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Abstract

As growing usage of social media websites in the re-
cent decades, the amount of news articles spreading online
rapidly, resulting in an unprecedented scale of potentially
fraudulent information. Although a plenty of studies have
applied the supervised machine learning approaches to de-
tect such content, the lack of gold standard training data
has hindered the development. Analysing the single data
format, either fake text description or fake image, is the
mainstream direction for the current research. However, the
misinformation in real-world scenario is commonly formed
as a text-image pair where the news article/news title is de-
scribed as text content, and usually followed by the related
image. Given the strong ability of learning features with-
out labelled data, contrastive learning, as a self-learning
approach, has emerged and achieved success on the com-
puter vision. In this paper, our goal is to explore the con-
strastive learning in the domain of misinformation identifi-
cation. We developed a self-learning model and carried out
the comprehensive experiments on a public data set named
COSMOS. Comparing to the baseline classifier, our model
shows the superior performance of non-matched image-text
pair detection (approximately 10%) when the training data
is insufficient. In addition, we observed the stability for con-
trsative learning and suggested the use of it offers large re-
ductions in the number of training data, whilst maintaining
comparable classification results.

1. Introduction

The proliferation of news articles on social media plat-
forms allows for real-time access to information, but also
leads to an increase in the spread of misinformation due to
deceptive practices. Misinformation has an adverse impact

*corresponding author

Figure 1. An example of text-image pairing. For the image on the
left, the text in the green box is the real (matched) caption, while
the text in the red box is a fake (random) caption.

on both cyber and physical societies, and has gained consid-
erable coverage in the last several years. For example, the
COVID-19 pandemic has provided a fertile ground for con-
spiracy theories. One of the most prominent ones was that
the 5G technology was somehow responsible for the emer-
gence of the novel coronavirus. This theory gained particu-
lar momentum in early April 2020 and led to a wave of van-
dalism targeting communication infrastructure in the UK
and other nations [14]. In addition, misinformation causes
anxiety in populations across different ages [38].

Therefore, there is an urgent demand for tools that can
detect fake news content accurately and efficiently in or-
der to eliminate misinformation and protect the harmony
of online environment. Manually monitoring authentic-
ity of information requires substantial human efforts and
time [45]. In recent years, dominant automatic approaches
[21–23,27,36,45] rely on machine learning techniques, par-
ticularly supervised classification models, to identify fake
content. However, labelled data sets that supervised learn-
ing needs are very limited in both sizes and diversities,
which presents a major obstacle for applications of su-
pervised learning algorithms in this domain. Determining
whether a news article is fake or not is generally a chal-
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lenging task since it requires comprehensive knowledge and
verification by authentic sources.

Additionally, most researchers concentrates on using
natural language processing (NLP) techniques to identify
fake text-based content, overlooking the fact that news ar-
ticles often contain both text and images. An example is
shown in Figure. 1. The caption in the green box is the real
description of the image while the caption in the red box
is false. Such misinformation is easily manipulated or cre-
ated by an AI-based generator and then rapidly circulated
through the Internet. Relying on textual semantic and syn-
tactic similarities [1, 18, 35] can achieve promising identifi-
cation performance to some extent. However, these models
ignore relationships across multiple data modals, particu-
larly the image-text, which can deteriorate the accuracy of
identification. To address the limitations of these models,
Aneja et al. [3] attempt to solve the problem by combing
both data types. Specifically, their dataset, COSMOS, con-
sists of images and two captions for each image, and their
task is to predict if the two captions are both correspond-
ing to the image, i.e., the out-of-context (OOC) classifica-
tion. They use a convolutional neural network as an im-
age encoder and a pre-trained language model as a textual
caption encoder, and achieve 85% classification accuracy
on COSMOS. However, the model is trained on the large
corpus which is less efficient and time-consuming. In addi-
tion, results mostly are influenced by the pre-trained model
(SBERT) according to our investigation.

In this paper, we extend Aneja et al.’s method [3] by us-
ing a language-vision model based on constrastive learning
[8] for out-of-context detection on the COSMOS dataset.
As a self-learning approach, the constrastive learning shows
a strong ability to learn feature representations without an-
notating a large-scale dataset. It learns representations of
data by contrasting similar and dissimilar pairs of examples.
The merit of contrastive learning lies in its ability to lever-
age the inherent structure of data to learn more useful rep-
resentations. By contrasting similar examples and pulling
them closer together in representation space, and pushing
dissimilar examples further apart, contrastive learning can
learn more robust and discriminative features that can be
used for a variety of downstream tasks, such as image clas-
sification or language understanding. This has been shown
to be especially effective in settings where labeled data is
scarce or expensive to obtain, as contrastive learning can
learn from large amounts of unlabeled data. We use Aneja
et al.’s [3] method as the baseline in our experimental eval-
uation. Our results indicate that our proposed method out-
performs the baseline on the out-of-context prediction. The
main contributions of this paper can be summarized as fol-
lows:

• Our study on the baseline model reveals for the first
time that the baseline relies primarily on the textual

similarity from the pre-trained model (SBERT) to clas-
sify OOC, which may potentially introduce bias and
distort the results;

• We present a new model incorporating a contrastive
learning component, which we will show is advanta-
geous in capturing image feature representations, par-
ticularly when the training data is limited in size;

• We conduct extensive experiments to evaluate our pro-
posed method and compare with the baseline method.
These experiments demonstrate that our method out-
performs the baseline steadily in a varying training
data sizes.

• We developed the classification model to identify the
correct caption.

We note that this work focuses on the same prediction
task as the baseline on the COSMOS dataset. It is not the
real-world misinformation detection wherein the prediction
is to predict if a pair of image and its caption is consis-
tent or not. This is because we do not have a dataset that
can mimic the real-world misinformation detection. That
said, we should point out that our proposed method with
minor modifications can be applied to the scenario of the
real-world misinformation detection. Actually, most of our
proposed method is general and can be applied to other clas-
sification tasks. In particular, our use of contrastive learning
is beneficial for scenarios when there is a lack of labeled
training data.

The paper is organized as follows: Section 2 reviews re-
lated work, and Section 3 descibes our proposed method.
Our experimental evaluation is presented in Section 4. The
conclusion and future work are presented in Section 5.

2. Related Work
Online misinformation has become a topic of interests

over the past few years, motivating the research commu-
nity to address the problem. Bondielli et al. [4] categorise
information as fake or rumours depending on whether the
news has been confirmed by the authoritative sources. Both
Guo et al. [20] and Meel et al. [32] elaborate the differences
of various terms related to misinformation on social me-
dia, such as hoax, disinformation, and fake news. Instead
of nitpicking on nuances of different definitions, we would
like to focus on machine learning techniques themselves,
specifically contrastive learning. Therefore, we decide to
use ‘out-of-context’ to refer to misinformation comprising
inconsistent image-text pairs. In this context, we briefly re-
view related work, which includes misinformation detection
and contrastive learning.

2.1. Misinformation Detection

Early research on the automatic identification of misin-
formation on social media concentrates on single-type data,
particularly textual content. Traditional supervised clas-



sification techniques have been widely used in this area,
such as support vector machine (SVM) [13, 17, 29], naı̈ve
bayes [40], logistic regression [9], and decision tree [6, 17].
Classic feature representations such as bag of words and n-
grams with TF-IDF are generally used, with semantic or
syntactic information ignored due to individually treated
features (word tokens). This issue is subsequently allevi-
ated by using feature engineering, a process of extracting
and adding both linguistic and handcrafted features manu-
ally. For example, Pelrine et al. [35] systematically compare
a set of transformer-based models on textual misinforma-
tion detection across various social media data sets. They
point out the benefit of feature engineering. Shu et al. [40]
investigate social networks and use spatiotemporal informa-
tion such as numbers of retweets, timestamp, and locations
to improve classifier results. Kwon et al. [30] explore users’
profiles to increase the detection accuracy. However, feature
engineering requires human efforts, in particular the knowl-
edge of linguistic and social science. In addition, Zhu et
al. [47] point out entities in news articles can change over
time, which adversely impacts detection results. Inspired
by the emerge of word2vec and paragraph2vec, a plenty of
recent research [1, 18, 33, 39, 46] explore distributed rep-
resentations where text content is converted into a dense
vector by a language-embedding model, which is usually
pre-trained on a general language corpus and thus preserves
intrinsic language features such as syntactic and semantic
features.

In addition to textual misinformation, another widely
spread form of online news misinformation is de-
contextualization (aka. out-of-context pairing) where im-
ages and their associated texts are unrelated to each other.
Many researchers apply multi-modal analysis to tackle the
problem of detecting this type of misinformation. Singhal
et al. [42] introduce an ensemble model that exploits both
textual and visual features to identify image-text fake news.
Likewise, Giachanou et al. [16] combine image features ex-
tracted by a VGG [41] model and text features by a Bert
[11] model to detect image-text misinformation. Recently,
Aneja et al. [3] focus on the “cheapfake” generated by using
AI-free approaches, such as filtering, re-contextualizing,
and photo-shopping, rather than on “deepfake” generated
by using AI-based techniques. They suggest utilizing image
and text embeddings to forecast if an image-caption pair is
out-of-context. They also release a substantial dataset for
further research on this matter and it is becoming a well-
known dataset in the media forensic domain. Nonetheless,
their model was trained on the entire dataset. This paper
aims to build upon their research by examining the effi-
ciency of the contrastive learning model when training data
is restricted.

2.2. Contrastive Learning

When using machine learning techniques for classifica-
tion tasks, such as out-of-context (OOC) detection, data
needs to be converted to a compact feature. Over the past
decade, the dominant approach for determining image fea-
tures is learning in a supervised way, such as training from
ImageNet [10]. ViT [12] is a widely used visual feature
representation model that uses the transformer [43] frame-
work and is trained on classification tasks. Inspired by the
achievement of BERT [11] in the NLP domain, computer
vision community starts to increasingly focus on unsuper-
vised training. Contrastive learning, as a self-learning ap-
proach, has gained popularity because it is able to learn
feature representation without annotated data. Contrastive
learning aims to move augmented samples generated from
the same sample close to each other while keeping samples
from different data far away.

Many contrastive learning models have been proposed
[31]. He et al. [25] propose Momentum Contrast (MoCo)
for unsupervised visual representation learning that matches
encoded data with a serious of keys using the contrastive
loss [34]. Subsequently, Chen et al. [8] propose SimCLR
that generates training instances by separating different data
augmentations. They comprehensively analyze a variety of
image manipulation methods such as crop, resize, flip, color
distort, rotate, cutout, and Gaussian noise. Gao et al. [15]
propose SimCSE by adapting SimCLR to textual data that
generates positive instances by different Bert dropouts and
takes other samples within the batch as negative instances.
Caron et al. [5] propose SwAV (Swapping Assignments be-
tween Views) by modifying SimCLR that clusters data and
leverages contrastive learning techniques without requiring
the computation of individual augmented samples. Radford
et al. [37] introduce CLIP (Contrastive Language-Image
Pre-training) that connects an image with a text descrip-
tion and creates a feature space for both data types. The
model provides an efficient way to generate a text based
on an image or vice versa. He et al. [24] create a masked
autoencoders (MAE) to reconstruct masked patches when
an image is split into multiple patches. Instead of training a
model by using both positive and negative samples as afore-
mentioned methods do, Grill et al. [19] propose BYOL that
depends only on positive samples and is able to achieve out-
standing performance for the feature representation.

3. Our Proposed Method

Our goal is to leverage the power of contrastive learning
in the feature representation to identify inconsistent text-
image pairing on social media. We describe its training and
testing details in this section.



Figure 2. The structure of multi-modal contrastive learning. The model is accomplished by two branches, image feature learning and
classification training. First, a picture in mini-batch (the size is 64) has been fed into a Mask RCNN by which the 10 objects have been
detected. Each object is then augmented individually, followed by the full connected layer to produce the dense vector denoted as z̃ and z.
Subsequently, the matrix of the mini-batch is developed for the InfoNCE loss training, where the pair of z and z̃ from the same object is
treated as positive instances (the diagonal of the matrix), otherwise, the rest pairs are negative instances (see Eq. 1). In the classification
training, the two captions – matched (green) and another caption sampled randomly (red) – are encoded using the Universal Sentence
Encoder model (USE) [7]. The output of text encoder combining with the output of image encoder are passed to compute the similarities
between object-caption pairs and finally used to reduce the margin ranking loss as following Eq. 3.1.

3.1. Contrastive Learning-guided Image-text
Matching Training

Inspired by the baseline model on COSMOS [2], we ex-
tract features from images and texts separately and inter-
act them to learn their matching. The training procedure is
shown in Figure 2 and described in detail as follows.

Contrastive Learning Module. For each image, we use
pre-trained Masked-RCNN [26] as the object detection [28]
backbone to detect objects included in the image. Then
we feed images and their detected objects (bounding boxes)
into the augmentation module.

Within the augmentation module, each detected object is
augmented. Augmented images are then fed to an image en-
coder followed by a full connected layer to generate a dense
vector. We consider all augmented images from the same
sample as positive instances and randomly selected images
from other samples of the dataset as negative instances for
training the constrastive learning model. Specifically, ap-
plying Mask RCNN on the input image, we can obtain N
detected objects to form a set {xk}Nk=1 of objects, where
xk ∈ Rdx and dx is the dimension of detected object x.
Then we apply data augmentation twice to get 2N objects,
{x̃l}2Nl=1, where x̃2k and x̃2k−1 are two random augmenta-
tions of xk(k = 1, · · · , N). Different augmentation strate-
gies can be used, such as rotations, adding noise, transla-

tion, brightness, etc. Thus an object can be augmented to
generate more than two augmented objects, but only two
augmented objects are used for each detected object in our
setting. We use the following notation for two related aug-
mented objects. Let i ∈ I := {1, ..., 2N} be the index
of an arbitrary augmented object and j(i) is the other aug-
mented object that shares the same source object as the i-th
augmented object. We feed augmented objects to an object
encoder, represented as E(·) : Rdx → Rd (d is the output
dimension of E), which is a ResNet-50 backbone followed
by three components: RoIAlign, average pooling, and two
fully-connected (FC) layers. Then, we can obtain a 300-
dimensional vector for each augmented object, which maps
the object feature representation into the application space
of the contrastive loss, i.e., z̃i = E(x̃i) and z̃j(i) = E(x̃j(i))
for two augmented objects from the same source object.

To shorten the distance between encoder vectors z̃i and
z̃j(i) from the same source object and widen the distance
between z̃i and an augmented object from another source
object, we use the self-supervised contrastive learning to
formulate the self-supervised contrastive loss LCL as fol-
lows,

LCL =
−1
|I|

∑
i∈I

log
exp(z̃i · z̃j(i)/τ)∑
a∈A(i) exp(z̃i · z̃a/τ)

, (1)



Algorithm 1 The Out-of-Context Matching

Data: sample {Xk}Nk=1 in batch size N
Xk =< captionr > image < captionm >
τ and γ are constant
for all k ∈ {1, ..., N} do

Om ←MaskRCNN(Xk) . 10 object detection
Ckm ← t · (Xkm) . text encoding for matched
Ckr ← t · (Xkr) . text encoding for random
for all m ∈ {1, ..., 10} do
{A, Ã} ← A(Om) . augmentation
Z ← f · (A) . image encoding
Z̃ ← f · (Ã)

end for
end for
M = N ∗ 10 . #of augmentation in batch
for all i ∈ {1, ..., 2M} and j ∈ {1, ..., 2M} do

si,j = zizj/(‖zi‖ ‖zj‖) . pairwise similarity
end for
define `(i, j) as `(i, j) = − log

exp(si,j/τ)∑2M
k=1 1[k 6=i]exp(si,k/τ)

LCL = 1
2M

∑M
k=1 [`(2k − 1, 2k) + `(2k, 2k − 1)]

define sm = max(Zk · Ckm|k ∈ {1, ..., N})
define sr = max(Zk · Ckr|k ∈ {1, ..., N})
LMatch = [sr − sm + γ]+
update networks f and t to minimize LCL and LMatch

where |I| is the cardinality of I , τ ∈ R+ is a positive scalar
temperature parameter, · is the inner (dot) product opera-
tor, and A(i) := I \ {i}. It is common to regard i as an
anchor. j(i) is called the positive and the other 2N − 2 in-
dices ({k ∈ A(i) \ {j(i)}}) are called the negatives. The
numerator in the log function of Eq. (1) is the representa-
tion distance between z̃i and z̃j(i). The denominator is the
representation distance between z̃i and a total of 2N − 1
terms, including the positive and negatives. With this con-
trastive learning module, we can enhance the accuracy of
representations from the encoder.

Image-text Matching Module. This module match an im-
age and its text (i.e., caption). Given matched caption cm
of the input image and a random caption cr from a differ-
ent image in the dataset, we follow [2] to use a pre-trained
transformer-based Universal Sentence Encoder (USE,U(·))
[7] to encode captions into unified 512-dimensional vec-
tors. The vectors are then sent to an additional text encoder
(T (·)) to convert to a specific dimensional feature space Rd
that matches the the output dimension (i.e., d) of E(·). In
particular, the text encoder is a ReLu followed by one FC
layer. Therefore, we can represent c̃m = T (U(cm)) and
c̃r = T (U(cr)) for the final embedded features of cm and
cr, respectively.

Then we evaluate the match performance of the object
embedding and the caption embedding. Specifically, we use

Figure 3. The testing structure. IoU indicates whether the two
captions are describing the same object and Ssim represents the
semantic similarity between the two captions. It predicts out-of-
content if both scores are higher than their preset thresholds.

dot product to calculate the similarity between z̃i and c̃m (or
c̃r). We extract the maximum value as the final similarity
score,

sm = max({z̃>i c̃m|i ∈ I}),
sr = max({z̃>i c̃r|i ∈ I}),

where sm is the final similarity score for the matched cap-
tion and sr is the final similarity score for the random cap-
tion. Our goal is to make sm as larger as possible and sr
as smaller as possible. Thus, we design the following max-
margin loss for training the model,

LMatch = [sr − sm + γ]+, (2)

where [a]+ = max(0, a) is the hinge function. γ ∈ R is a
preset margin hyperparameter. The algorithm is showed in
Algorithm 1.

3.2. Image-text Mismatching Training

Cross Training. We first train object encoder E in the
contrastive learning module based on LCL (Eq. (1)) for all
images in the dataset. Then we fix the contrastive learn-
ing module and train text encoder T according to LMatch

(Eq. (2)) on all images. The weights of the whole model are
updated iteratively.
Joint Training. In addition to cross training, we explore
joint training as well. Rather than freezing one of the loss
functions during training, we normalize the loss of con-
trastive learning module LCL (Eq. (1)) and add LMatch

(Eq. (2)) to it to get the overall average loss on all images.

3.3. Image-text Mismatching Prediction

We follow [2] for our model’s prediction of mismatch-
ing image and text or not, as shown in Figure 3. The pre-
diction is determined by two scores, the IoU score and the
Sentence BERT (SBERT) score (Ssim). The former score
indicates whether the two captions are describing the same
image region (object), and the latter is calculated for their
sentence similarity.



Specifically, given a testing data (an image and two cap-
tions, e.g. <caption 1>image <caption 2>), we use the
state-of-the-art SBERT model [44], which is pre-trained on
the Sentence Textual Similarity (STS) task, to get the (Ssim)
score for assessing both semantic and syntactic similarities
between two the sentences. SBERT takes two pieces of text
content as input and output a score in the range from 0 to
1. A higher score indicates that the two captions share more
similar context.

For the IoU score, we use both image encoder and text
encoder that are obtained from the trained language-vision
model. We first compute the visual correspondences of
objects BICi

in the image for each caption respectively.
For example, BIC1

represents the largest value (object) of
image-caption alignment for I and caption 1. Then we cal-
culate IoU for the overlapping of two bounding box (area)
corresponding to caption 1 and caption 2. At last, we ap-
ply the following rule to predict the image-caption pair is
out-of-context only if the two captions are describing the
same object while they are having the different semantic
meaning:

• Out-of-Content, if IoU(BIC1
, BIC2

) > threshold
and Ssim < threshold;

• Non Out-of-Context, otherwise.

4. Experimental Evaluation
4.1. Datasets & Pre-processing

As aforementioned, the lack of gold-standard training
data is a major obstacle for us to investigate our approaches.
To avoid this issue, this paper decided to use the data set that
is large-scale and publicly available. Aneja et al. [3] create
the data from two primary sources, fact-checking website
and various mainstream news platforms such as New York
Times, CNN, Reuters and so on. The original data is docu-
mented as JSON-format file. The structure of data is formed
as <caption 1>image <caption 2> where each image is
followed by two captions, the one is genuine and other one
is synthetic. The data summary is showing as Table 1.

We acknowledged that there is no labelling process in
the training set and validation set as the synthetic caption
for each image is randomly chose from the rest of text de-
scriptions. However, the text-image pairs in testing set are
manually labelled by the authors. An example of data in-
stance is showing in Figure 1.

For the text pre-processing, we carried out the entity ex-
traction to replace all the names, locations, and dates to
the unique tokens respectively. For instance, the caption
“Caster Semenya, right, competing in a women’s 800-meter
race at a meet in Zurich in August.” is changed to “Caster
GPE, right, competing in a women’s QUANTITY race at a
meet in GPE in DATE.”

#of Images #of Captions Annotation
Training Data 160k 360k no

Validation Data 40k 90k no
Testing Data 1700 1700 yes

Table 1. The statistic summary of data sets

4.2. Experiments Setup

This section will elaborate the experiments setup. Over-
all, we have conducted two experiments to demonstrate the
benefit of contrastive learning when tackling small size of
training set, and also a new model for identifying which of
caption is true. To be specific, we compared three different
models in our research:

• baseline, the model is originated from the paper [2].

• cross training, we use the contrastive learning struc-
ture to generate the feature representation for image as
shown in Figure 2. Since the model have two loss func-
tions (InfoNCE and MarginRanking), we iteratively
freeze the one of them and train on the other.

• joint training, we further replaced the contrastive
learning model to the joint training where the two loss
functions (InfoNCE and MarginRanking are normal-
ized and reduced at same time).

Evaluation Metric. Given the ultimate goal of this paper
is to boost the ability of detecting OOC content, we use the
standard classification evaluation metrics (Accuracy, Preci-
sion, Recall and F1-score).
Implementation Details. In addition, we acknowledge that
detecting OOC is a trade-off issue where we have to decide
whether the cost of false negatives (OOC has been classified
as non-OOC) is higher than the false positives (non-OOC
has been classified as OOC). We assume that in a real-world
scenario, failing to identify misinformation and allowing it
to spread would have a greater impact on social networks
than incorrectly labeling clean content as misinformation.
In this context, we will extend the original research that is
only showing accuracy, and put more focus on the recall
(also known as true positive rate).

Considering the neural network is randomly initialized,
we carried out our experiments three times and get the aver-
ages. In addition, we used the following hyper-parameters
as default in proposed model: Adam optimizer, ReLU ac-
tivation function, a batch size of 64, and training for 10
epochs.

4.3. Contrastive Learning vs. Baseline

Rather than using the full size of training data, we would
like to investigate the performance of aforementioned mod-
els on the small training set. We used the configurations



Accuracy Precision Recall F1-Score
Baseline 0.73 0.74 0.87 0.80

Cross Training 0.80 0.75 0.9 0.82
Joint Training 0.80 0.74 0.92 0.82

Table 2. The comparison results of three models over the Accu-
racy, Precision, Recall and F1-score.

as following, Mask-RCNN: 10 objects are detected; Aug-
mentation: we chose one of noises such as rotation, adding
gray, filtering, resizing, translation, brightness, etc.; Resnet:
18 convolutional layers are implemented and the output is
512 dimension (also text encoder is 512 dimension); Dense
Layer: the output of dense vector is 300 dimension.

The results have been presented in Table 2, highlighting
the best performance for each evaluation metric. It is ob-
served that the baseline model performs the worst across all
four metrics. As anticipated, replacing the structure of the
original convolutional network with a contrastive learning
module in the image encoder improves the ability to detect
OOC content. Both cross training and joint training models
achieve an accuracy of 0.80, which is an improvement of ap-
proximately 10% over the baseline model (0.73). In terms
of recall, the contrastive learning models achieve better re-
sults than the baseline as well, with cross training and joint
training models achieving 0.9 and 0.92 respectively. The in-
creased performance is attributed to the enlargement of the
training samples through augmentation, indicating that the
contrastive learning models can effectively address the issue
of insufficient training data. However, based on the paired t-
test, the difference between cross training and joint training
contrastive models is not statistically significant (p-value is
0.718).

We recognize that the accuracy of the aforementioned
methods is lower than the results reported in the original pa-
per, primarily because we randomly selected a subset of the
training data, which consisted of less than 5,000 samples. In
comparison to the reported accuracy of 85% achieved by us-
ing the full training set of 16,000 samples, we demonstrate
that contrastive learning can achieve nearly 94% (0.80/0.85)
of the performance using only 28% (4.5k/16k) of the train-
ing data. Furthermore, adding more data for training would
yield limited improvements.

4.4. Contrastive Learning for True Caption Classi-
fication

We identified that most of classification decision is based
on the sentence similarity BERT model which is pre-trained
without fine-tuned. As shown in Figure 3, the final predic-
tion is decided by the IoU and Ssim scores. However, the
majority of testing data (more than 80%) has nearly 0.9 of
IoU which is above the threshold (0.5). Consequently, the
final classification is mainly attributes to the Ssim. To alle-

Figure 4. Classification of true caption based on the image-caption
model. The pre-trained contrastive learning module (see Figure 2)
is used for the image feature representation, and two captions
are encoded through the Universal Sentence Encoder respectively.
Then the caption vectors are used to compute the similarity with
image vector. Finally, the prediction is decided by the similarity
score where the image vector is closer to the true caption than the
false one.

viate the bias, we would like to directly use contrastive in
the training phase.

We simply modify our model for the task of classify-
ing the correct caption. The structure is illustrated in Fig-
ure 4. Firstly, we extract the vector representation for the
image from the trained contrastive learning model. Subse-
quently, we calculate the cosine similarity between this rep-
resentation and the vector representations of the two cap-
tions (matched and non-matched captions). Finally, we de-
termine the true caption based on the similarity score where
the matched caption should have higher value with the im-
age. The results obtained are mediocre, as only 941 out of
1700 (55%) have been correctly detected. We will continue
working on improving this method in the future work.

4.5. Comparison on Varying Training Data Sizes

Following the results we obtained from previous experi-
ment (Section 4.3), we would like further to investigate the
impact of varying levels of training size on performance of
the models. To be detailed, we want to examine whether
the contractive learning would achieve comparable results
when training on the even smaller size of data, and how the
various mount of training data would consequent the mod-
els’ classification ability. To do this, we created 10 different
levels of training sizes, ranging from 500 to 5000 samples in
intervals of 500 (randomly selected from original data set).
For each level, we use the identical training data across three
models. Then, we measured classification accuracy on the
testing set as the same way with the previous experiment.
The results are shown in Figure 6.

Theoretically, increasing the training data should im-
prove the models’ classification performance. However, ac-
cording to the Figure 6, the baseline model showed the op-



Figure 5. OOC classification precision, recall and F1-score for three different models with varying size of training samples.

posite trend. For instance, the best accuracy (0.78) of red
line was achieved at 1500 training samples, and the base-
line model is surprisingly decreased multiple times at train-
ing over the 2000, 3000, and 4500 samples. All three drops
were significant, with the accuracy decreasing from nearly
0.78 to 0.72. Although the baseline models were fluctuat-
ing, the overall trend was upward (red line increased from
0.72 to 0.77).

In contrast, both contrastive learning models achieved
superior results (around 0.79) when trained on very few data
samples. For instance, the results of the two contrastive
models fell in the range of 0.78 to 0.80, while the lowest
accuracy of the baseline model was 0.72. Moreover, their
performance steadily improved with the addition of more
data, although the improvement was limited.

Overall, the two contrastive learning models performed
comparably, and it was challenging to determine which one
was better. To further explore this, we also reported the pre-
cision, recall, and f1-score in Figure 5. The joint training
achieved the best results in terms of recall and f1-score, fol-
lowed by the cross training, while the baseline model had
the worst performance.

5. Conclusions
The focus of this work was to investigate the perfor-

mance of constrastive learning for the feature representation
when the tackling the domain of labelled data insufficiency,
specifically the text-image context pairing. We highlight
the following points from this work: (1) We proposed an
advanced model for the task of out-of-context (OOC) de-
tection based on the contrastive learning which is a self-
supervised machine learning technique and utilize data aug-
mentation for training. According to the results, we demon-
strated the superior of our model comparing to the bench-
mark from original paper; (2) We focused on the situation
where the labelled data is inadequate for training, which
is a general limitation for the most of classification tasks.

Figure 6. OOC classification accuracy for three different models
with varying size of training samples.

We have done the comparison and show that the contrastive
learning has a strong ability to learn the image feature and
achieve the 94% of full performance, albeit decreasing the
training data size nearly 70%; (3) We carried out a compre-
hensive analysis of the ability of the different classifiers to
deal with the varying training data sizes. Our results show
that the contrastive learning model produce the stable per-
formance and increase the accuracy steadily once adding
the training data. However, the baseline model has ups-and-
downs results.

At last but not the least, we notice that one of the dis-
advantages for the COSMOS data set is that the label of
OOC is based on whether the two captions are consistent
with each other and also corresponding to the image. In
this case, it ignores the real scenario of judging which of
the caption is true. Although we proposed a new classifier
model to deal with this issue, the results are not promising.

In the future, we would like further to explore contrastive
learning and focus on the advance techniques to improve the
misinformation detection accuracy.
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