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Abstract

We explore varying face recognition accuracy across de-
mographic groups as a phenomenon partly caused by dif-
ferences in face illumination. We observe that for a com-
mon operational scenario with controlled image acquisi-
tion, there is a large difference in face region brightness be-
tween African-American and Caucasian, and also a smaller
difference between male and female. We show that impostor
image pairs with both faces under-exposed, or both over-
exposed, have an increased false match rate (FMR). Con-
versely, image pairs with strongly different face brightness
have a decreased similarity measure. We propose a bright-
ness information metric to measure variation in brightness
in the face and show that face brightness that is too low
or too high has reduced information in the face region,
providing a cause for the lower accuracy. Based on this,
for operational scenarios with controlled image acquisi-
tion, illumination should be adjusted for each individual
to obtain appropriate face image brightness. This is the
first work that we are aware of to explore how the level
of brightness of the skin region in a pair of face images
(rather than a single image) impacts face recognition ac-
curacy, and to evaluate this as a systematic factor caus-
ing unequal accuracy across demographics. The code is at
https://github.com/HaiyuWu/FaceBrightness

1. Introduction
Widespread adoption of facial recognition technology in

recent years has brought the startling realization that accu-
racy can vary significantly across demographics. This phe-
nomenon has been widely discussed in news stories [29,34,
43,48] and research papers [12,16,17,21,25,33,47,51]. In
response, facial recognition researchers [18,30,33,36] have
explored the fundamental questions of why and how recog-
nition accuracy varies across demographics. This work ap-
proaches the issue of accuracy variation through the lens of
image brightness, in the context of controlled image acqui-
sition scenarios such as driver’s license, passport, ID card,
etc. The contributions of this work are:

(a) 0.0431 (b) 0.2638

(c) 0.0050 (d) 0.3389

Figure 1. Impostor image pairs have, on average, higher similar-
ity scores when both images are too bright (“over-exposed”) or
too dark (“under-exposed”), due to less information available to
distinguish between faces. Pairs in (a) and (b) are the same two
persons, but images in (a) have appropriate brightness and in (b)
are over-exposed, resulting in (b) having a higher similarity score.
Similarly, Pairs in (c) and (d) are the same two persons, but images
in (c) have appropriate brightness and in (d) are under-exposed, re-
sulting in (d) having a higher similarity score.

• Using an operational dataset acquired under conditions
typical of mugshot, passport or ID card photo, we show
that African-Americans are more likely to have under-
exposed images and Caucasians are there are more
likely to have over-exposed images. (See Section 4.)

• We propose a face skin brightness (FSB) metric that
avoids regions of the image that are not related to
recognition (hair color, sunglasses, ...), to give a more
recognition-relevant brightness estimate than a com-
mercial ICAO-compliance SDK. (See Section 3.1.)

• Using ArcFace [19] and a current commercial-off-the-
shelf (COTS) matcher, we show that impostor pairs
that are “too dark” and “too bright” can have a FMR
twice that of pairs with appropriate brightness. Also,
impostor pairs that have strongly different brightness
have a reduced FMR relative to pairs with appropriate
brightness. (See Section 5.)

• We provide a target brightness range which supports

1

ar
X

iv
:2

20
6.

01
88

1v
2 

 [
cs

.C
V

] 
 1

6 
A

pr
 2

02
3

https://github.com/HaiyuWu/FaceBrightness


best accuracy for all demographic (i.e. male/female
and Caucasian/African American) for both matchers.
It can easily be applied in real life by using the FSB
metric. (See Section 6.1.)

2. Related Work
A detailed discussion of face image quality metrics re-

lated to illumination appears in a recent survey [44]. We
briefly mention selected related works considering illumi-
nation and brightness in face images in different contexts.

A large body of work was enabled by the Pose, Illumi-
nation and Expression (PIE) [28, 45] and Multi-PIE [23]
datasets. These datasets acquired images with flashes at var-
ious positions around the subject in order to explore the role
of lighting direction. These datasets do not support explor-
ing the effects of the general illumination level.

Beveridge et al [15] concluded that lighting direction
can explain significant drops in matching accuracy. Han
et al [28] surveyed the effect of various illumination pre-
processing techniques on PIE and other datasets in terms
of improving recognition accuracy for a selection of pre-
deep-learning recognition algorithms. De Marsico et al [38]
proposed an illumination-distortion metric that reflects the
degree of uniformity in face illumination, computed as the
standard deviation of the brightness of a set of eight face
regions. Their metric does not capture the overall level of
brightness. Abaza et al [8] proposed a face image quality in-
dex based on factors such as contrast, brightness, sharpness,
focus and illumination. They used gamma adjustment to
create darker and brighter versions of an image. They found
that lowered-brightness images have slightly reduced rank-
one recognition accuracy and increased-brightness images
generally have the same accuracy as the original. Their ex-
periment shows higher brightness can increase the recog-
nition rate. Later, in Table 1, we show that higher bright-
ness must eventually result in lower accuracy. Grm et al [22]
created degraded versions of probe images from the LFW
dataset [31] including simulated over-exposure. Their re-
sults show that over-bright probe images have lower veri-
fication accuracy. However, based on Fig. 4 in [22], too
much brightness was added, resulting in unrealistic-looking
images and possibly affecting their conclusion. Terhörst et
al [46] combined a face recognition model and an image-
specific quality regression model to generate saliency maps
in order to investigate how image quality impacts the face
recognition model. They concluded that face regions with
high brightness lead to degraded recognition performance.

Some papers use the average brightness divided by the
highest brightness value on the face as a quality met-
ric [35, 39]. Taken to the extreme, this metric says that
an over-bright image is higher quality. None of the works
mentioned above use their metric to characterize pairs of
images compared for recognition. A very recent work [32]

considers the problem of decreased accuracy for poorly illu-
minated images and proposes a feature restoration network.
They consider image brightness as a binary attribute of ap-
propriate / dim, and so do not recognize an effect for too-
bright images. They also do not have a metric of brightness,
and work with the small Specs on Faces (SoF) dataset hav-
ing images of just 112 persons.

Exploring possible bias in recognition accuracy, re-
searchers have investigated whether persons with darker
skin tone have decreased accuracy. Skin tone is typically
rated on a scale from 1 (lightest) to 6 (darkest) [33, 36, 50].
In the Janus program, Mechanical Turk workers rated web-
scraped, in-the-wild celebrity images [50]. Lu et al [36]
analyzed accuracy across skin tone on the Janus dataset
and found that the ROC curves degraded from skin tones
1 to 5, but that skin tone 6 had a better ROC than 5. In
other work [33], multiple human annotators rated skin tone
for a set of images from the MORPH dataset [41]. The
distribution of different skin-tone pairs was compared for
the middle and the high-similarity tail of the impostor dis-
tribution, with the conclusion that there is no clear evi-
dence of increased FMR for darker skin tone. In all studies
where observers rate the skin tone of a celebrity, there is the
likelihood that the rating is influenced by recognizing the
celebrity and the person’s race, rather than the rating being
based solely on face brightness in the image.

A 2022 FRVT report [24] perhaps comes the closest to
connecting the brightness of an image pair to matching ac-
curacy. The report states that “... False negatives are in
large part due to one or both photographs being of poor
quality, something that can be coupled with demographics.
... dark skin has more challenging dynamic range capture
requirements, with underexposed facial regions resulting in
reduced information available to the algorithm.” However,
this report does not suggest that over-exposure can have the
same effect for essentially the same reason.

Distinctive elements of this work relative to the works
described above include the following. Most of the above
works focus on brightness of a single image rather than an
image pair, and do not consider how the effects vary across
demographics [8, 15, 22, 23, 38, 45]. This paper focuses on
brightness of the image pair, and on how this affects accu-
racy across demographics. There is previous work investi-
gating how manually-rated skin tone, in particular darker
skin tones, in a pair of images is associated with recog-
nition accuracy [33, 36]. This paper focuses on analyz-
ing automatically-computed face brightness for an image
pair, and how this affects recognition accuracy, across de-
mographics and whether the brightness is too low or too
high.
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Original 118.37 146.37 201.69

Original 147.13 111.46 157.66

Figure 2. Region used for “Face Skin Brightness” metric. From
left: original color image; using whole image to estimate bright-
ness and its result; using whole face area to estimate brightness and
its result; using FSB metric to estimate brightness and its result.

3. Face Image Brightness Distributions

There are many web-scraped, in-the-wild, celebrity im-
age datasets: MS-Celeb [27], WebFace260M [53], VG-
GFace [40] and others. With web-scraped datasets, one can-
not know if any image is brightened, contrast-enhanced or
otherwise manipulated. To study how face region bright-
ness in originally-acquired images affects accuracy, we
use the MORPH dataset [6, 41]. MORPH images are ac-
quired in controlled conditions typical of mugshot, passport
or ID-card photos, including nominally frontal pose, neu-
tral expression, consistent indoor lighting and plain 18%
gray background. MORPH was assembled from public
records, and is widely used in face aging [42] and in
study of demographic accuracy variation [11, 14, 20, 33].
The version of MORPH used contains 127,319 images:
56,245 images of 8,839 African-American males, 24,857
images of 5,929 African-American females, 35,276 images
of 8,835 Caucasian males, and 10,941 images of 2,798 Cau-
casian females. Faces were detected and aligned using
img2pose [13].

3.1. Face Skin Brightness Metrics

We compare two metrics for estimating brightness of a
face image. One is the metric reported by the iFace SDK [2,
3] (version 3.13) for checking compliance with Interna-
tional Civil Aviation Organization (ICAO) standards [5,37].
The other is a metric specifically developed for this work.

ICAO-compliant images have “appropriate brightness
and contrast that show skin tones naturally” [49]. IFace de-
fines brightness as a “face attribute for evaluating whether
an area of the face is correctly exposed” [4]. Assigned
values range from -10,000 (“too dark”) to +10,000 (“too
light”), with values near 0 indicating “OK”. IFace gives de-
cision thresholds of -5,000 for under-exposure and +5,000
for over-exposure. With the motivation that the face skin
region drives face matching accuracy, we introduce a face

1⃝ 2⃝
.

3⃝ 4⃝
Figure 3. Comparison of iFace and FSB brightness values.
1⃝, 2⃝, 3⃝, and 4⃝ are the top outliers in each demographic

group. These vertical and horizontal dotted lines are the bound-
aries of each brightness category: Strongly Under-exposed (SU),
Under-exposed (U), Middle-exposed (M), Over-exposed (O), and
Strongly Over-exposed (SO). The brightness value and brightness
group are shown on the top of each example, where the value’s
format of each person is FSB(group)/iFace(group).

skin brightness (FSB) metric. We use the Bilateral Segmen-
tation Network (BiSeNet) [1, 52] to segment a face image
into 13 regions, such as face skin, nose, eyes, lips, etc. Pre-
vious approaches [7,9,18] for estimating the brightness fail
to give a correct brightness estimation in the case showing
in Figure 2, because beard and background strongly impact
the brightness result. To alleviate the impact from the other
factors, we omit the eyes, eyebrows, and lips from the cal-
culation in order to avoid brightness variation due to sclera,
eyelashes/mascara, eyebrows and lipstick. We also omit the
nose region because it often contains specular highlights,
and the skin region below the level of the nose because for
men this often contains mustache, or beard. This resulting
region used for our metric is illustrated in the last column
of Figure 2. FSB is then computed as:

FSBimage =

∑
h,w∈FS Imagegray(h,w)

N
(1)

where FS is the selected face region, (h,w) is the pixel
position in FS, and N is the number of the pixels in FS.
FSB ranges from 0 (darkest) to 255 (brightest).

Figure 3 compares iFace and FSB brightness for the
MORPH images. iFace estimates relatively higher bright-
ness than FSB for under-exposed images, and relative lower
brightness than FSB for the other images. To better under-
stand how the metrics differ, Figure 3 shows the strongest
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Males Females

(a) Strongly Under-exposed

(b) Under-exposed

(c) Middle-exposed

(d) Over-exposed

(e) Strongly Over-exposed

Figure 4. Examples across brightness and demographics.

outlier image for each demographic. These images are in
the upper third of the brightness range of our FSB met-
ric, but significantly lower in the range of the iFace metric.
While we do not know how the iFace metric is calculated,
we speculate that hair regions are included in its calculation.

4. Face Brightness Distributions

Figure 5 shows the iFace and FSB distributions for
MORPH images, broken out by demographic. For both
iFace and FSB, there is a smaller second peak at higher
brightness in the female and male Caucasian distributions.
We speculate this is due to specularities on the forehead
in some fraction of the images. There is a narrow early
peak at lower brightness on the iFace (only) distributions
for African-American female and male. We speculate this
is due to the iFace SDK including hair in the region it uses
to estimate brightness. For both metrics, African-American
males have the lowest average brightness (for FSB, mean
= 138.7, σ = 32.5), followed closely by African-American
females (for FSB, mean = 143.5, σ = 32.6), then a larger
gap to Caucasian males (for FSB, mean = 188.3, σ = 25.6),

followed closely by Caucasian females (for FSB, mean =
191.4, σ = 25). Note that brightness metrics for African-
American females and males have larger standard deviation
than for Caucasian females and males.

To analyze how recognition accuracy varies for too-dark
or too-bright face skin regions, we divide the brightness
distribution for the whole image set into five ranges using
the 5%, 15%, 85%, and 95% percentiles. We refer to the
ranges as strongly under-exposed (SU), under-exposed (U),
middle-exposed (M), over-exposed (O), and strongly over-
exposed (SO). Figure 4 shows example images for each
brightness category and demographic, illustrating that the
brightness categories are broadly meaningful. Note that
under- and over-exposure has strong demographic correla-
tion. African-American females and males have substantial
numbers of image pairs with (U,U) and (SU,SU) brightness,
but very few with (O,O) or (SO,SO). The reverse applies to
Caucasian females and males, but have substantial numbers
of (O,O) and (SO,SO) but very few (U,U) or (SU,SU).

5. Accuracy Varies By Image Pair Brightness
To check if accuracy variation based on image pair

brightness is matcher-dependent, we use two matchers: Ar-
cFace [19, 26], and a recent commercial matcher, COTS-D
(not named due to license restriction). The pattern of results
across brightness categories and demographics is similar for
the two matchers. Because the two metrics give similar re-
sults and FSB is less affected by non-skin elements, this
section presents results only for FSB-based categories.

For each matcher, we compute the impostor distribution
separately for each demographic, and then select the thresh-
old corresponding to a 1-in-10,000 FMR for the Caucasian
male demographic as the threshold for all demographics.
This method of setting the FMR threshold follows the re-
cent NIST report on demographic effects in face recogni-
tion accuracy [25]. Also, this method makes the cross-
demographic differences in FMR more readily apparent.

Table 1 summarizes the FMRs across the brightness
categories, for both matchers and the four demographic
groups. There are five categories of similar-brightness im-
postor pairs: (SU,SU), (U,U), (M,M), (O,O) and (SO-SO);
four categories of pairs with images one brightness cate-
gory apart; (SU,U), (U,M), (M,O) and (O,SO); and so on.
The number of image pairs varies greatly across brightness
category and demographic. Categories with less than 1M
image pairs are shown in gray in Table 1, to indicate lower
statistical support. Our comments focus primarily on cat-
egories with larger numbers of image pairs. We comment
first on how FMR varies with brightness of the image pairs,
then on FMR differences across demographic groups, and
last on differences between matchers.

One general result for both matchers and for all four
demographics is that (M,M) brightness image pairs have
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C Female C Male A-A Female A-A MaleFSB Imposters FMR Imposters FMR Imposters FMR Imposters FMR
0.0000 0.0606 0.5188 0.0462(SU,SU) 90 0.0000 1,650 0.0000 1,329,858 0.0285 10,860,733 0.0051
0.0818 0.0000 0.4872 0.0440(U,U) 1,222 0.0000 22,938 0.0000 5,154,158 0.0339 42,810,922 0.0046
0.0359 0.0096 0.3273 0.0374(M,M) 21,922,011 0.0528 273,558,170 0.0096 176,625,162 0.0263 812,147,804 0.0034
0.0550 0.0121 0.2987 0.0919(O,O) 3,851,462 0.0698 24,685,360 0.0123 582,234 0.0477 1,703,422 0.0067
0.1014 0.0255 0.4324 0.3136(SO,SO) 1,087,394 0.0921 10,487,792 0.0166 9,020 0.1441 14,986 0.0267
0.0000 0.0161 0.4919 0.0438(SU,U) 699 0.0000 12,447 0.0080 5,238,898 0.0030 43,133,866 0.0048
0.0166 0.0077 0.3521 0.0338(U,M) 331,078 0.0099 5,027,776 0.0017 60,364,176 0.0241 372,979,809 0.0034
0.0386 0.0094 0.2047 0.0366(M,O) 18,385,534 0.0553 164,378,978 0.0099 20,297,481 0.0253 74,433,988 0.0033
0.0575 0.0137 0.2842 0.1068(O,SO) 4,096,167 0.0754 32,189,078 0.0126 145,656 0.0665 321,113 0.0106
0.0183 0.0071 0.3341 0.0309(SU,M) 92,668 0.0053 1,356,380 0.0010 30,671,103 0.0198 187,881,881 0.0031
0.0166 0.0052 0.1362 0.0168(U,O) 138,810 0.0079 1,510,801 0.0019 3,468,769 0.0129 17,093,291 0.0016
0.0372 0.0091 0.1123 0.0216(M,SO) 9,773,081 0.0524 107,153,315 0.0098 2,537,284 0.0227 7,012,583 0.0026

Table 1. FMR across impostor pair brightness categories for all demographic groups. For the FMR of each category, top number is ArcFace
model, bottom number is COTS-D. The categories with less than 1M impostors are set in gray.

lower FMR compared to either (U,U) and (SU,SU) pairs,
or to (O,O) and (SO,SO) pairs. For example, for Caucasian
male, going from brightness category (M,M) to (SO,SO) in-
creases ArcFace FMR from 0.0096 to 0.0255 (166%), and
increases COTS-D FMR from 0.0096 to 0.0166 (73%). For
Caucasian female, going from brightness (M,M) to (SO,SO)
increases ArcFace FMR from 0.0359 to 0.1014 (183%), and
increases COTS-D FMR from 0.0528 to 0.0921 (74%). For
African-American male, going from brightness (M,M) to
(SU,SU) increases ArcFace FMR from 0.0374 to 0.0462
(24%), and increases COTS-D FMR from 0.0034 to 0.0051
(50%). For African-American female, going from bright-
ness (M,M) to (U,U) increases ArcFace FMR from 0.3273
to 0.4872 (49%), and increases COTS-D FMR from 0.0263
to 0.0339 (29%). The (SU,U) brightness pairs show similar
increases in FMR for the African-American demographics,
as do the (O,SO) brightness pairs for the Caucasian demo-
graphics. In general, similar brightness image pairs that are
too dark or too bright have increased FMR.

Another general result is that image pairs that differ sig-
nificantly in brightness have a decreased FMR. For ex-
ample, for Caucasian male, (U,O) pairs have an ArcFace

FMR of 0.0052 and a COTS-D FMR of 0.0019, decreases
of 45% and 80%, respectively, from the FMR for (M,M)
pairs. For African-American male, (U,O) pairs have an
FMR of 0.0168 and a COTS-D FMR of 0.0016, decreases
of 55% and 53%, respectively, from the FMR for (M,M)
pairs. For African-American female, (U,O) pairs have an
FMR of 0.0168 and a COTS-D FMR of 0.0016, decreases
of 58% and 51% from the FMR for (M,M) pairs.

The larger effects of image pair brightness can be seen
in the impostor and genuine distributions in Figure 6. The
distributions in the left plot show that image pairs that are
strongly under- or over-exposed have an impostor distribu-
tion that is shifted to increased similarity scores, meaning
a higher FMR, and also a lower d-prime for separation of
impostor and genuine distributions. The distributions in the
right plot show that image pairs that have strongly differ-
ent brightness have an impostor distribution shifted to lower
similarity, meaning a lower FMR, but also a genuine distri-
bution shifted even further to lower similarity, meaning a
higher FNMR and resulting in a decreased d-prime. This
pattern of accuracy variation is reinforced by the impostor
and genuine distributions for other demographics shown in

5



(a) FSB metric (b) iFace

Figure 5. Brightness distribution of demographic groups. For each brightness metric, it shows the brightness distributions of Caucasian
females, Caucasian males, African-American females, and African-American males. The stacked version is in the Figure 1 of the Supple-
mental material.

Figure 6. Genuine and impostor distributions for selected pair brightness categories for African-American Male. The African American
male demographic has the most data over the broadest range of brightness categories, enabling better estimates of the genuine distribution
than the other demographics. Distributions in the plot on left show that too-dark or too-bright image pairs have both worse impostor and
worse genuine distributions. Distributions in the plot on the right show that image pairs with strong brightness difference have better
impostor and worse genuine distributions.

Figure 7. Image pairs of extreme low or high brightness re-
sult in an impostor distribution shifted to higher similarity,
and image pairs of strongly different brightness result in a
genuine distribution shifted to lower similarity.

FMR variation across demographics in our results
mostly follow the pattern seen in the literature [25, 33].
Considering (M,M) brightness pairs, the Caucasian female
ArcFace FMR is a factor of 3.7 times that for Caucasian
male, and the COTS-D FMR is a factor of 5.5 times that
for Caucasian male. For African-American male, the Ar-
cFace FMR is a factor of 3.9 that for Caucasian male, but
the COTS-D FMR is 65% lower than that for Caucasian

male. For African-American female, the ArcFace FMR
is a factor of 34 times that for Caucasian male, and the
COTS-D FMR is a factor of 2.7 times that for Caucasian
male. For ArcFace, using a fixed similarity threshold to
generate a FMR results in Caucasian male having the low-
est FMR, similar and higher FMRs for Caucasian female
and African-American male, and much higher FMR for
African-American female. We will comment on the relative
d-prime separation of impostor and genuine scores later.

The relative COTS-D FMR for Caucasian male versus
African-American male is clearly at odds with what is seen
in the literature. The black-box nature of a COTS algorithm
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Figure 7. Selected impostor and genuine distributions for African American female, Caucasian male, and Caucasian female.

FSB C Female C Male A-A Female A-A Male
BIM FMR d′ BIM FMR d′ BIM FMR d′ BIM FMR d′

(SU,SU) 23.72 - - 23.19 - - 24.52 0.5188 7.5 24.49 0.0462 8.9
(U,U) 26.70 - - 27.05 - - 29.61 0.4872 7.9 29.69 0.044 9.6
(M,M) 35.98 0.0359 8.3 34.69 0.0096 8.9 34.53 0.3273 8.2 34.97 0.0374 9.9
(O,O) 34.87 0.0550 8.1 32.74 0.0121 8.9 33.16 - - 33.65 0.0919 9.5

(SO,SO) 26.41 0.1014 7.9 25.26 0.0255 8.7 27.23 - - 26.77 - -
Table 2. Bright Information Metric for images in each brightness category with FMR.

means that we cannot offer any confident speculation of the
cause for this. But we observe that there is no overlap be-
tween MORPH and the dataset used in training ArcFace,
whereas the training and development data for COTS-D is
unknown to us. We also observe that the COTS-D impostor
and genuine distributions are distinctly not Gaussian. Sim-
ilarity scores from COTS-D are in the range from 0 to 1.
Across the four demographics, from 58% to 80% of the im-
postor scores are reported as 0, and 98% or more of the gen-
uine scores are reported as 1. This suggests a thresholding
step on the raw similarity scores before they are reported.
As a result, it is meaningless to plot impostor and genuine
distributions or to report d-prime values for COTS-D.

General conclusions from this analysis are as follows.
One, there is target range in the middle of the observed
brightness distribution that results in lowest FMR. Two, im-
age pairs with similar brightness, darker or brighter than the
target range, result in increased FMR. Three, image pairs
with substantially different brightness result in decreased
FMR. Thus the current standard approach in which the same
matching threshold is used for all image pairs, results in
some pairs having predictably higher and lower FMR based
on their brightness. For controlled image acquisition, this
problem can potentially be addressed by adjusting lighting
to acquire images in the target range of face skin brightness.

6. Brightness, Face Information and d-prime
Brightness metrics in previous work [10, 35, 39] suggest

that an image with higher brightness is of higher quality.
(See Related Work.) However, the previous section shows
that the FMR of similar-brightness impostor pairs is low-
est for middle brightness and increases for pairs that are too

dark or too bright. This section explores how the level of
variability in face skin brightness can explain the accuracy
across brightness categories. We propose a Brightness In-
formation Metric (BIM) that captures the degree of varia-
tion in face skin brightness, defined as follows:

BIM =

N∑
i=0

|Bi − B̄|P (Bi) (2)

where Bi is a brightness level, P (Bi) is the probability of
face skin pixels that have this brightness level, and B̄ is the
average brightness of the face skin pixels. Note that, since
the brightness values distribute in a Gaussian-like form, the
BIM is positively related to the average information entropy
of the selected group of images.

Table 2 summarizes the average BIM across the dif-
ferent brightness categories and demographics, along with
FMR and the d-prime for the separation between impos-
tor and genuine distributions. ArcFace d-prime and FMR
values are shown because, as explained earlier, the COTS-
D impostor and genuine distributions contain large spikes
at zero and one, respectively. For each of the four demo-
graphics, the largest BIM and the lowest FMR occur for M
brightness. For all demographics, the BIM decreases from
(M, M) to (O,O) and decreases again to (SO,SO), and it
also decreases from (M,M) to (U,U) and decreases again to
(SU,SU). Across brightness categories and demographics, a
lower BIM for images in an impostor pair means less infor-
mation to distinguish between individuals, and so a higher
similarity score and higher FMR.

6.1. Target Brightness Range for Best Accuracy

The M brightness range in earlier sections corresponds to
the middle 70% of the overall brightness distribution. Our

7



FSB Range C Female C Male A-A Female A-A Male
Sliding-bins BIM d′ BIM d′ BIM d′ BIM d′

(M6,M6) 145 - 185 35.42 8.40 34.38 9.15 36.00 8.36 36.70 9.93
(M7,M7) 150 - 190 35.90 8.47 34.73 9.17 36.22 8.40 36.97 9.94
(M8,M8) 155 - 195 36.30 8.55 34.99 9.20 36.35 8.40 37.09 10.00
(M9,M9) 160 - 200 36.62 8.59 35.18 9.20 36.39 8.42 37.11 10.02

(M10,M10) 165 - 205 36.85 8.54 35.29 9.18 36.29 8.44 36.96 9.99
(M11,M11) 170 - 210 36.83 8.47 35.29 9.09 36.01 8.47 36.70 9.97
(M12,M12) 175 - 215 36.66 8.49 35.11 9.01 35.69 8.47 36.34 9.96
(M13,M13) 180 - 220 36.24 8.31 34.63 8.97 35.20 8.51 35.76 9.88

Table 3. Average BIM and d-prime of each sliding-bin.

results so far suggest it should be possible to select a nar-
rower range that gives better accuracy. To investigate the
feasibility and generality of this, we conduct a refined anal-
ysis of our M brightness range.

Table 3 summarizes BIM and d-prime for image pairs
in sliding 40-brightness-level bands of our initial M bright-
ness range. Across all four demographics, the highest BIM
and d-prime are generally found for M9 and M10, with
combined brightness range 160-205. The operational sce-
nario brightness range in Figure 5 runs about 50 to 250,
meaning that the target range for best accuracy is about
one-fourth the observed operational range. Also, note that
28% of African-American female images, 24% of African-
American male images, 62% of Caucasian male images and
59% of Caucasian female images in MORPH fall into the
target range for best accuracy. Thus it appears that a portion
of the demographic variation in accuracy is due to variation
in quality of the images acquired.

7. Conclusions and Discussion
Using a face image dataset from a real operational sce-

nario with controlled image acquisition, we show that the
distribution of face skin brightness varies over most of the
0-255 range. While the distribution of face skin brightness
has large overlap across demographics, on average, images
of African-Americans have lower brightness than images
of Caucasians and images of males have (slightly) lower
brightness than images of females. Also, the standard devi-
ation of the brightness metric is about one-third greater for
African-Americans than for Caucasians.

To analyze how accuracy varies with image pair bright-
ness, the face skin brightness distribution was divided
into intervals representing strongly under-exposed, under-
exposed, middle exposure, over-exposed and strongly over-
exposed. FMR analysis from two different matchers
showed very similar trends. Pairs of images that have lower
or higher face skin brightness have an increased FMR rel-
ative to image pairs with middle brightness. Also, pairs of
images that differ strongly in face skin brightness have a
lower FMR than image pairs with middle brightness. We

used a brightness information metric that measures the vari-
ation in brightness in the face skin region to explain that the
available information in the face skin region is at a maxi-
mum at a middle brightness level and declines as the face
skin brightness moves toward either end of the scale.

We showed that it is possible to find a target face skin
brightness range that represents the maximum BIM for all
four demographics, and achieves the maximum d-prime
separation of impostor and genuine distributions. This tar-
get brightness range is about one-fourth the range of bright-
ness seen in a retrospective image dataset from an oper-
ational scenario with controlled image acquisition. This
analysis suggests that operational scenarios with controlled
image acquisition could maximize face recognition accu-
racy by adjusting the lighting on image acquisition to hit
the target face skin brightness range. The analogy could be
made here to image acquisition for commercial iris recog-
nition, in which the illumination is controlled and image
quality is automatically checked at the time of acquisition.

Analysis suggests that the issue of acquiring images with
face skin brightness in an appropriate range for all de-
mographics is related to the problem of varying accuracy
across demographics. Consider that our analysis suggests a
target face skin brightness range of 160-205. The face skin
brightness distribution shows that different demographics
have a very different fraction of their images falling into
this range. Caucasian males and females have 62% and
59% of their images falling into this interval. But African-
American males and females have just 24% and 28% of
their images falling into this interval. Acquiring images
of equal quality for all demographics may be an essen-
tial element to expecting equal accuracy across demograph-
ics.
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