
Universal Guidance for Diffusion Models

Arpit Bansal * 1 Hong-Min Chu * 1 Avi Schwarzschild 1 Soumyadip Sengupta 2 Micah Goldblum 3

Jonas Geiping 1 Tom Goldstein 1

Abstract

Typical diffusion models are trained to accept
a particular form of conditioning, most com-
monly text, and cannot be conditioned on other
modalities without retraining. In this work, we
propose a universal guidance algorithm that en-
ables diffusion models to be controlled by ar-
bitrary guidance modalities without the need
to retrain any use-specific components. We
show that our algorithm successfully generates
quality images with guidance functions includ-
ing segmentation, face recognition, object detec-
tion, and classifier signals. Code is available
at github.com/arpitbansal297/Universal-Guided-
Diffusion.

1. Introduction
Diffusion models are powerful tools for creating digital art
and graphics. Much of their success stems from our abil-
ity to carefully control their outputs, customizing results
for each user’s individual needs. Most models today are
controlled through conditioning. With conditioning, the
diffusion model is built from the ground up to accept a par-
ticular modality of input from the user, be it descriptive
text, segmentation maps, class labels, etc. While condi-
tioning is a powerful tool, it results in models that are hand-
cuffed to a single conditioning modality. If another modality
is required, a new model needs to be trained, often from
scratch. Unfortunately, the high cost of training makes this
prohibitive for most users.

A more flexible approach to controlling model outputs is
to use guidance. In this approach, the diffusion model acts
as a generic image generator, and is not required to under-
stand a user’s instructions. The user pairs this model with
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chu@umd.edu>. Figure 1: Diffusion guided by off-the-shelf networks.

ar
X

iv
:2

30
2.

07
12

1v
1 

 [
cs

.C
V

] 
 1

4 
Fe

b 
20

23

https://github.com/arpitbansal297/Universal-Guided-Diffusion
https://github.com/arpitbansal297/Universal-Guided-Diffusion


Universal Guidance for Diffusion Models 2

a guidance function that measures whether some criterion
has been met. For example, one could guide the model to
minimize the CLIP score between the generated image and
a text description of the user’s choice. During each iteration
of image creation, the iterates are nudged down the gradient
of the guidance function, causing the final generated image
to satisfy the user’s criterion.

In this paper, we study guidance methods that enable any
off-the-shelf model or loss function to be used as guidance
for diffusion. Because guidance functions can be used with-
out re-training or modification, this form of guidance is
universal in that it enables a diffusion model to be adapted
for nearly any purpose.

From a user perspective, guidance is superior to condition-
ing, as a single diffusion network is treated like a founda-
tional model that provides universal coverage across many
use cases, both commonplace and bespoke. Unfortunately,
it is widely believed that this approach is infeasible. While
early diffusion models relied on classifier guidance (Dhari-
wal & Nichol, 2021), the community quickly turned to
classifier-free schemes (Ho & Salimans, 2022) that require
a model to be trained from scratch on class labels with a
particular frozen ontology that cannot be changed (Nichol
et al., 2021; Rombach et al., 2022; Bansal et al., 2022).

The difficulty of using guidance stems from the domain shift
between the noisy images used by the diffusion sampling
process and the clean images on which the guidance mod-
els are trained. When this gap is closed, guidance can be
performed successfully. For example, Nichol et al. (2021)
successfully use a CLIP model as guidance, but only after
re-training CLIP from scratch using noisy inputs. Noisy
retraining closes the domain gap, but at a very high finan-
cial and engineering cost. To avoid the additional cost, we
study methods for closing this gap by changing the sampling
scheme, rather than the model.

To this end, our contributions are summarized as follows:

• We propose an algorithm that enables universal guid-
ance for diffusion models. Our proposed sampler eval-
uates the guidance models only on denoised images,
rather than noisy latent states. By doing so, we close
the domain gap that has plagued standard guidance
methods. This strategy provides the end-user with
the flexibility to work with a wide range of guidance
modalities and even multiple modalities simultane-
ously. The underlying diffusion model remains fixed
and no fine-tuning of any kind is necessary.

• We demonstrate the effectiveness of our approach for a
variety of different constraints such as classifier labels,
human identities, segmentation maps, annotations from
object detectors, and constraints arising from inverse
linear problems.

2. Background
We first briefly review the recent literature on the core frame-
work behind diffusion models. Then, we define the problem
setting of controlled image generation and discuss previous
related works.

2.1. Diffusion Models

Diffusion models are strong generative models that proved
powerful even when first introduced for image generation
(Song & Ermon, 2019; Ho et al., 2020). The approach has
been successfully extended to a number of domains, such as
audio and text generation (Kong et al., 2020; Huang et al.,
2022; Austin et al., 2021; Li et al., 2022).

We introduce (unconditional) diffusion formally, as it is help-
ful in describing the nuances of different types of models.
A diffusion model is defined as a combination of a T -step
forward process and a T -step reverse process. Conceptually,
the forward process gradually adds Gaussian noise of differ-
ent magnitudes to a clean data point z0, while the reverse
process attempts to gradually denoise a noisy input in hopes
of recovering a clean data point. More concretely, given an
array of scalars representing noise scales {αt}Tt=1 and an
initial, clean data point z0, applying t steps of the forward
process to z0 yields a noisy data point

zt =
√
αtz0 + (

√
1− αt)ε, ε ∼ N (0, I). (1)

A diffusion model is a learned denoising network εθ. It is
trained so that for any pair (z0, t) and any sample of ε,

εθ(zt, t) ≈ ε =
zt −

√
αtz0√

1− αt
. (2)

The reverse process takes the form q(zt−1|zt, z0) with var-
ious detail definitions, where q(·|·) is generally parameter-
ized as a Gaussian distribution. Different works also stud-
ied different approximations of the unknown q(zt−1|zt, z0)
used to perform sampling. For example, denoising diffusion
implicit model (DDIM) (Song et al., 2021a) first computed
a predicted clean data point

ẑ0 =
zt − (

√
1− αt)εθ(zt, t)√

αt
, (3)

and sample zt−1 from q(zt−1|zt, ẑ0) by replacing unknown
z0 with ẑ0. On the other hand, while the details of individ-
ual sampling methods vary, all sampling methods produce
zt−1 based on current sample zt, current time step t and a
predicted noise ε̂. To ease the notation burden, we define a
function S(·, ·, ·) as an abstraction of the sampling method,
where zt−1 = S(zt, ε̂, t).
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2.2. Controlled Image Generation

In this paper, we focus on controlled image generation with
various constraints. Consider a differentiable guidance func-
tion f , for example a CLIP feature extractor or a segmen-
tation network. When applied to an image, we obtain a
vector c = f(x). We also consider a function `(·, ·) that
measures the closeness of two vectors c and c′. Given a
particular choice of c, which we call a prompt, the corre-
sponding constraint (based on c, `, and f ) is formalized as
`(c, f(z)) ≈ 0, and we aim to generate a sample z from the
image distribution satisfying the constraint. In plain words,
we want to generate an in-distribution image that matches
the prompt.

Prior work that studied controlled generative diffusion
mainly falls into two categories. We refer to the first cate-
gory as conditional image generation, and the second cat-
egory as guided image generation. Next, we discuss the
characteristics of each category and better situate our work
among existing methods.

Conditional Image Generation. Methods from this cat-
egory require training new diffusion models that accept the
prompt as an additional input (Ho & Salimans, 2022; Bansal
et al., 2022; Nichol et al., 2021; Whang et al., 2022; Wang
et al., 2022a). For example, Ho & Salimans (2022) proposed
classifier-free guidance using class labels as prompts, and
trained a diffusion model by linear interpolation between
unconditional and conditional outputs of the denoising net-
works. Bansal et al. (2022) studied the case where the
guidance function is a known linear degradation operator,
and trained a conditional model to solve linear inverse prob-
lems. Nichol et al. (2021) further extended classifier-free
guidance to text-conditional image generation with descrip-
tive phrases as prompts, and trained a diffusion model to
enforce the similarity between the CLIP (Radford et al.,
2021) representations of the generated images and the text
prompts. These methods are successful across different
types of constraints, however the requirement to retrain the
diffusion model makes them computationally intensive.

Guided Image Generation. Works in this category em-
ployed a frozen pre-trained diffusion model as a foundation
model, but modify the sampling method to guide the im-
age generation with feedback from the guidance function.
Our method falls into this category. Prior work that studied
guided image generation did so with a variety of restrictions
and external guidance functions (Dhariwal & Nichol, 2021;
Kawar et al., 2022; Wang et al., 2022b; Chung et al., 2022a;
Lugmayr et al., 2022; Chung et al., 2022b; Graikos et al.,
2022). For example, Dhariwal & Nichol (2021) proposed
classifier guidance, where they trained a classifier on im-
ages of different noise scales as the guidance function f ,
and included gradients of the classifier during the sampling

process. However, a classifier for noisy images is domain-
specific and generally not readily available – an issue our
method circumvents. Wang et al. (2022b) assumed the exter-
nal guidance functions to be linear operators, and generated
the component of images residing in the null space of linear
operators with the foundation model. Unfortunately, extend-
ing that method to handle non-linear guidance functions
is non-trivial. Chung et al. (2022a) studied general guid-
ance functions, and modified the sampling process with the
gradient of guidance function calculated on the expected
denoised images. Nevertheless, the authors only presented
results with simpler non-linear guidance functions such as
non-linear blurring.

In this work, we study universal guidance algorithms for
guided image generation with diffusion models using any
off-the-shelf guidance functions f , such as object detection
or segmentation networks.

3. Universal Guidance
We propose a guidance algorithm that augments the image
sampling method of a diffusion model to include guidance
from an off-the-shelf auxiliary network. Our algorithm is
motivated by an empirical observation that the reconstructed
clean image ẑ0 obtained by Equation (3), while naturally
imperfect, is still appropriate for a generic guidance func-
tion to provide informative feedback to guide the image
generation. In Section 3.1, we motivate our forward uni-
versal guidance by extending classifier guidance (Dhariwal
& Nichol, 2021) to leverage this observation and handle
generic guidance functions. In Section 3.2, we propose a
supplementary backward universal guidance to help enforce
the generated image to satisfy the constraint based on the
guidance function f . In Section 3.3, we discuss a simple
yet helpful self-recurrence trick to empirically improve the
fidelity of generated images.

3.1. Forward Universal Guidance

To guide the generation with information from the external
guidance function f and the loss function `, an immedi-
ate thought is to extend classifier guidance (Dhariwal &
Nichol, 2021) to accept any general guidance function. Con-
cretely, given a class prompt c, classifier guidance performs
classification-guided sampling by replacing εθ(zt, t) in each
sampling step S(zt, t) with

ε̂θ(zt, t) = εθ(zt, t)−
√

1− αt∇zt log p(c|zt). (4)

Defining `ce(·, ·) to be the cross-entropy loss and fcl to be
the guidance function that outputs classification probability,
Equation (4) can be re-writtern as

ε̂θ(zt, t) = εθ(zt, t) +
√

1− αt∇zt`ce(c, fcl(zt)). (5)
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Algorithm 1 Universal Guidance

Parameter: Recurrent steps k, gradient stepsm for back-
ward guidance and guidance strength s(t),
Required: zT sampled fromN (0, I), diffusion model εθ,
noise scales {αt}Tt=1, guidance function f , loss function
`, and prompt c
for t = T, T − 1, . . . , 1 do

for n = 1, 2, . . . , k do
Calculate ẑ0 as Equation (3)
Calculate ε̂θ using forward universal guidance as
Equation (6)
if m > 0 then

Calculate ∆z0 by minimizing Equation (7) with
m steps of gradient descent
Perform backward universal guidance by
ε̂θ ← ε̂θ −

√
αt/(1− αt)∆z0 ( Equation (9))

end if
zt−1 ← S(zt, ε̂θ, t)
ε′ ∼ N (0, I)
zt ←

√
αt/αt−1zt−1 +

√
1− αt/αt−1ε

′

end for
end for

However, directly replacing fcl and `ce with any off-the-
shelf guidance and loss functions does not work in practice,
as f is most likely trained on clean images and fails to
provide meaningful guidance when the input is noisy.

To address the issue, we leverage the fact that εθ(zt, t) pre-
dicts the noise added to the data point, and we can therefore
obtain a predicted clean image ẑ0 by Equation (3). We pro-
pose to instead calculate the guidance based on the predicted
clean data point as

ε̂θ(zt, t) = εθ(zt, t) + s(t) · ∇zt`(c, f(ẑ0)) (6)

where s(t) controls the guidance strength for each sampling
step and

∇zt`(c, f(ẑ0)) = ∇zt`
(
c, f

(
zt −

√
1− αtεθ(zt, t)√

αt

))
as in Equation (3). We term Equation (6) forward universal
guidance, or forward guidance in short. In practice, applying
forward guidance effectively brings the generated image
closer to the prompt while keeping the generation trajectory
in the data manifold. We note that a related approach is also
studied in (Chung et al., 2022a), where the guidance step is
computed based onE[z0|zt]. The approach drew inspiration
from the score-based generative framework (Song et al.,
2021b), but resulted in a different update method.

3.2. Backward Universal Guidance

As will be shown in Section 4.2, we observe that forward
guidance sometimes over-prioritizes maintaining the “real-

ness” of the image, resulting in an unsatisfactory match with
the given prompt. Simply increasing the guidance strength
s(t) is suboptimal, as this often results in instability as the
image moves off the manifold faster than the denoiser can
correct it.

To address the issue, we propose backward universal guid-
ance, or backward guidance in short, to supplement forward
guidance and help enforce the generated image to satisfy
the constraint. The key idea of backward guidance is to
optimize for a clean image that best matches the prompt
based on ẑ0, and linearly translate the guided change back
to the noisy image space at step t. Concretely, instead of
directly calculating ∇zt`(c, f(ẑ0)), we compute a guided
change ∆z0 in clean data space as

∆z0 = arg min
∆

`(c, f(ẑ0 + ∆)). (7)

Empirically, we solve Equation (7) with m-step gradient
descent, where we use ∆ = 0 as a starting point. Since
ẑ0 + ∆z0 minimizes `(c, f(z)) directly, ∆z0 is the change
in clean data space that best enforces the constraint. Then,
we translate ∆z0 back to the noisy data space of zt by
calculating the guided denoising prediction ε̃ that satisfies

zt =
√
αt(ẑ0 + ∆z0) +

√
1− αtε̃. (8)

Reusing Equation (3), we can rewrite ε̃ as an augmentation
to the original denoising prediction εθ(zt, t) by

ε̃ = εθ(zt, t)−
√
αt/(1− αt)∆z0. (9)

Comparing to forward guidance, backward guidance (as
Equation (9)) produces an optimized direction for the gener-
ated image to match the given prompt, and hence prioritizes
enforcing the constraint. Furthermore, calculation of a
gradient step for Equation (7) is computationally cheaper
than forward guidance (Equation (6)), and we can therefore
afford to solve Equation (7) with multiple gradient steps,
further improving the match with the given prompt.

We note that the names “forward” and “backward” are used
analogously to the forward and backward Euler methods.

3.3. Per-step Self-recurrence

Unfortunately, when we apply our universal guidance to
standard generation pipelines, we often find images with
artifacts and strange behaviors that clearly separate them
from natural images. Similar observations have been made
in (Lugmayr et al., 2022; Wang et al., 2022b), where linear
guidance functions are studied. Our attempts to prioritize
realness by decreasing s(t) proved ineffective; the sweet
spot that both ensures the realness and guidance constraint
satisfaction doesn’t always exist, especially for complex
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Figure 2: An example of how self-recurrence helps
segmentation-guided generation. The left-most figure is
the given segmentation map, and the images generated with
recurrence steps of 1, 4 and 10 follow in order.

guidance functions. We conjecture that the guidance direc-
tion produced by our universal method is not always related
to the realness of the images when the guidance function
creates too much information loss, causing the image to
stray from the natural image sampling trajectory.

Inspired by (Lugmayr et al., 2022; Wang et al., 2022b), we
address the issue by applying per-step self-recurrence. More
concretely, after zt−1 = S(zt, ε̂t, t) is sampled, we re-inject
random Gaussian noise ε′ ∼ N (0, I) to zt−1 to obtain z′t by

z′t =
√
αt/αt−1 · zt−1 +

√
1− αt/αt−1 · ε′. (10)

Equation (10) ensures z′t to have proper noise scale for
input at time step t. We repeat the self-recurrence k times
before continuing the sampling for step t − 1. Intuitively,
the self-recurrence allows exploration of different regions
of the data manifold at the same noise scale, allowing more
budget to find a solution that satisfies both guidance and
image quality. Empirically, we find that our self-recurrence
can keep the realness of the generated image with a proper
guidance strength s(t) that ensures the match with the given
prompt. We illustrate an example of how self-recurrence
improves the harmony of generated images in Figure 2.

We summarize our universal guidance algorithm composed
of forward universal guidance, backward universal guidance
and per-step self-recurrence in Algorithm 1. For simplicity,
the algorithm assumes only one guidance function, but can
be easily adapted to handle multiple pair of (f, l). Addition-
ally, the objectives of the forward and backward guidance
do not have to be identical, allowing different ways to si-
multaneously utilize multiple guidance functions.

4. Experiments
In this section, we present results testing our proposed uni-
versal guidance algorithm against a wide variety of guidance
functions. Specifically, we experiment with Stable Diffu-
sion (Rombach et al., 2022), a diffusion model that is able
to perform text-conditional generation by accepting text
prompt as additional input, and experiment with a purely
unconditional diffusion model trained on ImageNet (Deng
et al., 2009), where we use pre-trained model provided by

Conditional Stable-Diffusion Guided Stable-Diffusion

A photograph of an astronaut riding a horse.

An oil painting of a corgi wearing a party hat.

Figure 3: We compare the ability to match given text
prompts between our universal guidance algorithm and
text-conditional model trained from scratch. The results
demonstrate that our universal algorithm is comparable to
specialized conditional model on the ability to generate
quality images that satisfy the text constraints.

OpenAI (Dhariwal & Nichol, 2021). We note that Stable
Diffusion, while being a text-conditional generative model,
can also perform unconditional image generation by simply
using an empty string for the text prompt. We first present
the experiment on Stable Diffusion for different guidance
functions in Section 4.1, and present the results on ImageNet
diffusion model in Section 4.2.

4.1. Results for Stable Diffusion

In this section, we present the results of guided image gen-
eration using Stable Diffusion as the foundation model. The
guidance functions we experiment with include the CLIP
feature extractcor (Radford et al., 2021), a segmentation
network, a face recognition network and an object detection
network. For experiments on Stable Diffusion, we discover
that applying forward guidance already produce high-quality
images that match the given prompt, and hence set m = 0.
To perform forward guidance on Stable Diffusion, we for-
ward the predicted clean latent variable computed by Equa-
tion (3) through the image decoder of Stable Diffusion to
obtain predicted clean images. We discuss the results and
implementation details for each guidance function in its
corresponding subsection.

https://stablediffusionweb.com/
https://stablediffusionweb.com/
https://github.com/openai/guided-diffusion
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Guide
Prompt Walker hound,

Walker foxhound
under water.

Walker hound,
Walker foxhound
on snow.

Walker hound,
Walker foxhound
as an oil painting.

(N/A)

Figure 4: In addition to matching the text prompts (above
each column), these images are guided by an image segmen-
tation pipeline. Each column contains examples of images
generated to match the prompt and the segmentation map in
the left-most column. The top-most row contains examples
generated without guidance.

CLIP Guidance. CLIP (Radford et al., 2021) is a state-of-
the-art text-to-image similarity model developed by OpenAI.
To apply our algorithm to text-guided image generation, we
use the image feature extractor of CLIP as the guidance
function. We construct a loss function that calculates the
negative cosine similarity between an image embedding
and the CLIP text embedding produced by a given text
prompt. We use s(t) = 10

√
1− αt and k = 8 and use

Stable Diffusion as an unconditional image generator.

We generate images guided by a number of text prompts.
To further assess our universal guidance algorithm and
compare guidance and conditioning, we also generate
images using classical, text-conditional generation by
Stable Diffusion with identical prompts as inputs, and
summarize the results in Figure 3. The results in Figure 3
show that our algorithm can guide the generation to
produce high-quality images that match the given text
description, and are comparable with images generated by
the specialized text-conditioning model.

Segmentation Map Guidance. To perform guided image
generation using a segmentation map as prompt, we use a
MobileNetV3-Large (Howard et al., 2019) with a segmen-

Guide
Prompt

Headshot of a
person with
blonde hair
with space
background.

Headshot of a
woman made
of marble.

A headshot of
a woman looking
like Lara Croft.

(N/A)

Figure 5: In addition to matching the text prompts (above
each column), these images are guided by a facial recog-
nition system. Each column contains examples of images
generated to match the prompt and the identity of the im-
ages in the left-most column. The top-most row contains
examples generated without guidance.

tation head, and a publicly available pre-trained model in
PyTorch (Paszke et al., 2019). As the segmentation network
outputs per-pixel classification probability, we construct a
loss function ` as the sum of per-pixel cross-entropy loss
between a given prompt and the predicted segmentation of
generated images. We set s(t) = 400 ·

√
1− αt and k = 10.

In our experiment, we combine segmentation maps that
depict objects of different shapes with new text prompts.
We use the text prompt as a fixed additional input to Stable
Diffusion to perform text-conditional sampling, and guide
the text-conditional generated images to match the given
segmentation maps. Results are presented in Figure 4. From
Figure 4, we see that the generated images show a clear
separation between object and background that matches the
given segmentation map nearly perfectly. The generated
object and background also each match their descriptive text
(i.e. dog breed and environment description). Furthermore,
the generated images are overall highly realistic.

Face Recognition Guidance. To guide image genera-
tion to resemble the face of a given person, we com-
pose a guidance function that combines a face detection
module and a face recognition module. This setup pro-

https://pytorch.org/vision/main/models/generated/torchvision.models.segmentation.lraspp_mobilenet_v3_large.html
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Guide
Prompt Headshot of a

woman with
a dog.

Headshot of a
woman with a
dog on beach.

An oil painting of
a headshot of a
women with a dog.

(N/A)

Figure 6: In addition to matching the text prompts (above
each column), these images are guided by an object detector.
Each column contains examples of images generated to
match the prompt and the bounding boxes used for guidance.
The top row contains examples generated without guidance.

duces a facial attribute embedding from an input face im-
age. We use multi-task cascaded convolutional networks
(MTCNN) (Zhang et al., 2016) as the face detection module,
and use facenet (Schroff et al., 2015) as the face recogni-
tion module. The guidance function f hence crops out the
detected face and outputs a facial attribute embedding as
prompt, while we use l1-loss between embedding as the
loss function `. We note that to compute the guidance di-
rection in our algorithm, we only backpropagate through
the facenet and treat the face cropping mask produced
by MTCNN as an oracle input, as MTCNN utilizes non-
maximum suppression (Neubeck & Van Gool, 2006) which
is non-differentiable. Here we set s(t) = 20000 ·

√
1− αt

and and k = 2.

We explore different combinations of face guidance and
text prompts. Similarly to the segmentation case, we use
the text prompt as a fixed additional conditioning to Stable
Diffusion and guide this text-conditional trajectory with
our algorithm so that the face in the generated image looks
similar to the face prompt. In Figure 5, we clearly see
that the facial characteristics of a given face prompt are
reproduced almost perfectly on the generated images. The
descriptive text of either background, material, or style is
also realized correctly and blends nicely with the generated
faces.

Style
Prompt A colorful

photo of an
Eiffel Tower

A fantasy photo
of volcanoes

A portrait of
a woman

(N/A)

Figure 7: In addition to matching the text prompts (above
each column), these images are guided by a style image.
Each column contains examples of images generated to
match the text prompt and the style image used for guidance.
The top-most row contains examples generated without style
guidance.

Object Location Guidance For Stable Diffusion, we also
present the results guiding image generation with an ob-
ject detection network. For this experiment, we use Faster-
RCNN (Ren et al., 2015) with Resnet-50-FPN backbone (Li
et al., 2021), a publicly available pre-trained model in Py-
torch, as our object detector. We use bounding boxes with
class labels as our object location prompt. We construct a
loss function ` by the sum of three individual losses, namely
(1) anchor classification loss, (2) bounding box regression
loss and (3) region label classification loss, where (1) and
(2) are computed on the region proposal head while (3) is
computed on the region classification head. We note that,
compared to standard R-CNN training, we drop the addi-
tional bounding box alignment loss on region classification
head. We found that our loss construction helps to produce
objects of correct categories for each location prompt. We
set s(t) = 100 ·

√
1− αt and k = 3.

We again experiment with different combinations of text
prompt and object location prompt, and similarly use the
text prompt as a fixed conditioning to Stable Diffusion. Us-
ing our proposed guidance algorithm, we perform guided
image generation that generates and matches the objects
presented in the text prompt to the given object locations.

https://pytorch.org/vision/stable/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn_v2.html#torchvision.models.detection.fasterrcnn_resnet50_fpn_v2
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English foxhound by 

Edward Hopper 
Van Gogh Style Van Gogh Style Cake 

Figure 8: We show that unconditional diffusion models
trained on ImageNet can be guided with CLIP to generate
high-quality images that match the text prompts, even if
these generated images should be out of distribution.

The results are presented in Figure 6. We observe from
Figure 6 that objects in the descriptive text all appear in the
designated location with the appropriate size indicated by
the given bounding boxes. Each location is filled with appro-
priate, high-quality generations that align with varied image
content prompts, ranging from “beach” to “oil painting”.

Style Guidance Finally, we conclude our experiments on
Stable Diffusion by guiding the image generation based on
a reference style given by a style image. To achieve so,
we capture the reference style from the style image by the
image feature extractor from CLIP, and use the resulting
image embedding as prompts. The loss function calculates
the negative cosine similarity between the embedding of
generated images and the embedding of the style image.
Similar to previous experiments, we control the content
using text input as additional conditioning to the Stable
Diffusion model.

We experiment with combinations of different style images
and different text prompts, and present the results in Figure 7.
From Figure 7, we can see that the generated images contain
contents that match the given text prompts, while exhibiting
style that matches the given style images. In this experiment
we set s(t) = 6 ·

√
1− αt and k = 6. Furthermore, in

order to control the amount of content we set the scale
γ, a parameter of Stable Diffusion that balances the text-
conditional generation and unconditional generation, as 3.0,
3.0, and 4.0 respectively for each column.

4.2. Results for ImageNet Diffusion

In this section, we present results for guided image gen-
eration using an unconditional diffusion model trained on
ImageNet. We experiment with CLIP guidance, object lo-
cation guidance and a hybrid guided image generation task
which we term segmentation-guided inpainting. We will
discuss results and implementations of each guidance in its
corresponding subsection.

Object Location Forward Only Forward + Backward

Figure 9: Generation guided by object detection with the
unconditional ImageNet model. Images generated with both
forward and backward guidance are realistic and have the
desired objects in the designated locations. In contrast, im-
ages generated using only forward guidance exhibit objects
of the incorrect category or with inaccurate position/size.

CLIP Guidance. We use the same construction of f and `
for Stable Diffusion to perform CLIP-guided generation. We
use only forward guidance for this experiment. To assess the
limit of our universal guidance algorithm, we hand-crafted
text prompts such that the matching images are expected to
be out of distribution. In particular, our text prompts either
designate art styles that are far from realistic or designate
objects that do not belong to any possible class label of
ImageNet. We present the results in Figure 8, and from the
results, we clearly see that our algorithm still successfully
guides the generation to produce quality images that also
match the text prompts. For all three images, we have
s(t) = w ·

√
1− αt, where w is 2, 5 and 2 respectively and

k is 10, 5 and 10 respectively.

Object Location Guidance. Similar to object location
guidance for Stable Diffusion, we also use the same net-
work architecture and the same pre-trained model as our
object detection network, and construct an identical loss
function ` for our guidance algorithm. However, unlike Sta-
ble Diffusion, object locations are the only prompts available
for guided image generation. For this experiment, we use
s(t) = 100

√
1− αt and k = 3.

We again experiment with different object location prompts
using two configurations of our algorithm, namely (1) using
only forward universal guidance and (2) using both forward
and backward universal guidance. We observe from Fig-
ure 8 that applying both forward and backward guidance
generates images that are realistic and the objects matches
the prompt nicely. On the other hand, while images gen-
erated using only forward guidance remain realistic, they
feature objects with mismatching categories and locations.
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Masked Image Clf. Guided Clf. + Seg. Guided

Figure 10: Our guidance algorithm can incorporate feed-
back from multiple guidance functions. The first column
shows the prompt for inpainting. The second column shows
classifier-guided inpainting, where dog images with close
matches to inpainting prompt are generated. The third
column shows images generated with both classifier and
segmentation guidance, where realistic dogs are generated
exactly on the masked regions. The results show that our
algorithm handles multiple guidance functions effectively.

The results demonstrate the effectiveness of our universal
guidance algorithm, and also validate the necessity of our
backward guidance.

Segmentation-Guided Inpainting. In this experiment,
we aim to explore the ability of our algorithm to handle
multiple guidance functions. We perform guided image gen-
eration with combined guidance from an inpainting mask,
a classifier and a segmentation network. We first generate
images with masked regions as the prompt for inpainting.
We then pick an object class c as the prompt for classifica-
tion and generate a segmentation mask where the masked
regions are considered foreground objects of the same class
c. We use `2 loss on the non-masked region as the loss
function for inpainting, and set the corresponding s(t) = 0,
or equivalently only use backward guidance for inpainting.
We use the same segmentation network as described in Sec-
tion 4.1 with s(t) = 200

√
1− αt. For classification guid-

ance, we use the classifier that accepts noisy input (Dhariwal
& Nichol, 2021), and perform the original classifier guid-
ance Equation (4) instead of our forward guidance. The
results summarized in Figure 10 show that when using both
inpainting and classifier as guidance, our algorithm gener-
ates realistic images that both match the inpainting prompt
and can be classified correctly to the given object class.
Adding in segmentation guidance, our algorithm further
improves the generated images with a near-perfect match
to both the segmentation map and inpainting prompt while
maintaining realism. This demonstrates that our algorithm
can effectively combine the feedback from individual guid-

ance functions.

5. Limitations
Generation using universal guidance is typically slower than
standard conditional generation for several reasons. Em-
pirically, multiple iterations of denoising are required at
every noise level t to generate high-quality images with
complex guidance functions. However, the time complexity
of our algorithm scales linearly with the number of recur-
rence steps k, which slows down image generation when k
is large. Also, as demonstrated in the main paper, backward
guidance is required in certain scenarios to help generate im-
ages that match the given constraint. Computing backward
guidance requires performing minimization with a multi-
step gradient descent inner loop. While proper choices of
gradient-based optimization algorithms and learning rate
schedules significantly speed up the convergence of mini-
mization, the time it takes to compute backward guidance
inevitably becomes longer when the guidance function is
itself a very-large neural network. Finally, we note that,
to get optimal results, sampling hyper-parameters must be
chosen individually for each guidance network.

6. Conclusion
In this paper, we propose a universal guidance algorithm that
is able to perform guided image generation with any off-the-
shelf guidance function based on a fixed foundation diffu-
sion model. Our algorithm only requires guidance and loss
functions to be differentiable, and avoids any retraining to
adapt either the guidance function or the foundation model
to a specific type of prompt. We demonstrate promising
results with our algorithm on complex guidance including
segmentation, face recognition and object detection systems.
Even multiple guidance functions can be combined and used
in conjunction.
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A. More results

(a) Walker hound, Walker foxhound on snow.

(b) Walker hound, Walker foxhound under water.

(c) Walker hound, Walker foxhound as an oil painting.

Figure 11: More images to show Segmentation guidance. In each subfigure, the first image is the segmentation map used to
guide the image generation with its caption as its text prompt.
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(a) Headshot of a person with blonde hair with space background.

(b) A headshot of a woman looking like a lara croft.

(c) A headshot of a blonde woman as a sketch.

Figure 12: More images to show Face guidance. In each subfigure, the first image is the human identity used to guide the
image generation with its caption as its text prompt.
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(a) A headshot of a woman with a dog in winter.

(b) a headshot of a woman with a dog on beach.

(c) An oil painting of a headshot of a woman with a dog.

Figure 13: More images to show Object Location guidance. In each subfigure, the first image is the object location used to
guide the image generation with its caption as its text prompt.
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(a) A colorful photo of an Eiffel Tower.

(b) A fantasy photo of a lonely road.

(c) A fantasy photo of volcanoes.

Figure 14: More images to show Style Transfer. In each subfigure, the first image is the styling image used to guide the
image generation with its caption as its text prompt.


