55.9 20.5 82.8 30.8 38.4 0.0 18.8 32.3 41.0
ASM † [31] All 89.8 38.2 77.8 25.5 28.6 24.9 31.2 24.5 83.1 36.0 82.3 55.7 28.0 84.5 45.9 44.7 5.3 26.4 31.3 45.5
DACS ⋄ [50] All 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
ProDA ⋄ [62] All 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer ⋄ [24] All 96.0 72.4 88.0 39.2 37.4 38.0 50.3 54.0 88.4 47.2 89.2 69.8 42.6 88.6 48.6 55.4 0.9 34.6 48.7 57.3
HRDA ⋄ [25] All 96.2 73.1 89.7 43.2 39.9 47.5 60.0 60.0 89.9 47.1 90.2 75.9 49.0 91.8 61.9 59.3 10.2 47.0 65.3 63.0
AdaptSeg ⋆ [51] One 77.7 19.2 75.5 11.7 6.4 16.8 18.2 15.4 77.1 34.0 68.5 55.3 30.9 74.5 23.7 28.3 2.9 14.4 18.9 35.2
CBST ⋆ [65] One 76.1 22.2 73.5 13.8 18.8 19.1 20.7 18.6 79.5 41.3 74.8 57.4 19.9 78.7 21.3 28.5 0.0 28.0 13.2 37.1
CycleGAN ⋆ [64] One 80.3 23.8 76.7 17.3 18.2 18.1 21.3 17.5 81.5 40.1 74.0 56.2 38.3 77.1 30.3 27.6 1.7 30.0 22.2 39.6
OST ⋆ [3] One 84.3 27.6 80.9 24.1 23.4 26.7 23.2 19.4 80.2 42.0 80.7 59.2 20.3 84.1 35.1 39.6 1.0 29.1 23.2 42.3
SMPPM ⋆ [58] One 85.0 23.2 80.4 21.3 24.5 30.0 32.0 26.7 83.2 34.8 74.0 57.3 29.0 77.7 27.3 36.5 5.0 28.2 39.4 42.8
ASM † [31] One 86.2 35.2 81.4 24.2 25.5 31.5 31.5 21.9 82.9 30.5 80.1 57.3 22.9 85.3 43.7 44.9 0.0 26.5 34.9 44.5
DAFormer [24] One 85.5 31.2 81.7 24.0 25.6 23.0 33.1 27.4 82.7 27.8 81.4 61.6 27.2 79.0 30.5 41.4 13.4 29.2 14.9 43.2
HRDA [25] One 86.7 22.0 81.2 26.8 25.8 30.2 40.4 33.6 84.8 24.3 77.8 63.2 32.3 84.7 31.1 40.6 19.4 26.5 14.0 44.5
CACDA ⋆ [17] One 80.9 32.6 85.8 36.1 30.7 40.7 43.7 41.7 84.1 30.7 84.5 65.4 27.6 86.0 36.5 51.4 24.1 26.7 30.7 49.5

DAFormer + DATUM One 88.1 32.8 84.3 26.6 27.7 32.7 35.7 34.9 86.2 36.2 87.6 65.8 35.8 80.2 39.5 44.1 17.1 42.7 43.8 49.6
HRDA + DATUM One 82.1 31.9 80.9 21.3 27.6 38.6 43.5 41.0 87.1 33.1 87.2 70.8 37.5 71.3 38.2 48.5 22.9 44.2 54.0 50.6

Encoder: MiT-B5

Source-Only ⋄ None - - 45.6
DAFormer ⋄ [24] All 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
HRDA ⋄ [25] All 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
DAFormer [24] One 84.0 18.2 83.0 35.6 20.0 33.8 40.1 35.3 86.4 37.4 82.7 66.6 31.6 85.0 37.0 40.6 36.7 33.3 29.0 48.2
HRDA [25] One 84.3 29.2 84.3 44.3 23.2 43.9 48.7 39.2 88.2 41.0 82.6 70.5 36.9 85.8 43.7 51.4 42.2 34.7 30.6 52.9
CACDA ⋆ [17] One 83.4 35.3 87.1 44.8 32.3 42.5 50.2 52.5 88.0 46.1 90.4 66.7 25.6 88.6 50.3 50.8 44.5 34.4 38.6 55.4

DAFormer + DATUM One 86.2 29.0 87.1 41.5 35.6 44.7 48.5 42.7 88.4 42.4 88.3 68.8 35.9 89.7 57.1 57.6 27.8 46.8 53.2 56.4
HRDA + DATUM One 87.1 32.0 88.2 49.6 40.4 49.5 54.8 43.6 89.9 44.6 91.3 74.9 45.7 91.4 61.7 67.0 37.1 57.7 55.8 61.2

thetic target dataset generated by DATUM, alongside source.
For a fair comparison with baselines, we use the DAFormer
network architecture (with MiT-B5 backbone), which has
demonstrated superior effectiveness compared to weaker
counterparts, such as ResNet-101 [24]. However, as perfor-
mance metrics for some older OSUDA methods [3, 31] are
not available with a DAFormer-like architecture, we also
experiment using DeepLabV2 with ResNet-101 backbone.

Main results. In Tab. 1 and Tab. 2 we report the results on the
GTA → Cityscapes and the SYNTHIA → Cityscapes bench-
marks, respectively, under the traditional UDA as well as the
OSUDA setting. The traditional UDA setting [24] is denoted
as All , as it uses all target samples, while the OSUDA set-
ting is denoted as One since we have access to only a single
datum. Following the standard practices from the one/few
shot learning literature, we report our results averaged over
3 independent runs using randomly sampled unlabeled real
target datum. Also note that in our experiments we report the
model performance after the last training iteration, instead

of picking the maximum mIoU.
From the Tab. 1 we notice that using our generated tar-

get dataset for training the state-of-the-art UDA methods in
the OSUDA setting, greatly improves their performances,
independent of the backbone. For instance, DAFormer + DA-
TUM is +6.4% better (43.2 → 49.6%) than DAFormer, with
the ResNet-101 as backbone. Similar trends can be noticed
when using the MiT-B5 backbone, where we improve HRDA
by +8.3% (i.e., from 52.9% → 61.2%). Overall, for the GTA
→ Cityscapes with the MiT-B5 as backbone, we beat the
best competitor CACDA [17] by significant margins (55.4%
versus our 61.2%). Interestingly, we observe that while using
the ResNet-101 backbone, our data generation can even out-
perform UDA methods that use all the original target dataset,
e.g., CycleGAN and ASM.

From Tab. 2, which reports the performance on the SYN-
THIA → Cityscapes benchmark, we observe similar results.
Pairing our generated dataset with UDA methods consis-
tently improves performance under the OSUDA setting.
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Table 2. Comparison with state-of-the-art methods for UDA and OSUDA on the GTA → Cityscapes benchmark. #TS denotes the
number of real target samples used during training, which are color coded as None , All and One . Methods using ResNet-101 [18]
and MiT-B5 [59] are shown in the top and bottom halves, respectively. As an example, DaFormer + DATUM denotes DAFormer trained
using the synthetic images generated by our DATUM. mIoU13 and mIoU16 denote the mIoU computed using the 13 and 16 classes,
respectively [50, 51, 55]. ⋆: results from CACDA [17]; ⋄: results from HRDA [25]; and †: results from ASM [31].
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mIoU16 mIoU13

Encoder: ResNet-101

Source-Only ⋆ None 36.3 14.6 68.8 9.2 0.2 24.4 5.6 9.1 69.0 79.4 52.5 11.3 49.8 9.5 11.0 20.7 29.5 33.7
AdaptSeg † [51] All 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7
CBST † [65] All 53.6 23.7 75.0 - - - 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 - 48.4
DACS ⋄ [50] All 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
ProDA ⋄ [62] All 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
DAFormer ⋄ [24] All 71.5 30.4 85.4 26.2 3.4 40.9 45.9 52.3 84.3 81.4 69.7 42.7 86.9 52.5 49.3 59.4 55.1 61.9
HRDA ⋄ [25] All 85.8 47.3 87.3 27.3 1.4 50.5 57.8 61.0 87.4 89.1 76.2 48.5 87.3 49.3 55.0 68.2 61.2 69.2
CBST † [65] One 59.6 24.1 72.9 - - - 5.5 13.8 72.2 69.8 55.3 21.1 57.1 17.4 13.8 18.5 - 38.5
AdaptSeg † [51] One 64.1 25.6 75.3 - - - 4.7 2.7 77.0 70.0 52.2 20.6 51.3 22.4 19.9 22.3 - 39.1
OST † [3] One 75.3 31.6 72.1 - - - 12.3 9.3 76.1 71.1 51.1 17.7 68.9 19.0 26.3 25.4 - 42.8
ASM † [31] One 73.5 29.0 75.2 - - - 10.9 10.1 78.1 73.2 56.0 23.7 76.9 23.3 24.7 18.2 - 44.1
SMPPM ⋆ [58] One 79.3 35.3 75.9 5.6 16.6 29.8 25.4 22.7 79.9 76.8 54.6 23.5 60.2 23.9 21.2 36.6 41.4 47.3
DAFormer [24] One 69.3 26.3 76.3 5.8 0.5 28.5 16.7 24.9 73.7 74.9 59.5 28.5 74.5 28.0 21.8 44.6 40.9 47.1
HRDA [25] One 61.0 24.1 76.7 7.5 0.3 34.5 21.8 29.2 77.4 78.9 64.2 28.5 77.1 25.0 29.8 43.4 42.5 48.5
CACDA ⋆ [17] One 82.5 33.8 77.8 12.6 0.8 34.2 30.8 34.4 79.8 82.4 55.4 30.7 72.5 28.4 15.9 47.8 45.0 51.7

DAFormer + DATUM One 79.3 32.9 80.6 17.7 0.4 32.4 22.2 36.9 82.4 81.6 65.7 36.0 76.2 26.0 31.2 50.3 47.0 53.5
HRDA + DATUM One 86.5 39.3 83.2 17.9 0.2 42.8 24.0 45.1 84.1 85.9 72.7 39.2 86.1 31.4 44.5 56.7 52.5 59.4

Encoder: MiT-B5

DAFormer ⋄ [24] All 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9 67.4
HRDA ⋄ [25] All 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 65.8 72.4
DAFormer [24] One 71.2 25.7 82.3 20.5 0.9 37.0 30.0 28.5 83.7 86.8 61.2 31.0 73.3 24.8 14.1 28.8 43.7 48.9
HRDA [25] One 73.2 27.6 81.8 24.0 0.5 43.5 42.0 32.5 85.3 87.2 65.3 30.3 74.5 29.8 13.4 42.6 47.1 52.3
CACDA ⋆ [17] One 81.4 37.3 84.8 19.5 1.2 43.7 43.0 34.4 86.5 90.0 63.8 32.8 79.6 42.7 28.0 47.2 51.0 57.8

DAFormer + DATUM One 79.6 28.8 85.6 30.9 1.4 45.6 43.0 46.5 85.9 89.7 70.3 38.4 84.8 56.0 39.5 52.1 54.9 61.1
HRDA + DATUM One 83.2 31.8 86.6 37.4 0.8 51.4 46.9 52.0 87.8 92.0 76.1 43.7 88.4 56.3 48.5 57.1 58.7 64.9

Compared to the best competitor method CACDA, DATUM
helps achieve the new state-of-the-art results, by compre-
hensively outperforming CACDA by +2.0% and +3.1% in
mIoU13. We believe that these findings are highly significant
in bridging the gap between OSUDA and standard UDA.

Table 3. Comparison with style transfer-based OSUDA methods

ResNet-101 MiT-B5

RAIN [31] 42.7 53.4
PT+CDIR [17] 48.5 54.0
DATUM (Ours) 50.6 57.2

Comparison with style-transfer methods. Given that DA-
TUM is akin to data augmentation in image stylization, we
compare it against two style transfer techniques used in exist-
ing OSUDA methods: RAIN [31] and PT+CDIR [17]. Tab. 3
reports the results. We observe that generating novel scenes
with DATUM is more impactful than simply augmenting the
source images with the target style as in the other methods.

4.3. Ablation analysis

To examine the effectiveness of DATUM, in this section
we conduct thorough ablation analyses of each component
associated with it. All ablations are carried out on GTA →
Cityscapes benchmark with DAFormer [24] using only one
random datum from the target domain.

Impact of number of shots. To investigate the impact of
the number of real target samples (or #TS) on the OSUDA
performance, we conduct an ablation study where we vary
the #TS and personalize SD with DATUM for a varied num-
ber of training iterations. In Fig. 4 we plot the performance
of DAFormer + DATUM for different #TS and compare it
with SD. We observe that for lower #TS (i.e., one shot) DA-
TUM achieves the best performance, and the mIoU gradually
degrades with prolonged training. This is because the SD
overfits on the single target image and loses its ability to gen-
erate diverse scenes. The issue is less severe when the #TS
increases to 10 (i.e., ten shot), and the mIoU is fairly stable.
Nevertheless, DATUM generates more informative target
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Figure 4. Impact of number of shots (#TS) on the mIoU (in %)

Table 4. Impact of training and inference prompts on the mIoU.

Training prompt Inference prompt classes mIoU

“a photo of a V∗
urban scene”

“a photo of a V∗ urban scene” - 52.9

“a photo of a V∗ [CLS]” things 57.2

“a photo of a V∗ [CLS]” things + stuff 56.7

“a photo of a V∗ [CLS] seen from the dash cam” things 55.5

“a photo of a V∗
scene from a car”

“a photo of V∗ scene from a car” things 53.0

“a photo of a V∗ [CLS]” things 56.8

“a photo of [CLS]
in a V∗ scene from a car” things 55.4

images than SD, highlighting the need for incorporating the
target style into the synthetic dataset generation process.

Impact of prompts. Since DATUM depends on the choice
of prompts used during training and inference, here we ablate
the impact of training and inference prompts by quantita-
tively measuring the mIoU for different combinations and
report the results in Tab. 4. We observe that the combination
of training prompt p = “a photo of a V∗ urban scene” and
class-aware inference prompt p = “a photo of a V∗ [CLS]”
leads to the best results (second row). When compared to the
class agnostic inference prompt p = “a photo of a V∗ urban
scene” (first row), the performance increases by +4.3% . This
demonstrates that grounding DATUM with things/objects of
interest leads to more meaningful scene composition, and
provides more information to the segmentation model. Using
the stuff classes (e.g., sky, building) in the inference prompts
(third row) results in a slightly lower performance compared
to using only things classes (second row).

Given that the target dataset Cityscapes is captured with
sensors mounted on a car, we make an attempt to tailor the
inference prompts for such a use-case. Specifically, we use
the inference prompt p = “a photo of a V∗ seen from the dash
cam”. We notice that usage of such prompt does not bring
any improvement, and rather leads to worsened performance.

Next, we make the training prompt more suited for a
driving scenario by using p = “a photo of a V∗ scene from a
car” and experiment with some inference prompts that are
essentially nuanced variations of the training prompt. The
results are reported in the lower part of Tab. 4. We observe
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Figure 5. Impact of the cardinality of the generated target dataset
on the mIoU in the one-shot setting. It is compared with adaptation
on the real data

that adding the phrase “scene from a car” to the training
prompt has no positive impact in the training of DATUM. It
is worth noting that the retention of the prior preservation
loss caused our best result to decrease from 57.2% to 54.8%.

Impact of generated dataset cardinality. Here, we examine
the impact of the cardinality of the target dataset generated
by DATUM using a single real target image (i.e., one-shot)
on the performance of the segmentation model. In Fig. 5 we
plot the mIoU from DAFormer versus the generated dataset
size and also compare with training on the real target dataset
of the same cardinality. We observe that having the same
quantity of real target samples leads to better performance
with respect to purely synthetic data. This is expected as
real data always contains more targetted information than
synthetic data. However, one must appreciate the fact that
having 1000 synthetic data leads to a better performance
than having 10 real samples, which can be difficult to collect
in some applications. Thus, our DATUM is most effective
when working with a very small budget of real target data.

5. Conclusions

We proposed a synthetic data generation method DATUM
for the task of one-shot unsupervised domain adaptation, that
uses a single image from the target domain to personalize a
pre-trained text-to-image diffusion model. The personaliza-
tion leads to a synthetic target dataset that faithfully depicts
the style and content of the target domain, whereas the text-
conditioning ability allows for generating diverse scenes
with desired semantic objects. When pairing DATUM with
modern UDA methods, it outperforms all state-of-the-art
OSUDA methods, thus paving the path for future research
in this few-shot learning paradigm.
Acknowledgements. This paper has been supported by the
French National Research Agency (ANR) in the framework of
its JCJC This work was granted access to the HPC resources of
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Supplementary Material

The supplementary material is organized as follows:
Sec. A reports additional experiments and ablation analysis
of our proposed method. Sec. B provides additional imple-
mentation details. Sec. C presents the segmentations maps
and then we conclude with a discussion about the broader
impact of our work.

A. Additional experiments

Impact of number of shots on FID. We also explore the
connection between the number of shots (#TS) and the photo-
realism of the generated target images using the Fréchet In-
ception Distance (FID) [20] score. The FID score measures
how close are the generated images to the real target data
distribution. Lower the FID score, closer are the two distri-
butions. We plot the FID scores in Fig. A1, and we observe
that Stable Diffusion (SD) has very high FID score, showing
that the generated images have very little resemblance to
the target domain Cityscapes. Low similarity with the target
domain is also reflected in poorer performance, as shown in
Fig. 4 of the main paper.

When compared with SD, the generations from DATUM
are much closer to the real target domain, which is evident
from the lower FID scores. We notice that when we fine-tune
SD with fewer real target images, the FID score shows an
upward trend as the number of training iterations increases.
Whereas, as the #TS increases from 1 to 5, longer training
leads to decreased FID score, up until the 800th interations.
Finally, for the 10-shot setting, the FID score plateaus for a
while and then starts going down after the 600th interations.
All these observations are as per expectations, since having
more real images necessitates longer training to fit to that
data distribution.
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Figure A1. Impact of number of shots (#TS) on the FID score
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Figure A2. Real and synthetic images from the things class train

Impact of prompting on class-wise IoU. Next we examine
the impact of using things and stuff classes on the class-
wise IoU scores. We report the results computed using
DAFormer [24] on the GTA → Cityscapes benchmark in
Tab. A1. We consider the DAFormer trained on a single real
target image as the baseline, and the gain/loss attained by
all the other methods are color coded. Warmer colors indi-
cate gain, while cooler ones signify drops in performance.
We compare the following methods: SD (using things class
names during inference), DATUM (without things and stuff
class names at inference), DATUM (using things and stuff
class names at inference), DATUM (using things class names
at inference, and w/ prior-preservation loss [43]), and DA-
TUM (using things class names at inference, and w/o prior-
preservation loss), which is our final method.

We observe from Tab. A1 that using synthetic data, either
with SD or our method brings improvements in a major-
ity of the classes. Big improvements are noteworthy in the
things classes (shown in the left half of Tab. A1). Interest-
ingly, for some things classes, such as person, rider and car,
the improvement with synthetic data is meagre. It could be
potentially due to the fact that the source domain already
encodes a strong prior about these objects, and additional
data do not provide useful information.

Careful scrutiny of the table also reveals that there is
a drop in the performance of the things class train. In an
attempt to investigate this drop, we visualize in Fig. A2
the images annotated as train in GTA and Cityscapes, as
well as synthetic images of train generated by DATUM. We
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Real target 41.2 36.4 68.0 35.3 84.0 33.8 36.9 34.6 30.7 25.7 82.7 14.7 83.8 34.1 19.8 31.8 86.0 30.9 83.5
SD (things) 45.7 27.8 68.0 36.4 88.5 48.8 54.1 20.4 44.3 41.8 78.4 24.0 85.2 44.9 34.0 40.5 88.2 39.1 86.4

DATUM 43.8 47.4 67.8 36.2 87.7 47.0 46.2 42.2 37.4 31.1 86.6 28.3 85.0 38.7 22.2 44.7 87.6 40.3 85.1
DATUM

(things & stuff)
48.3 44.0 68.6 38.4 90.2 55.0 63.8 23.3 46.7 55.0 85.9 29.7 87.1 38.2 40.0 44.4 88.7 42.5 86.9

DATUM (things)
(w/ prior-loss)

48.1 46.4 67.9 37.6 87.2 52.3 50.4 27.4 48.3 48.8 86.4 22.0 86.1 42.5 25.6 45.9 88.4 41.9 87.6

DATUM (things)
(w/o prior loss)

47.6 42.8 69.3 36.2 90.0 53.7 59.8 26.5 50.8 55.9 87.4 34.0 87.2 43.3 38.5 44.9 88.6 43.6 87.0

Table A1. Class-wise mIoU comparison for GTA → Cityscapes using MiT-B5 encoder. The left part of the table indicates th things classes,
whereas the right part of the table indicates stuff classes. The color visualizes the IoU difference with respect to the first row, which is trained
with the single target image.

Target Image ASM CACDA HRDA
HRDA+

DATUM (Ours)
GT

Figure A3. Qualitative results of segmentation maps. We compare the segmentation maps from different UDA methods on the GTA →
Cityscapes benchmark.

observe an ambiguity in annotations for the train class in
GTA and Cityscapes. While in GTA, the train image really
corresponds to the vehicle of type “train”, in Cityscapes one
can reasonably recognize that the vehicle is actually a tram.
Since, we utilize the class names of the source domain, our
DATUM generates images with an object, i.e., train, which
is irrelevant to the target domain, despite both the vehicles
exhibiting similar appearance.

B. Other Implementation details :
Data Augmentation. To enhance the robustness of the
learned features and allow fair comparison, we adopt the
identical set of data augmentation techniques as those em-
ployed in DAFormer [24]. The augmentation process entails
applying a Random Crop of size 512 × 512 to both source
and target images, followed by Random Flip with a 0.5 prob-
ability. Next, we employ the photometric distortion utilized
in DACS [50], which comprises of a Gaussian Blur, Color
Jittering, and ClassMix [34].
Personalization and generation. In the personalization
stage, we employ the default DDPM [21] noise scheduler as
in Dreambooth [43]. In the data generation stage, we also
use the default parameters of Dreambooth [43]: 50 inference

steps and a guidance scale of 7.5.

C. Qualitative visualizations
Finally, we show the qualitative results of the segmen-

tation maps generated by our method and the comparison
with other state-of-the-art methods in Fig. A3. Despite being
trained on synthetic data, our DATUM is still able to cap-
ture several fine-grained details, especially the objects that
appear far away from the camera. Note that, we do not make
efforts to cherry pick the segmentation maps, and simply
report our results for the same RGB input maps, as reported
in CACDA [17].

Broader Impact
Although SD is adept at generating high-fidelity images

of geometrically coherent scenes, sometimes the generations
are gibberish and defy commonsense reasoning. As shown in
Fig.3(d) of the main paper, the fine-tuned SD generates a very
convincing-looking yet unintelligible “traffic sign”, which
has no meaning in a driving manual. Thus, to avoid model
poisoning [7], the practitioners should exercise utmost cau-
tion when deploying segmentation models, for autonomous
driving, that are trained using such synthetic datasets.
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